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ABSTRACT 
 

Traumatic brain injury (TBI) is a global health issue that affects at least 10 million people per year. Neuronal 
cell death and brain injury after TBI, including apoptosis, inflammation, and excitotoxicity, have led to 
detrimental effects in TBI. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a water-soluble 
compound extracted from the Chinese herb Polygonum multiflorum, has been shown to exert various 
biological functions. However, the effects of THSG on TBI is still poorly understood. THSG reduced L-
glutamate-induced DNA fragmentation and protected glial and neuronal cell death after L-glutamate 
stimulation. Our results also showed that TBI caused significant behavioral deficits in the performance of 
beam walking, mNSS, and Morris water maze tasks in a mouse model. Importantly, daily administration of 
THSG (60 mg/kg/day) after TBI for 21 days attenuated the injury severity score, promoted motor 
coordination, and improved cognitive performance post-TBI. Moreover, administration of THSG also 
dramatically decreased the brain lesion volume. THSG reduced TBI-induced neuronal apoptosis in the brain 
cortex 24 h after TBI. Furthermore, THSG increased the number of immature neurons in the subgranular zone 
(SGZ) of the dentate gyrus (DG) of the hippocampus. Our results demonstrate that THSG exerts 
neuroprotective effects on glutamate-induced excitotoxicity and glial and neuronal cell death. The present 
study also demonstrated that THSG effectively protects against TBI-associated motor and cognitive 
impairment, at least in part, by inhibiting TBI-induced apoptosis and promoting neurogenesis. 
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INTRODUCTION 
 

Traumatic brain injury (TBI) is a serious global health 

problem that involves structural damage and causes 

changes in various functional and psychological 

outcomes [1]. TBI causes brain tissue damage directly 

and follows a variety of pathophysiologies, such as 

inflammation, apoptosis, oxidative stress, neuronal cell 

death, and excitotoxicity [2, 3]. DNA damage affects 

apoptosis, which is a crucial cellular link to oxidative 

stress following TBI [4]. Due to the difficulty of TBI 

prevention in clinical cases, studies focusing on post-

injury and secondary injury of TBI regulation, such as 

DNA damage and repair are important [5]. Secondary 

injury in TBI management is a key point in avoiding 

significant impairment and understanding the 

pathophysiology of TBI [6]. 

 

Glutamate is the major excitatory neurotransmitter in the 

central nervous system (CNS), which plays a critical 

signal in neuronal-neuronal and neuronal-glial 

communication. The concentration of glutamate in the 

presynaptic neurons is approximately 100 mM [7], and 2 

mM in the synaptic after synaptic release [8]. In 

physiological condition, the level of glutamate in the 

cerebrospinal fluid (CSF) is about 1 μM [7], but they can 

be elevated under pathological conditions, such as stroke, 

trauma, and meningitis [9]. Previous studies reported that 

TBI increased the concentration of glutamate in the brain, 

which may cause excitotoxicity and further brain damage 

[10, 11]. TBI has been reported to acutely trigger 

glutamate-induced neuronal cell death [12]. Using 

microdialysis, evidence shown that extracellular 

glutamate levels were much higher in rats with severe TBI 

as opposed to non-injured control rats [13]. In a clinical 

study, severe TBI results in elevated glutamate levels in 

CSF and persists for several days [14]. Glutamate may 

bind and activate the ionotropic N-methyl-D-aspartate 

(NMDA), the α-amino-3-hydroxy-5-methyl-isoxazole 

propionate (AMPA), and the kainate or metabotropic 

glutamate receptors on both neurons and astrocytes [15]. 

In addition, increased extracellular glutamate exacerbates 

the homeostasis of astrocytic ionic conductance following 

TBI [16]. Importantly, high glutamate concentration leads 

to pathological cell swelling and cell death in 

hippocampal cultures [17]. Moreover, the activity of the 

NMDA receptor signaling pathways promotes glutamate-

evoked neurotoxic effects and cellular degeneration [18]. 

Treatment with NMDA antagonists in the acute stage 

ameliorated TBI and decreased neuronal apoptosis in a 

rodent model [19]. A recent report also indicated that 

controlling excitotoxicity during brain trauma is a 

promising strategy for improving TBI [20]. 

