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INTRODUCTION 
 
Glioma, especially glioblastoma, is a largely 
heterogeneous tumor with high recurrence and mortality 
rates in the central nervous system. The median survival 
time of World Health Organization (WHO) grade III 
glioma is about 3 years, whereas WHO grade IV  
glioma has a grave prognosis of less than 15 months [1]. 
The conventional treatments for gliomas are surgical 
resection, radiotherapy and temozolomide chemotherapy. 
However, the drug treatment of glioma remains 
challenging, because the unique structure of the blood-
brain barrier prevents numerous antitumor drugs from 
entering the brain [2, 3]. Though various cancer 

therapies have been applied over the past decades, the 
prognosis of glioma patients remains dismal and is 
inconsistent even at the same tumor grade. Recently, 
many mutations have been proved capable of assessing 
the risk and predicting the prognosis of glioma, such as 
isocitrate dehydrogenase (IDH) mutation and 1p19q 
co-deletion, which present relatively favorable survival 
[4]. However, some of these indicators are not very 
comprehensive in predicting the prognosis of all-grade 
glioma patients, such as IDH (since nearly 80% of 
patients with low-grade glioma have IDH mutations). 
Therefore, a robust prognostic model is urgently needed 
to predict the survival of patients with the malignant 
growth and high relapse rate of glioma. 
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ABSTRACT 
 
This study is aimed to establish a new glioma prognosis model by integrating the aging-related lncRNA 
expression profiles and clinical parameters of glioma patients enrolled in the Chinese Glioma Genome Atlas and 
The Cancer Genome Atlas. The aging-related lncRNAs were explored using Pearson correlation analysis (|R|> 
0.6, P < 0.001), and the prognostic signature in glioma patients was screened using univariate cox regression 
and least absolute shrinkage/selection operator regression. Based on the fifteen lncRNAs screened out, we 
divided the glioma patients into three subtypes, and developed a prognostic model. Kaplan-Meier survival 
curve analysis showed that low-risk patients survived longer time than high-risk patients. Principal component 
analysis indicated that the signature of aging-related lncRNAs was clearly distinct between the high- and 
low-risk groups. We also found the fifteen lncRNAs were closely correlated with 119 genes by establishing a 
co-expression network. Kyoto Encyclopedia of Genes and Genomes analysis displayed that the high- and 
low-risk groups were enriched in different functions and pathways. Different missense mutations 
were observed in the two groups, and the most frequent variant types were single nucleotide polymorphism. 
This study demonstrates that the novel aging-related lncRNAs signature has an important prognosis prediction 
ability and may contribute to individualized treatment for glioma. 
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Long non-coding RNAs (lncRNAs), which are more 
than 200 nucleotides in length, do not encode proteins 
and are involved in post-transcriptional modulation and 
gene translation [5]. The diversity of lncRNAs is 
implicated in many biological functions, such as 
epigenetic regulation, tumor microenvironment and cell 
apoptosis [6]. Reportedly, overexpression of lncRNA 
AGAP2-AS1 can enhance breast tumor growth and 
trastuzumab resistance [7]. High expression of 
HOTAIR also promotes breast tumor cell proliferation 
and tamoxifen resistance [8]. Additionally, the depletion 
of lncRNA AGAP2-AS1 depresses proliferation and 
invasion, and induces apoptosis in U251 cells [9]. 
Moreover, ATB overexpression predicts a poor 
prognosis in colorectal cancer [10]. As relevant research 
continues, accumulating research has identified 
lncRNAs to play critical roles in regulating cell 
proliferation, invasion, apoptosis, and drug resistance in 
various tumors [11, 12]. Meanwhile, the vital roles of 
lncRNAs in degenerative diseases of the central nervous 
system are becoming evident [13]. LncRNAs also 
promote tumor immune evasion; for example, NKILA 
escapes immunological destruction by sensitizing T cells 
and inhibiting NF-κB activity [14].  
 
