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As suggested in 2006, by slowing down the mTOR-

driven developmental program, rapamycin must slow 

down quasi-programmed aging [1]. In other words, 

targeting development with rapamycin must lead to a 

longer lifespan. An elegant study by Gladyshev and co-

workers has confirmed this prediction [2]. 
 

According to hyper-function theory, aging is a quasi-

program, a purposeless continuation of the growth 

program that has not been switched off upon its 

completion [1].  Aging is not programmed, only 

development is. Unlike a program, a quasi-program has 

no aim, although, like a program, it can be modulated 

[1, 3, 4]. For example, excessive nutrients and calorie 

restriction can accelerate and decelerate aging, 

respectively.  
 

Aging is driven by hyperfunctional signal-transduction 

pathways which, via cellular and systemic hyper-

functions, cause age-related diseases, whose sum is 

called aging [1]. Hyperfunctions cause organ damage 

(not molecular damage), resulting in loss of functions 

and secondary functional decline [1, 5]. 
 

The nutrient-sensing mTOR pathway promotes cellular 

growth [6-8] and cellular senescence, which is  

a continuation of cellular growth, when the cell cycle 

is blocked [9, 10].  According to hyperfunction theory, 

age-related diseases are quasi-programmed [1,11] with 

clear-cut examples in simple organisms such as C. 

elegans [11-15]. Hyperfunction theory was extensively 

reviewed [1, 5, 11, 16 -20].  Critical comments [21- 

23] have been addressed [5, 24].  Importantly, 

 

 

                                                     Commentary 

hyperfunction theory is mTOR-centric, describing 

mTOR-driven aging and its diseases [1]. By slowing 

down aging, rapamycin delays age-related diseases [1, 

25, 26].   
 

To maximally extend health and lifespan in humans, it 

was suggested that the treatment with rapamycin 

should be started at a young age: “As an anti-aging 

drug, rapamycin will prevent diseases rather than cure 

complications of diseases. Rapamycin will prevent 

[organ] damage but not to reverse damage. It might 

prevent diabetes and obesity but not diabetic gangrene 

and stroke. It might prevent macular degeneration  

but will unlikely cure blindness. Rapamycin will  

not repair broken bones but might prevent 

osteoporosis… rapamycin will be most useful as [an] 

anti-aging drug to slow down senescence and to 

prevent diseases” [1]. 

 

It was suggested in 2006 to take rapamycin 

immediately to the clinic to suppress human aging [1], 

even though longevity studies in animals were not yet 

performed. Starting from 2009, numerous studies 

demonstrated that rapamycin extends lifespan in mice 

[27-39]. 

 

Hyperfunction theory predicts that rapamycin can slow 

down aging by two complementary mechanisms:  

 

(a) directly suppressing the quasi-program of aging  

 

b) reprogramming aging by slowing the 

developmental-growth program  
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To demonstrate reprogramming, rapamycin should be 

given for a brief period during development. 

Shindyapina et al. showed that treatment with 

rapamycin for the first 45 days of life extends median 

lifespan by 10% [2]. Health was improved as measured 

by gait speed, frailty index, and glucose and insulin 

tolerance tests [2]. Rapamycin-treated mice were small 

and did not catch up on growth later [2].  

The hyperfunction theory explains why a large-body 

correlates with longevity between species (for example, 

elephants live longer than mice, which live longer than 

flies), but in contrast, within each species, it is a small 

body size that is associated with longevity [40]. Life-

long small body size after a brief treatment is consistent 

with reprogramming of the growth program. 

Notably, life extension by rapamycin was mostly 

observed in male mice [2]. This is consistent with the 

finding that mTOR is overactivated in young male mice 

compared with young female mice, thus explaining 

robustness of males at young age and their shorter 

lifespan [41]. 

Supporting the notion of rapamycin-induced re-

programming, previous studies found that (a) even 

transient treatment with rapamycin can extend lifespan 

[27, 36, 39] (b) a single rapamycin injection can lower 

body weight set point in the long run [42] and (c) 

rapamycin can affect the mTOR pathway activity long 

term by preventing obesity [43, 44].   

Further suggestions 

To further study rapamycin-induced reprogramming of 

aging, pregnant mice should be treated with a single 

subcutaneous injection of rapamycin and the lifespan of 

their offspring should be measured.  Prenatal (before 

birth) rapamycin treatment on early postnatal 

development has been studied [45-47]. For example, 

prenatally rapamycin-treated neonates are small, and 

body weight and left ventricular mass remain reduced in 

adulthood [47]. However, lifespan was not measured. 

(Note: rapamycin pre-treatment increased mortality 

immediately after the birth [47] because mTOR is 

essential early in life. Early-life death is not aging-

driven and should be excluded from the age-related 

mortality curve). 

At what age may rapamycin treatment be started in 

order to maximally extend human lifespan? Based on 

murine data, treatment with rapamycin can be started at 
a very old age. Still, in theory, the maximal effect 

potentially may be achieved before age-related diseases 

and pre-diseases become apparent in humans [1]. 

However, it should not be started too early because 

mTOR is essential for growth and early life fitness. In 

my opinion, rapamycin treatment (for anti-aging 

purposes) may only be started when a young adult can 

make informed decisions and should not be allowed 

before the age of 21. Doctors should consider that 

rapamycin may negatively affect reproduction, albeit 

reversibly. I believe that the initial dose should be very 

low and gradually increase with older age, when full 

individual doses are achieved. An anti-aging dose/ 

schedule is a maximum dose that do not yet cause side 

effects in a particular person [48]. Self-treatment is 

unacceptable and doses are highly individual [48, 49].  

Disclaimer 

This commentary is for information purposes, not 

medical advice.  
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