 

Neuronal survival is affected by the functions of 

astrocytes during brain injury, including maintaining 

homeostasis of glutamate levels [21]. In addition to 

neuronal cell death, glutamate also causes damage to 

glial cells, especially astrocytes [22]. Reactive 

astrocytes are considered as therapeutic targets for 

various neurological disorders [23]. A previous study 

also revealed that decreasing astrocyte activation 

improves neurobehavioral function [24]. Regulating 

autophagy in astrocytes and neurons has also been 

reported to improve functional recovery after TBI [25]. 

Importantly, reactive astrocytes have been recognized 

to contribute to post-traumatic tissue repair and 

synaptic remodeling after TBI [26]. Moreover, 

activation of local astrocytes serves as a compensatory 

response that modulates tissue damage and recovery 

following TBI [27]. TBI has been suggested to cause 

astrocyte damage which may aggravate the outcomes 

of patients with TBI [11]. Increasing evidence has 

revealed that several detrimental neuronal outcomes of 

TBI can modulate and improve recovery by regulating 

metabolic and inflammatory states [28, 29]. In 

addition, the administration of antioxidants has also 

been recognized to exert neuroprotective effects in 

TBI therapeutics [30, 31]. 

 

A water-soluble natural compound, 2, 3, 5, 4’-

tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a 

low molecular weight glycosylated resveratrol, which is 

extracted from the traditional Chinese herb, Polygonum 

multiflorum (PM), has been found to exert various 

beneficial anti-oxidative stress and anti-inflammatory 

effects. [32–34]. Recently, treatment with THSG has 

been reported to effectively ameliorate CNS injury [35]. 

Moreover, THSG has been found to inhibit 

inflammatory responses in brain microglial cells [36] 

and protect hippocampal neurons against staurosporine-

induced neurotoxicity [37]. Importantly, evidence 

generated in a mouse model, has shown that THSG 

inhibits neuronal apoptosis and downregulates NMDA 

receptor activity, thereby relieving chronic 

inflammatory pain [38]. In this study, we investigated 

whether THSG affected the viability of astrocyte cell 

lines and primary cortical neurons. We also evaluated 

the effects of the administration of THSG in a TBI 

mouse model by investigating the pathophysiology and 

behavioral outcomes. 

 

RESULTS 
 

Protective effects of THSG on glutamate-induced 

excitotoxicity in astrocytes and cortical neuron 

 

To investigate the effects of THSG on neuronal cells, 

we evaluated the survival of glioma neural cells and 

primary cortical neuronal cells after glutamate-induced 

cell death. As shown in Figure 1A, glutamate caused 

poor and shrunken cell morphology in glioma neural 
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cells. Moreover, treatment with THSG effectively 

reversed glutamate-induced morphological alterations 

and excitotoxicity (Figure 1A). The morphology of cells 

treated with 100 μM THSG was similar to that of 

normal cells. In comparison, application of THSG for 2 

h prior to the treatment with glutamate, effectively 

attenuated the glutamate-induced death of glioma neural 

cells, which also corresponded to dose-dependent 

 

 
 

Figure 1. Effects of THSG on glutamate-induced DNA fragmentation and excitotoxicity. C6 neural glioma cells were treated with 

various concentrations of THSG (10, 30, or 100 μM) for 2 h and then treated with L-glutamate (20 mM) for 24 h. C6 glioma cell morphology 
images are shown in (A). Cells treated with 20 mM L-glutamate for 24 h caused drastic cell death, as demonstrated by the poor and shrunken 
cell morphology. Scale bar = 100 μm. Cell viability measured by the MTT assay is shown in (B) (n = 4). Note: THSG significantly rescued glioma 
neural cells from glutamate neurotoxicity, and the best effective dose of THSG was 100 μM, which completely prevented glutamate-induced 
cell death. NS = no significant difference; ** P > 0.01; *** P < 0.001 between the groups. Statistical analysis was performed using ANOVA for 
repeated measures followed by Tukey’s test of least significant difference. NS = no significantly difference; *, P > 0.05; **, P < 0.01; ***,  
P < 0.001. (C) Gel electrophoresis showing the effects of THSG at a range of concentrations (3-300 μM) on L-glutamate-induced DNA 
fragmentation in glioma neural cells.  
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normal cell morphology. Furthermore, stimulation with 