As is well-known, neurodegenerative disorders and 
cancers being age-related diseases. Recent research 
demonstrates that lncRNA expression profiles influence 
aging. Studies suggest that aging is a significant risk 
factor for cancer development [15, 16]. Aging is a set of 
functional and structural alterations in the immune 
system and can reduce human immunity. Aging is 
manifested as a decreased ability to fight infection, a 
diminished response to vaccination, an increased 
incidence of cancers, and higher prevalence of 
autoimmunity and constitutive low-grade inflammation 
[17]. In addition to cell-intrinsic changes in both innate 
and adaptive immune cells, alterations in the stromal 
microenvironment in primary and secondary lymphoid 
organs are also critical in age-associated immune 
dysfunction [18]. Immunosenescence is a structural and 
functional decline in the immune system that involves 
organs, cells, immune factors, and regulatory networks. 
Decreased immunity and immune clearance, caused by 
immunosenescence, are key contributors to 
tumorigenesis [19]. However, the role of aging-related 
lncRNAs in gliomas has not been fully elucidated. In 
the present study, we integrated the gene matrix and 
clinical parameters from Chinese Glioma Genome Atlas 
(CGGA) and The Cancer Genome Atlas (TCGA). 
Fifteen aging-related lncRNAs were screened out from 
Cox regression analyses. An aging-related lncRNA 
prognosis model was built and used as a potential 
prognostic indicator to predict the prognosis of glioma 
patients. The differences of immune filtration were also 
found between risk groups established by aging-

lncRNAs. Our results may provide crucial implications 
in clinical targeted therapy. 
 
MATERIALS AND METHODS 
 
Data sources 
 
The complete RNA-sequencing data and corresponding 
clinical features of glioma patients were obtained from 
CGGA and TCGA (https://cancergenome.nih.gov/). The 
lncRNA and protein-coding genes were classified 
according to the gene annotation in the GENCODE 
project (https://www.gencodegenes.org/) from our 
downloaded raw readings and fragments per kilo-base 
of transcript per million data. Clinicopathological 
details (e.g., age, gender, WHO grade, radiotherapy and 
chemotherapy status) and survival data were obtained 
for further analysis. Similarly, the corresponding 1p19q 
codeletion and IDH mutation status were downloaded 
from CGGA. Glioma patients who died for non-cancer 
related reasons and with survival time less than 30 days 
were excluded. In addition, a portion of the glioma 
subjects with incomplete information were eliminated. 
No specific ethical approval or patient informed consent 
was required because all these data were publicly 
available. 
 
Identification of aging-related lncRNAs 
 
The list of aging-related genes was acquired from 
Human Ageing Genomic Resources (HAGR; 
Supplementary Table 1). Correlations between the 
aging-related genes and lncRNAs were determined 
using Pearson correlation analysis on R 3.6.3. The 
aging-related lncRNAs were selected on basis of the 
criteria of correlation coefficient |R|> 0.6 and P < 0.001. 
The candidate aging-related lncRNAs identified 
according to the above criteria were further analyzed. 
 
Clustering analysis of aging-related lncRNAs 
 
The expression patterns of these aging-related lncRNAs 
in different glioma patients were visualized in CGGA 
using principal component analysis (PCA) and validated 
in TCGA. The samples were clustered using the 
ConsensusClusterPlus algorithm and then the patients 
were divided into subtypes. The aging-related lncRNAs 
were identified from three subtypes in CGGA. 
 
Development and validation of aging-related 
lncRNAs prognostic signature 
 
To identify the potential prognostic lncRNAs, we 
analyzed the association between aging-related 
lncRNAs and overall survival (OS) using univariate 
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Cox regression analysis. Then the least absolute 
shrinkage and selection operator (LASSO) Cox 
regression was performed to filtrate more meaningful 
prognosis-related lncRNAs to establish the risk 
signature. Finally, we developed a prognostic signature 
involving fifteen aging-related lncRNAs for glioma 
patients. According to the risk coefficient and the 
expression level of each lncRNA, the risk score of each 
patient was calculated as: risk score = lncRNA1β × 
Expression + lncRNA2β × Expression +  lncRNAnβ × 
Expression. 
 
Prediction analysis of prognostic signature 
 
With the median risk score as the threshold, the glioma 
patients were divided into high- and low-risk cohorts. We 
depicted a survival curve between the two cohorts using 
the Kaplan-Meier method with a two-sided log-rank test. 
Univariate Cox regressions were utilized to evaluate the 
effects of clinicopathological variables on the survival of 
glioma patients, including age, gender, tumor grade, 
radiotherapy and chemotherapy status. Furthermore, 
multivariate Cox regressions was performed to determine 
whether the risk score was an independent prognostic 
factor. In addition, stratified survival analysis was 
conducted to detect the prognostic values of the risk score 
model in different glioma subgroups. To further delve 
into the effect of single aging-related lncRNA on glioma 
patients in the prognostic risk model, we assessed the 
relationship between the expression of each lncRAN and 
clinical characteristics through Student’s t-test or one-
way analysis of variance. The predictive efficiency of the 
risk score was generated by calculating the area under the 
curve (AUC) of receiver’s operating characteristic 
(ROC). 
 
