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SUPPLEMENTARY METHODS 
 

Illumina EPIC array methylation data quality 

control and preprocessing 

 

Infinium MethylationEPIC BeadChip raw data (IDAT 

files) were generated. The R package ENmix [1] was 

used for quality control with default parameter settings. 

Low-quality methylation measurements were identified 

by detection p-value <10-6 or the number of beads <3 

[1]. We excluded 6,209 CpGs with a detection rate 

<95% and 87 samples with a percentage of low-quality 

methylation measurements >5% or extremely low 

intensity of bisulfite conversion probes [1]. We further 

removed 95 samples that were extreme outliers, as 

defined by Tukey's method [i.e., <25th percentile – 3 * 

interquartile range (IQR) or >75th percentile + 3 * IQR] 

[2] and based on the average total intensity value 

[intensity of the unmethylated signal (U) + intensity of 

the methylated signal (M)] or β value [M / (U + M + 

100)] across CpG probes. The remaining samples were 

preprocessed using preprocessIllumina function in minfi 

package [3] before the estimations of epigenetic age.  

 

Spatial patterns of abnormality for recognition 

(SPARE) machine learning-based indices  

 

The SPARE-BA method relies on a multivariate pattern 

regression model to predict individualized brain age for 

each participant, similar to our previous work [4, 5]. 

Support vector regression model (radial basis function 

kernel) was trained with the T1-MR scans using 

regional volumetric measures for structures. The 

training set included only cognitively normal subjects. 

The training set for SPARE-BA consisted of (n=8,284) 

subjects from the iSTAGING consortium [6]. 
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