glutamate also resulted in drastic cell death when 

compared to cells without treatment (F[11,36] = 24.188, 

P < 0.001) (Figure 1B). Importantly, MTT results 

indicated that treatment of THSG at concentrations of 

100 to 300 μM revealed a dramatic improvement in the 

cell survival rate in glutamate-induced cell death  

(P < 0.001 versus cells with glutamate treatment). In 

addition, there was no significant difference of THSG 

treatment on glutamate-induced cell death at 

concentration of 3 to 30 μM compared to the vehicle 

control group (Figure 1B). A previous study established 

that DNA damage following TBI contributes to 

programmed cell death and long-term functional deficits 

[39]. Thus, we conducted a DNA fragmentation assay to 

evaluate whether THSG protects glioma neural cells 

against glutamate-induced DNA fragmentation. As 

shown in Figure 1C, glutamate markedly induced DNA 

fragmentation in the glioma neural cells. Surprisingly, 

treatment with THSG (at concentrations of 100–300 

μM) dramatically prevented glutamate-induced DNA 

fragmentation (Figure 1C, lanes 11, 12, and 13).  

In addition, no DNA fragmentation was detected after 

THSG treatment alone from 3 to 300 μM  

(Figure 1C, lanes 2–7). We also determined the effects 

of THSG in primary cortical neuronal cells after 

glutamate stimulation. As shown in the anti-MAP-2 

immunostaining images, administration of L-glutamate 

for 24 h caused dendritic shrinkage in primary cortical 

neurons (Figure 2A). Conversely, treatment with THSG 

dramatically reduced the glutamate-induced dendritic 

shrinkage (Figure 2A). In particular, treatment with 

THSG at doses higher than 100 μM showed stronger 

neuronal dendritic outgrowth, similar to that of control 

neurons (Figure 2A). Furthermore, stimulation of L-

glutamate for 24 h decreased cell viability (F[8,27] = 

30.624, P < 0.001) (Figure 2B), which was effectively 

inhibited by THSG treatment (Figure 2B). Moreover, 

glutamate also increased the release of LDH from 

cortical neuronal cells (F[8,27] = 16.358, P < 0.001) 

(Figure 2C) compared to the control group. In contrast, 

application of THSG 2 h prior to the treatment with L-

glutamate for 24 h not only improved the glutamate-

induced neuron shrinkage morphology but also rescued 

the glutamate-induced LDH release in primary cortical 

culture neurons (Figure 2C). Importantly, the protective 

effects of THSG on primary cortical neuronal cells were 

more pronounced in the LDH assay, even at a lower 

dose of THSG (10 μM), which significantly attenuated 

glutamate induced LDH release (P < 0.05). Moreover, 

primary cortical neurons treated with 100 μM and 200 

μM THSG showed the strongest effect in reducing 

glutamate induced LDH release (P < 0.001). This 
phenomenon was similar with the morphological 

alterations. Moreover, stimulation with L-glutamate for 

24 h also induced DNA fragmentation in primary 

cortical neuronal cultures (Figure 2D, lane 3). 

Remarkably, treatment with THSG alleviated DNA 

fragmentation induced by glutamate (Figure 2D, lanes 

4–8). These results suggest that THSG exerts beneficial 

effects on glutamate induced excitotoxicity, DNA 

cleavage, and cell death in C6 glioma cells and cortical 

neurons. 

 

THSG improves neurological function outcomes and 

reduces lesion volume in a TBI mouse model 

 

To assess the effects of THSG on TBI, we assessed 

cognitive and motor function using the modified 

neurological severity score (mNSS), beam-walking test, 

and Morris water maze task in a TBI mouse model. As 

shown in Figure 3A, mice that underwent TBI for 24 h 

had a significantly increased number of foot faults 

across the beam compared to the sham group (F[3,20] = 

124.457, P < 0.001) in the beam walk test. Conversely, 

administration of THSG (60 mg/kg/day) post-TBI 

dramatically decreased the foot slips on the beam for 

the 21-day period (Figure 3A). Additionally, the latency 

of the crossing beam increased after TBI on day 1 

compared with the sham vehicle group (F[3,20] = 13, P 

< 0.001) (Figure 3B). There was no significant 

difference between any group between 3 days and 21 

days following TBI, indicating that the ability to walk 

on the beam is recovered to a point similar to that in the 

sham group (Figure 3B). Moreover, the neurological 

function measured by mNSS indicated that TBI evoked 

motor deficits compared with the sham vehicle group 

(Figure 3C). The loss of reflex reaction, balance 

disabilities, and reduced seeking behaviors were 

observed in the TBI group. Importantly, administration 

of THSG improved TBI-associated motor deficits, and 

the TBI mice treated with THSG showed better 

performance at 21 days, similar to the performance in 

the sham vehicle groups (F[3,20] = 6.887, P > 0.05) 