Co-expression network and gene set enrichment 
analysis (GSEA) 
 
Pearson correlation coefficients between the lncRNAs 
and aging genes in glioma patients were calculated on R 
3.6.3 (R > 0.6, p < 0.001). The aging-related lncRNAs 
and a target gene co-expression network were 
constructed on Cytoscape 3.8.2. The co-expression of 
mRNAs and lncRNAs was visualized on a Sandkey 
diagram to show the risk type. To explore the functional 
enrichment of the fifteen lncRNAs, we conducted 
GSEA; (v.4.0.3) to determine the biological functions 
and pathways by the priori defined lncRNAs and 
verified the significant differences between the high-
risk and low-risk groups. 
 
Immune infiltration analysis 
 
We determined the immune cell infiltration score of 
each glioma patient and thereby compared the degrees 

of immune cell infiltration between the low- and high-
risk groups. Then the difference in a proportion of 22 
immune cell subtypes between the low- and high-risk 
groups was assessed. ESTIMATE was applied to 
compare the estimation, immune and stromal scores 
between the two groups [a]. Furthermore, the scatter 
plot showed the correlations of the risk score with 
Macrophages M0, Monocytes, and NK cells activated. 
The correlation between immune cell infiltration and 
risk scores was calculated by Pearson correlation at the 
significant level of P < 0.05. 
 
Somatic mutation analysis based on risk score 
 
We explored the genetic alterations of the high- and 
low- risk groups and represented as waterfall plots. 
The top 10 somatic mutations were screened in the 
two groups separately. According to different 
classifications, the mutations were further sorted in 
detail. The exclusiveness and co-occurrence of mutated 
genes in both groups were visualized. 
 
Quantitative real-time polymerase chain reaction 
(qRT-PCR)  
 
We collected 7 glioma and non-neoplastic brain tissues 
(NBTs) from the patients who underwent surgical 
operation. Fresh tissue samples were frozen and stored 
at −80°C. This research was approved by the Ethics 
Committee of Xiangya Hospital, Central South 
University. Informed consent was acquired from all the 
enrolled patients. Total RNA was extracted from the 
tissues following the manufacturer’s instructions. A 
cDNA synthesis kit (TaKaRa) was utilized in reverse 
transcription. Then, qRT-PCR was performed following 
the reaction steps. The related expressions of lncRNAs 
were normalized to GAPDH mRNA and calculated by 
the 2−ΔΔCt method. Sequences of forward and reverse 
primers were: 5′-GAGGACTCAGAGGTGGAATT-3′, 
5′-CAG CCAGCTTGTAGGG-3′ (LINC00665); 5′-AC 
CATGCTAGAAAGCCTCCC-3′, 5′-CGTCCAGCAA 
GGTCCTAGAG-3′ (LINC00339); 5′-ACATCGGCAT 
GATGG CAGAA-3′, 5′-TCACAAAAGGCGGGACC 
AC-3′ (SNHG16); 5′-GCTTCCAGGG GAGAT-3′, 5′-
ATCAGACTGCCTGAAGA-3′ (PAXIP1.AS2); 5′-CC 
TATGATT TGGCCTCTGGA-3′, 5′-GAGAGCAGCG 
TTCAGGAAAC-3′ (LINC00092). 
 
Statistical analyses 
 
All statistical analyses were conducted using R software 
4.0.5. Kaplan-Meier curves and log-rank tests were 
applied to evaluate the survival data among subgroups. 
Univariate and multivariate Cox regression analyses 
were used to assess the independent prognostic factors 
for the glioma patients. The risk coefficient of the 
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prognostic signature was calculated by LASSO 
regression. Prognostic accuracy of the nomogram and 
the predicted signature for 1-, 3-, and 5-year OS rates 
was estimated from the ROC curves. Single nucleotide 
variation was analyzed with maftools R package. 
Differences between variables were evaluated by 
independent t-test. Chi-square test was performed to 
predict the association of the variables of clinical 
parameters between the high- and low risk groups. 
Pearson and Spearman correlation analyses were also 
conducted. Probability value less than 0.05 or 0.001 was 
regarded statistically significant. 
 
Data availability 
 
Original data can be obtained from Supplementary 
Materials. 
 
RESULTS 
 
Identification of aging-related lncRNAs 
 
We obtained 307 aging-related genes from HAGR 
(Supplementary Table 1). The RNA-sequencing profiles 
and corresponding clinical parameters of the glioma 
patients were downloaded from CGGA and TCGA. 
Totally 928 and 629 lncRNAs were screened out from 
CGGA and TCGA respectively (Supplementary Tables 
2 and 3). Then based on Pearson correlation analysis 
(|R| > 0.6 and P < 0.001), 226 and 152 aging-related 
lncRNAs were selected from CGGA and TCGA, 
respectively. Univariate Cox regression analysis was 
further performed to filtrate the potential prognostic 
lncRNAs from the aging-related lncRNAs, which 
showed 33 lncRNAs were significantly associated with 
the OS of the glioma patients. Details were provided in 
Figure 1A. The correlations among the 33 aging-related 
lncRNAs were presented by a circle plot (Figure 1B). 
 
Clustering analysis of aging-related lncRNAs 
associated with prognosis 
 
To identify the aging-related glioma patterns, we 
classified the glioma patients into three subgroups using 
the 33 lncRNAs with ConsensusClusterPlus (Figure 
1C). The heat map showed the sample clustering results 
with the optimal clustering stability (k = 3). PCA 
demonstrated that the glioma samples can be 
completely distinguished. Three subtypes were obtained 
in CGGA (Figure 1D) and validated in TCGA (Figure 
1E). We further compared the prognosis of the three 
clusters according to the Kaplan-Meier cures of OS. In 
addition, the OS of cluster1 was shorter than the other 
two clusters and the prognosis of cluster2 was the best 
(Figure 1F and 1G). The three clusters were observably 
separated in CGGA (P < 0.001). However, there is no 

different distribution between cluster2 and cluster3 
about survival time in TCGA.  
 
Establishment and validation of aging-lncRNAs 
prognostic model 
 
Based on the survival information of the glioma 
samples, we applied univariate Cox regression and 
screened 33 aging-related lncRNAs that were highly 
related to OS. To better explore the prognostic role of 
those aging-related lncRNAs in the glioma patients, we 
validated with LASSO Cox regression that 15 lncRNAs 
were most correlated with prognostics (Figure 2A). The 
optimal value of the penalty parameter was determined 
by tuning the parameter selection in the LASSO 
regression (Figure 2B). A risk score was calculated 
according to the coefficient of each lncRNA (Figure 
2C). The risk scores of glioma samples were calculated 
as follows: risk score = (0.220 × ExpLINC00665) + (0.177 
× ExpLINC00339) + (0.126 × ExpSNHG16) + (−0.026 × 
ExpPAXIP1.AS2) + (0.035 × ExpLINC00092) + (0.030 × 
ExpLINC00265) + (−0.164 × ExpSOCS2.AS1) + (0.002 × 
ExpSNHG9) + (−0.010 × ExpLINC00237) + (−0.026 × 
ExpSLC25A21.AS1) + (−0.078 × ExpEPB41L4A.AS1) + (−0.126 
× ExpHAR1A) + (−0.164 × ExpGDNF.AS1) + (−0.262 × 
ExpSNA13.AS1) + (−0.283 × ExpWDFY3.AS2). With the 
median risk score, the glioma patients from CGGA 
and TCGA were divided into high- and low-risk groups. 
A marked difference in prognosis was found between 
the two groups (P < 0.001). Patients in the high-risk 
group had a worse OS than those in the low-risk group 
(Figure 2D, 2G). Furthermore, the risk score and 
survival status distributions of the glioma patients were 
shown in Figure 2E and 2H. The survival rate of the 
glioma patients was correlated with risk scores, and the 
mortality rate increased with a higher risk score. In 
addition, the tSNE2 method was used to classify the 
samples into two obvious components in CGGA and 
TCGA (Figure 2F, 2I). Besides, ROC analysis indicated 
that risk scores can accurately predict the prognosis of 
the glioma patients (1-, 2-, 3-year AUCs = 0.760, 0.832, 
0.827 in CGGA, 0.858, 0.889, 0.9014 in TCGA 
respectively; Figure 2J, 2K). These results imply that 
the aging-lncRNAs prognostic model has a robust and 
stable prognostic value for glioma patients. 
 