(Figure 3C). In the cognitive task, the distance that the 

mice swam to find the hidden platform was decreased in 

the vehicle groups compared with that in the TBI mice 

(Figure 3D). Furthermore, administration of THSG 

mildly reduced the swimming distance following TBI, 

and TBI mice treated with THSG showed no significant 

difference at day 19 compared with the sham vehicle 

group (P = 0.076). However, the TBI group showed 

poor outcomes in the special memory test compared 

with the sham vehicle group (F[3,20] = 7.988, P < 0.01) 

(Figure 3D). Furthermore, the probe test was evaluated 

once for 1 minute with platform removal after the final 

acquisition trial. The TBI mice showed disability and 

seeking behavior to find the platform (Figure 3E), 

which remarkably reduced the percentage of swimming 
time in the correct quadrant (Figure 3F; F[3,20] = 7.557, 

P < 0.05). Importantly, THSG treatment after TBI 

improved the swimming path of the water maze task 
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without the platform (Figure 3E). The mice tended to 

increase the time spent in the correct quadrant compared 

to the TBI with THSG group (Figure 3F). Following 

behavioral tests, we further explored whether THSG 

ameliorates brain lesions in TBI animals. As shown in 

Figure 4A, animals with TBI for 21 days showed a large 

lesion area and lost most of the hippocampus in  

the ipsilateral region by Nissl staining. Moreover, 

 

 
 

Figure 2. THSG ameliorates glutamate-induced neuronal morphological change and excitotoxicity in primary cortical 
neurons. (A) Immunofluorescence images of treatment with or without various concentrations of THSG for 2 h followed with 100 μM L-
glutamate for another 24 h; Staining performed with the primary antibody anti-MAP-2 (specific marker of neuronal dendrites, red) and a 
nuclear-specific dye DAPI (blue). Cells treated with L-glutamate for 24 h causes dendritic shrinkage; application of THSG 2 h prior to the 
treatment with glutamate improves the glutamate-induced neuron shrinkage. Merged images show the labeling co-localization. Scale bar = 
100 μm. Cells were pre-treated for 2 h with THSG prior to treatment with L-glutamate for another 24 h; cell viability of primary cortical 
culture neurons was evaluated by MTT assay (B) and by lactate dehydrogenase (LDH) assay (C) (n = 4). Statistical analysis was carried out 
using ANOVA for repeated measures, followed by Tukey’s test of least significant difference. NS = no significant difference; *, P > 0.05; **,  
P < 0.01; ***, P < 0.001. (D) Gel electrophoresis showing the effects of THSG at a range of concentrations (3–300 μM) on L-glutamate-induced 
DNA fragmentation in primary cortical culture neurons. 



www.aging-us.com 2612 AGING 

the quantitative results showed that administration of 

THSG significantly reduced the brain lesion volume 

following TBI (t = 2.251, P < 0.05) (Figure 4B). These 

data demonstrate that THSG treatment exerts beneficial 

effects on motor and cognitive performance following 

TBI. In addition, this study also showed that THSG 

effectively improved TBI-evoked brain lesions. 

 

THSG treatment reduces TBI-induced neural 

apoptosis after TBI 

 

A growing body of evidence suggests that neuronal 

apoptosis aggravates TBI damage in the pathological 

processes, which can be promoted by apoptosis 

pathway modulation [40, 41]. We investigated 

whether treatment with THSG attenuated TBI-induced 

neural apoptosis. Mice were administered THSG (60 

mg/kg) 1h following TBI, and the neural apoptotic 

cells were determined by double immunofluorescence 

staining TUNEL and a neuronal nuclear protein 

marker NeuN in the brain cortex and around injury 

site (Figure 5A), 24 h after TBI (Figure 5B). Our 

results showed that TBI increased the number of 

TUNEL-positive cells that were co-localized with 

neuron-specific protein counterstaining with DAPI 

(4',6-diamidino-2-phenylindole, a blue fluorescence 

nuclear staining dye) compared to the sham  

vehicle group (F[3,20] = 135.566, P < 0.001). 