Correlations of prognostic signature lncRNAs with 
clinical features 
 
Finally, fifteen aging-related lncRNAs were involved in 
the prognosis signature, and their prognostic roles were 
evaluated using univariate Cox regression analysis. The 
forest plot shows that EPB41L4A.AS1, GDNF.AS1, 
HAR1A, LINC00237, SLC25A21.AS1, SNA13.AS1, 
and WDFY3.AS2 are the protective factors with 
HR < 1, while LINC00092, LINC00265, LINC00339, 
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LINC00665, PAXIP1.AS2, SNHG16, SNHG9 and 
SOCS2.AS1 are risk factors with HR>1 in glioma 
patients (Figure 3A). Afterwards, we investigated the 
distributions of clinic pathological features and the 
expressions of the fifteen lncRNAs between the high- 
and low-risk groups, which tested whether the 

aging-related lncRNAs signature can predict the clinical 
parameters of glioma. The heat map reveals significant 
differences in age, grade, PRS type, histology, clusters, 
chemotherapy status, 1p19q codeletion and IDH 
mutation status between the high- and low-risk groups 
(P < 0.01; Figure 3B). Then, we further explored the 

 

 
 

Figure 1. Molecular classification based on aging-related lncRNAs. (A) The flow chart of data analyses in the study. (B) The circle 
plot showed the correlation among 33 aging-related lncRNAs. (C) Glioma patients were divided into three clusters in CGGA. (D) PCA 
indicated that three subclasses were obtained in CGGA. (E) Three subclasses were validated in TCGA. (F) Kaplan-Meier cures of overall 
survival for three clusters in CGGA. (G) Kaplan-Meier cures of overall survival for three clusters in TCGA. 
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relevance of risk score and each clinicopathological 
feature. As expected, the score of cluster 3, older age, 
advanced grade tumors, 1p19q non-codeletion, IDH 
wild type, recurrent tumors and chemotherapy status 

were significantly increased (Figure 3C–3K). The above 
results elucidate the aging-related lncRNAs signature 
may play a pivotal role in the tumor progression of 
glioma. 

 

 
 

Figure 2. Development and validation of aging‐related  lncRNAs prognosis signature. (A) LASSO regression of 15 aging‐related 
lncRNAs.  (B) Cross‐validation  for  tuning  the parameter  selection  in  the LASSO  regression.  (C) Coefficient of prognosis model  regression. 
(D) Kaplan‐Meier curves of high‐risk group and  low‐risk group  in CGGA. (E) Distribution of risk score and patients based on the risk score 
in CGGA. (F) The tSNE2 method showed obvious two components in CGGA. (G) Kaplan‐Meier curves of high‐risk group and low‐risk group in 
TCGA. (H) Distribution of risk score and patients based on the risk score in TCGA. (I) The tSNE2 method showed obvious two components 
in TCGA. (J and K) ROC curves of prognostic signature based on risk score in CGGA and TCGA. 
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To prove the applicability of our prognostic model, we 
performed stratification analysis to clarify whether it 
can evaluate prognosis in each subgroup. Kaplan-Meier 
survival curve analysis showed the low-risk patients had 
longer survival time than the high-risk patients  

(Figure 4). However, the OS rates were statistically 
similar among the patients with secondary tumor, which 
may be because of the smaller sample size. These 
results indicate that our prognosis risk signature may be 
a potential predictor of glioma. 

 

 
 

Figure 3. Correlations of clinical characteristic with identified aging-related lncRNAs signature. (A) Forest of univariate COX 
regression for 15 signature lncRNAs. (B) Heatmap showed that correlation of clinical parameters with risk scores and expression of 15 
lncRNAs in high- and low-risk group. Boxplot showed the comparisons of risk score in different subgroups: (C) Cluster1 vs. Cluster2 vs. 
Cluster3. (D) age ≤41 vs. >41, (E) WHO II vs. WHO III vs. WHOIV. (F) GBM vs. LGG, (G) 1p19q_codeletion vs. non-codel. (H) IDH mutation vs. 
wildtype. (I) Primary vs. Recurrent vs. Secondary. (J) Chemotherapy (Yes vs. No). (K) Radiotherapy (Yes vs. No). 
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Prediction ability and independent analysis of 
prognostic signature 
 
Univariate and multivariate Cox regression analyses 
demonstrate that age (HR = 5.296, 95% CI: 3.936–
7.1263), grade (4.662: 3.740–5.810) and risk score 
(6.556: 5.119–8.396) (all p < 0.001) are remarkably 
associated with OS in the CGGA training cohort. 
Meanwhile, similar conclusions were observed in the 
TCGA validating cohort (Figure 5A, 5B). To develop a 

clinically applicable tool by integrating the risk scores of 
aging-related lncRNAs prognostic signature and other 
clinicopathological parameters and use it to predict OS in 
glioma patients, we built a nomogram to evaluate the 
probabilities of 1-, 3- and 5-year survival. The C-index of 
the nomogram was 0.801 (95% CI: 0.783–0.820). 
Calibration curves demonstrated concordances between 
the actual and predicted survival rates of glioma patients 
after bias corrections of the nomogram in the 
CGGA cohort (Figure 5C–5E), and Figure 6. 

 

 
 

Figure 4. Stratified analyses of high- and low-risk group. (A and B) age. (C and D) Gender. (E and F) Histology. (G–I) WHO stage. (J–L) 
Pathology type. (M and N) 1p19q codeletion status. (O and P) IDH mutation status. (Q and R) Chemotherapy. (S and T) Radiotherapy. 
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These results indicate that our aging-related lncRNAs 
prognostic signature is reliable and precise.  
 
lncRNA-mRNA co-expression and pathway 
enrichment 
 
Considering that miRNA and lncRNA can affect cancer 
progression through mutual regulation, we explored the 
potential functions of the fifteen aging-related lncRNAs 
in glioma by establishing a co-expression network. We 

found the fifteen target lncRNAs were closely 
correlated with 119 genes, which were used to construct 
a complex co-expression network. The details are 
shown in Figure 7A. A Sankey diagram was depicted to 
visualize the relationship among lncRNAs, mRNAs and 
outcomes (risk/protective) (Figure 7B). In addition, 
KEGG analysis was performed to study the potential 
biofunction and pathway in the high- and low- risk 
groups. We found the high-risk group was enriched in 
lysosome, N glycan biosynthesis, pathogenic 

 

 
 

Figure 5. Independent prognosis analysis of risk score. (A and B) Univariate and multivariate cox forest plot of risk score in CGGA and 
TCGA. (C–E) Calibration plots of the nomogram for predicting the probability of OS at 1, 3, and 5 years in the CGGA.  
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Escherichia coli infection, primary immunodeficiency, 
primidine metabolism and regulation of actin 
cytoskeleton. Moreover, the low-risk group was 
enriched in long-term depression, long-term 
potentiation, neuroactive ligand receptor, 
phosphatidylinositol signaling, and the WNT signaling 
pathway. The top six significant gene sets in the two 
groups were presented in Figure 7C, 7D. The above 
data provide valuable insights to find potential 
individualized treatments in different risk score groups 
of glioma patients in the future. 
 
Immune status based on risk score 
 
To further investigate the various infiltration of immune 
cells between the high- and low-risk groups, we 
compared the differences in infiltration of 22 immune 
cells between the two groups. The proportions of B cells 
naive (p = 0.030), plasma cells (P = 0.046), T cells CD8 
(P < 0.001), T cells CD4 memory activated (P = 0.002), 
T cells regulatory (P = 0.001), T cells gamma delta 
(P = 0.001), NK cells resting (P = 0.021), Macrophages 
M1 and M2 (both P < 0.001), Mast cells resting 
(P = 0.005) and Neutrophils (P = 0.004) all increased in 
the high-risk group (Figure 8A). Besides, we calculated 
the ESTIMATE scores, immune scores, and stromal 
scores in the two groups by using ESTIMATE. Results 

indicated the scores of the high-risk group were higher 
than those of the low-risk group (P < 2.22e-16) (Figure 
8B–8D). The risk scores were negatively correlated 
with the activation of Monocytes (R = 058, P = 2.2e-16) 
and NK cells (R = 0.43, P = 4.3e-10) (Figure 8F and 
8G). However, the Macrophages M0 activation was 
upregulated with an increased risk score (Figure 8E). 
These findings suggest different immune infiltration 
statuses between the two groups. 
 
Somatic mutation analysis based on risk score 
 
We performed somatic mutation profiles to analyze the 
gene mutation in the high- and low-risk groups 
involving 604 glioma patients. The waterfall plots 
exhibit that top 10 mutated genes are TP53, IDH1, 
EGFR, TTN, PTEN, ATRX, MUC16, FLG, PIK3CA 
and RYR2 in the high-risk group, and are IDH1, TP53, 
ATRX, CIC, IDH2, PIK3CA, TTN, MUC16, 
6MARCA4 and DNMT3A in the low-risk group 
(Figure 9A, 9B). Clearly, some mutated genes are at 
high mutation frequency in the two groups. Then the 
mutations were further sorted according to different 
classifications, The missense mutations account for the 
majority in both groups. The most frequent variant 
types are single nucleotide polymorphism (SNP), which 
occurred as C > T and T > C in the low-risk group and 

 