Surprisingly, administration of THSG dramatically 

negated TBI-induced neuronal apoptosis (Figure 5C). 

TUNEL+/NeuN+ cells were strongly reduced after 

THSG treatment post TBI.  

 

 
 

Figure 3. Administration of THSG improves neurological outcomes and cognitive functions following post-TBI. (A) Evaluation of 

motor coordination by beam-walking test in THSG treatments after TBI. Data represented as the mean ± SEM (n = 6 per group). *, P < 0.05; 
**, P < 0.01 and ***, P < 0.001 TBI + Vehicle vs. TBI + THSG group. (B) Latency of beam crossing in beam-walking task. Data represented as 
the mean ± SEM (n = 6 per group). NS = no significantly difference between groups; ***, P < 0.001 TBI + Vehicle vs. Sham + Vehicle group; ##, 
P < 0.01 TBI + THSG vs. Sham + Vehicle group. (C) Neurological function measured by mNSS. Data represented as the mean ± SEM (n = 6 each 
group). NS = no significantly difference between TBI + THSG and Sham + Vehicle group; **, P < 0.01 and ***, P < 0.001 TBI + Vehicle vs. Sham 
+ Vehicle group. #, P < 0.05; ##, P < 0.01 and ###, P < 0.001 TBI + THSG vs. Sham + Vehicle group. &, P < 0.05 TBI + Vehicle vs. TBI + THSG 
group. (D) Cognitive performance measured by the Morris water maze test. Data represented as the mean ± SEM (n = 6 per group). NS = no 
significantly difference between TBI + THSG and Sham + Vehicle group; *, P < 0.05 and **, P < 0.01 vs. Sham + Vehicle group.  
(E) Representative images showed the swimming path of the maze task without platform at day 19 following THSG treatments. The circle in 
the specific quadrant outlines the original position of the hidden platform. Once in the probe trial, mice were released at the opposite site 
(red spot) for 60 seconds. (F) Spatial memory evaluated by probe test of Morris water maze. Data represented as the mean ± SEM (n = 6 per 
group). NS = no significantly difference, *, P < 0.01 vs. Sham + Vehicle group. **, P < 0.01 vs. TBI + Vehicle group.  



www.aging-us.com 2613 AGING 

THSG treatment increases the number of immature 

neurons in hippocampus after TBI 
 

The microtubule-associated protein doublecortin, 

expressed in neuroblast and immature neurons, is 

correlated with adult neuroplasticity and neurogenesis 

[42, 43]. We analyzed the expression of doublecortin, a 

microtubule-associated protein expressed by neuronal 

precursor cells and immature neurons, in the dentate 

gyrus of the hippocampus (Figure 6A), 21 days after 

TBI. As shown in Figure 6B, administration of THSG 

significantly increased the number of immature neurons 

in the subgranular zone of the contralateral 

hippocampus (F[3,20] = 5.695, P < 0.01) compared with 

the sham vehicle group. Most importantly, 

administration of THSG in the post-TBI group further 

enhanced the protein expression of doublecortin in the 

TBI vehicle (P < 0.05) and sham vehicle group (P < 

0.01), respectively (Figure 6C). These results suggest 

that the administration of THSG has beneficial effects 

on neuronal plasticity after TBI. 

 

DISCUSSION 
 

Previously, it has been reported that motor deficits, 

cognitive impairments, structural damage and 

neurodegeneration are the main symptoms in the 

clinical diagnosis of TBI patients, which are relevant to 

the control cortical impact (CCI) mouse model [44, 45]. 

The CCI model of TBI, which we used in this study, is 

frequently used in moderate to severe TBI because of 

the necessity of a craniotomy [46]. However, it is 

difficult to define the severity of experimental TBI due 

to the lack of appropriate parameters, and this model 

results in damage to multiple brain functions [47]. 