 
 

Figure 6. Nomograph of 1-, 3-, and 5-year overall survival probabilities predicted based on aging-related lncRNA signature. 
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as C > T and C > A in the high-risk group (Figure 9C, 
9D). Recently, co-occurrence and mutual exclusivity 
of genetics were often observed in cancers. The co-
occurrence mutations in the high-risk group were 
much than those in the low-risk group (details in 
Figure 9E, 9F). However, they display significant 

exclusivity of mutations. For instance, IDH1 was 
mutually exclusive with PTEN and EGFR in the high-
risk group, and with IDH2 in the low-risk group. This 
interrelated mutation suggests functional interactions, 
which may provide new insights into clinical 
treatment. 

 

 
 

Figure 7. Functional and enrichment pathways analysis. (A) LncRNAs-mRNA co-expression regulatory network based-on fifteen 
aging-related lncRNAs. (B) A Sankey diagram was depicted to visualize the co-occurrences of lncRNAs, mRNAs and outcomes. (C) KEGG 
pathway enrichment analysis in high-risk group. (D) KEGG pathway enrichment analysis in low-risk group. 
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Validation of aging-related lncRNAs expression levels  
 
To further verify our results, we detected the 
expressions of five aging-related lncRNAs in 7 
gliomas (4 at WHO grade II and 3 at WHO grade III) 
and NBTs by using qRT-PCR. Results show the mean 

expression levels of LINC00665, LINC00339, 
SNHG16, PAXIPI.AS2 and LINC00092 in the glioma 
tissues are higher than those in the NBTs 
(Supplementary Figure 1A–1E). Moreover, the higher-
grade patients display higher lncRNAs expression. The 
above results confirm the reliability of our analysis. 

 

 
 

Figure 8. Immune filtration analysis between high- and low-risk groups. (A) Differential analysis of immune-related cells based on 
risk score. (B–D) Boxplot showed the comparisons of Estimation, immune and stromal score between high- and low-risk groups. (E–G) 
Scatter plot showed that the correlations of risk score with Macrophages M0, Monocytes, and NK cells activated 
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DISCUSSION 
 
Glioma has a high recurrence rate and leads to a mortal 
outcome. The therapeutic effect of glioma, especially 
glioblastoma, remains unsatisfactory. Hence, potential 
prognostic indicators shall be identified for this highly 

heterogeneous disease. Accumulating evidences prove 
that lncRNAs play a pivotal role in tumor occurrence, 
development, metastasis and drug resistance and are 
novel potential biomarkers [20]. Moreover, tumor data 
about lncRNAs are accumulating in public databases 
following the wide application of high-throughput 

 

 
 

Figure 9. Landscape of mutation profiles between high- and low-risk glioma patients. (A and B) Waterfall plots showed the 
mutations information in each sample of high- and low-risk group glioma patients. (C and D) The variant classification in high-and the low-
risk group glioma patients. (E and F) The exclusive and co-occurrence in high-and the low-risk group glioma patients. 
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technologies and the increasing improvement of data-
sharing [21]. LncRNAs modulate diverse bioprocesses 
and their role in aging has recently attracted much 
attention. LncRNAs can regulate cell senescence, 
telomere length, and stem cell differentiation in the 
aging process [22]. 
 
Aging is an inevitable process and is considered one of 
the predominant risk factors for most chronic diseases, 
including cancers [23]. Aging and cancers are 
interrelated. Aging-related genes can regulate cell 
senescence and tumor malignancy. The current view is 
that cell aging may promote the occurrence and 
development of gliomas, because gliomas are more 
common in the elderly, in whom the number of 
senescent cells increases dramatically in the brain [24]. 
Aging-associated genes are linked to the progression 
and prognosis of gliomas [25, 26]. DNA damages from 
radiochemotherapy can induce cell aging, which may be 
associated with glioma recurrence after treatment. 
Moreover, aging brain cells secrete excessive factors, 
such as MMP-2 and MMP-9, to promote cell survival 
and invasion [27, 28]. A seven- senescence-associated-
gene signature was established to predict the overall 
survival of Asian patients with hepatocellular carcinoma 
[29]. Senescence-associated genes were recognized 
using two senescent cell models, and we identified 
aging-related genes based on previous research. The 
genes used in previous research did not appear in the list 
of aging genes from HAGR. There are remarkable 
differences between our study and the previous study. 
At present, studies on the indicators of glioma based on 
the lncRNA signature are mounting. However, the 
potential role of the aging-related lncRNA prognosis 
signature in glioma is inadequately studied. Hence, our 
study is aimed to assess the role of aging-related 
lncRNAs in glioma using CGGA as the training cohort 
and TCGA as the validation cohort.  
 