Morris water maze performance is a well-established 

method to assess pre-clinical cognitive performance and 

damage to neural functional networks in experimental 

TBI animals [48]. A previous study also reported that 

TBI impairs special learning [49] and cognitive deficits 

in a CCI mouse model [50]. Importantly, clinical study 

has suggested that TBI at a young age is highly 

correlated with later dementia acquisition [51]. Our 

current study supports previous findings that TBI 

impaired learning memory outcomes which was 

sustained for 21 days. Chronic administration of THSG 

has been reported to promote hippocampal memory and 

synaptic plasticity in normal mouse [52]. Interestingly, 

a recent study has also revealed that spatial learning and 

memory impairment caused by infrasound in a mouse 

model could be attenuated by THSG intake [35]. 

Furthermore, THSG has been found to ameliorate 

memory function and inhibit alpha-synuclein 

aggregation in the hippocampus of aged mice [53]. Our 

results further demonstrated that oral administration of 

THSG effectively improved the impairment of learning 

and memory caused by TBI.  

 

This study also showed that post-injury intake of THSG 

eased the deficits in mNSS evaluation similar to healthy 

animals, 21 days following TBI. Remarkably, beam 

walking has been reported to be a more sensitive tool 

for motor coordination measurement than Rota-rod in 

some cases [54, 55]. The present study also showed that 

TBI impaired motor coordination in the beam walking 

test, but treatment with THSG recovered the impairment 

of motor function. Furthermore, we also used the Rota-

rod test, the most common motor function task, to test 

 

 
 

Figure 4. THSG treatment reduces cortical lesion volume post TBI. (A) Microphotograph representing the brain section of TBI and TBI 

with THSG treatment at 21 days post TBI. Lines indicate the areas of the lesion was measured (blue). Scale bar = 2 mm. (B) Quantification of 
the lesion size from sections. Data represent the mean ± SEM. *, P < 0.05 compare with TBI + Vehicle group (n = 6 for each group). 
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the improvement of THSG administration in TBI mice. 

However, we did not observe a significant difference 

between the TBI mice treated with THSG and the vehicle 

control (Supplementary Figure 1). Our findings suggest 

that careful choice of tasks as well as parameters for 

evaluating motor function in severe TBI models is 

important in future studies. Since balancing skills are still 

abnormal and lack the strength of the contralateral limb 

in TBI animals to slips, the animal could walk across the 

beam without pause. This study supports the idea that 

administration of THSG attenuated brain damage after 

TBI resulting in reduced brain lesion size, a hallmark of 

TBI severity that could be used to predict mortality and 

functional outcome recovery. These results may be 

attributed to the pain relief ability of THSG, which may 

result in the ability of the mice to walk over the beam in a 

shorter period after treatment; however, the pain 

parameters were not considered in the current study. 

Furthermore, the smaller brain lesion volume highlights 

the benefits of THSG. 

 

Adult hippocampal neurogenesis plays a crucial role in 

various brain functions, such as learning, memory, and 

cognitive function [56]. However, it has been reported 

 

 
 

Figure 5. Administration of THSG decreased TBI-induced neural apoptosis in the brain cortex post TBI. (A) Schematic illustration 
of regions of interest (ROIs) in cerebral cortex with sham (left) or TBI (right). The sampling areas are shown in red squares. (B) Representative 
double staining immunofluorescence with TUNEL assay (green) and NeuN (a maker for neurons, red) and DAPI (blue) counterstain in brain 
cortex from the Sham + vehicle, Sham + THSG, TBI + vehicle, and TBI + THSG group. Labeling co-localization is shown as yellow in the merged 
images. Scale bar = 50 μm. (C) Quantification of the co-localization of the TUNEL positive and NeuN, as well as the counterstaining with DAPI 
in cortical brain tissues from the Sham + vehicle, TBI + vehicle, and TBI + THSG groups. Data are expressed as the mean ± SEM (n = 6 per 
group). ***, P < 0.001 between groups. 
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that neurogenesis mostly occurs following severe TBI 

in the adult mouse hippocampus [57]. The microtubule-

associated protein doublecortin, expressed in neuronal 

precursor cells and adult cortical structures, is correlated 

with adult neuroplasticity and neurogenesis [42, 43]. 

Studies have demonstrated that DCX expression in 

immature neurons in the contralateral hippocampal 

dentate gyrus is linked to functional repair and 

neuroplasticity in TBI [58]. Another study showed that 

doublecortin could be a key regulator of cerebral 

cortical neuronal migration and axon outgrowth [59]. 