We identified a risk signature of fifteen aging-related 
lncRNAs in gliomas through uni-cox regression and 
LASSO analysis. Finally, eight lncRNAs (LINC00092, 
LINC00265, LINC00339, LINC00665, PAXIP1.AS2, 
SNHG16, SNHG9 and SOCS2.AS1) were found 
associated with high risk, and patients with high 
expressions of these lncRNAs had unfavorable 
prognosis. The remaining seven lncRNAs 
(EPB41L4A.AS1, GDNF.AS1, HAR1A, LINC00237, 
SLC25A21.AS1, SNA13.AS1, and WDFY3.AS2) were 
related to low risk. The AUCs to predict the 1-, 2- and 
3-year OS rates of glioma in the training cohort are 
0.760, 0.832, and 0.827 in CGGA and are 0.858, 0.889, 
and 0.9014 respectively, indicating that the prognostic 
risk model is reliable and stable. Recently, many studies 
reveal the important role of lncRNA as oncogenes or 
cancer suppressor genes in various tumors. LncRNAs 

reportedly play a complex regulatory role in tumor 
progression. Zhao et al. found that LINC00092- 
silenced cells presented obviously compromised 
metastatic potential and lower invasive capacity in 
ovarian cancer, which were involved in glycolysis [30]. 
Moreover, LINC00665 overexpression can reverse the 
invasion and migration abilities through encoding 
micropeptide in triple-negative breast tumor cells [31]. 
Meanwhile, LINC00665 regulates stemness and 
epithelial-to-mesenchymal transition (EMT) to promote 
gemcitabine resistance [32]. LINC00665 in glioma cells 
can also inhibit tumor progression via STAU1-mediated 
mRNA degradation [33]. LncRNA WDFY3-AS2, as a 
ceRNA, inhibits invasion ability, which is correlated 
with lymph node metastasis and tumor - node - 
metastasis (TNM) stage in oesophageal squamous cell 
carcinoma [34]. Moreover, WDFY3-AS2 can 
upregulate SDC4 expression to promote cisplatin 
resistance in ovarian cancer, and si-WDFY3-AS2 
reduces the invasion and migration of tumor cells [35].  
 
PCA based on aging-related lncRNAs divided the 
glioma samples into three clusters that were 
significantly different in OS. Continuous inflammatory 
response led to cancers. In addition, the aging-related 
lncRNAs were related to immune cell infiltration. Our 
result revealed that different immune infiltration 
statuses emerged between the two groups of glioma 
patients. The risk scores were correlated negatively with 
the activation of Monocytes and NK cells and positively 
with the activation of Macrophages M0. Furthermore, 
we systemically analyzed the key signaling pathways of 
those lncRNAs by KEGG analysis. Most of the 
enriched pathways manifested immunomodulatory 
functions, and the top five significantly enriched 
pathways were involved in phosphatidylinositol 
signaling and WNT signaling. Somatic mutations are 
generally considered as tumor-initiating events [36]. 
Then, we also used waterfall plots to show the common 
mutation in gliomas and found TP53 and IDH1 genes 
were both at high frequency of mutations in the two 
groups. This fifteen-lncRNAs risk signature can not 
only effectively predict the prognosis of gliomas, but 
also reflects clinicopathological factors (e.g., grade, 
chemotherapy status, 1p19q codeletion and IDH 
mutation status). Hence, this signature is a potential 
precise indicator for the prognosis of gliomas. 
 
In conclusion, we constructed an independent and 
robust prognostic signature using fifteen aging-related 
lncRNAs. This risk signature is based on transcriptome 
databases and shall be validated with some fundamental 
experiments. Next, further investigation is needed to 
clarify the underlying mechanisms and to reveal how it 
regulates the infiltrating immune cells in gliomas. This 
study may be beneficial for clinicians to identify high-
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risk patients more accurately and to improve the 
prognosis of gliomas. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 

Supplementary Figure 1. Validations of several identified lncRNAs in glioma tissue. (A–E) LINC00665, LINC00339, SNHG16, 
PAXIPI.AS2, LINC00092. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1–3. 
 
Supplementary Table 1. Aging-related genes. 

Supplementary Table 2. 33 aging-related lncRNAs expression in TCGA. 

Supplementary Table 3. 33 aging-related lncRNAs expression in CGGA. 

 