Importantly, upregulation of DCX has been found to 

result in better clinical neurological outcomes in 

children with severe TBI [60]. A previous study showed 

that treatment with THSG protected hippocampal 

neuronal damage by activating the neurotrophic axis of 

BDNF and TrkB [61]. Moreover, THSG treatment has 

been reported to promote neurotrophic factor release in 

astrocytes [62] and upregulate glutamate transporter 1 

expression in astrocytes [63]. Importantly, THSG has 

also been found to increase astrocyte proliferation and 

neurogenesis in DCX-expressing cells in the 

hippocampus [64]. Our results showed that THSG 

protected glutamate from excitotoxicity and cell death 

in neurons and astrocytes. We also found that oral 

administration of THSG increased the DCX positive 

neuronal precursor cells in the subgranular zone of 

hippocampus in both TBI and normal animals. To the 

best of our knowledge, this is the first study elucidating 

the neuroprotective effects of THSG through increasing 

neurogenesis in a pre-clinical TBI model.  

 

Several studies have reported that modulation of 

apoptosis in a TBI model alleviates the loss of brain 

tissue and improves pathophysiological outcomes [65–

68]. Importantly, DNA damage has recently been 

considered as a pathologic marker, which predicts 

further neurodegeneration, behind mild TBI-induced 

injury in the brains of rodents and human patients [69]. 

A previous study suggested that the accumulation of 

 

 
 

Figure 6. Administration of THSG increases the number of hippocampal immature neurons in the subgranular zone of 
dentate gyrus post TBI. (A) Illustrations of the region of interest with red square in the brain section sample. (B) Representative 
immunofluorescence staining by anti-doublecortin (DCX, a marker for immature neurons, green) and counterstained with DAPI (blue), 21 
days after THSG treatments in the subgranular zone of dentate gyrus. Labeling co-localization is shown with white arrows in the merged 
images. Scale bar = 100 μm. Mice were divided into three groups: Sham + Vehicle, Sham + THSG, TBI + vehicle, and TBI + THSG groups.  
(C) Quantitative results of the expression of DCX shown as the fold of the Sham + Vehicle group. Data represented as the mean ± SEM (n=6 
for each group). NS = no significantly difference; *, P < 0.05; **, P < 0.01 between groups. 
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DNA fragmentation reached a peak 1 d after TBI, which 

further triggered apoptosis and affected DNA repair that 

contributes to brain tissue damage [70, 71]. Another 

study showed that the reduction of cellular apoptosis 

after TBI, which was analyzed with TUNEL assays 

using dexmedetomidine, maintained the neurological 

function in the acute phase of TBI [72]. A previous 

study indicated that p53-activated apoptosis following 

TBI causes brain cortex destruction and results in motor 

deficits [73]. Another study found that inhibition of 

neuronal apoptosis by a p53 inactivator ameliorated 

motor and cognitive functional deficits after TBI [74]. 

THSG prevents the pathogenesis of Parkinson's disease 

by inhibiting apoptosis and alpha-synuclein aggregation 

[75]. Furthermore, it has also been reported that THSG 

inhibited glutamate-induced apoptotic cell death in 

hippocampal cells [76]. Our results showed that THSG 

effectively rescued glutamate-induced neurotoxicity in 

both glioma neuronal cells and primary cortical 

neuronal cells. In particular, THSG can prevent DNA 

fragmentation from glutamate-induced neural cell lines 

and primary neuronal cells. Moreover, our results also 

revealed that THSG treatment protected neural cells 

from apoptosis as well as lactate dehydrogenase release. 

Administration of THSG in the TBI animal model is 

also consistent with our finding that THSG markedly 

inhibited DNA break and TUNEL expression 24 h after 

brain injury. Our present study demonstrated that THSG 

attenuates the detrimental deficits caused by TBI by 

downregulating DNA damage, neuronal apoptosis, and 

glutamate-induced excitotoxicity. 

 

The application of THSG has been shown to be due to 

acute absorption and rapid distribution, and THSG can 

be detected in the brain following intravenous and oral 

administration [77]. THSG administered intragastrically 

modulated amyloid precursor protein processing  

in APP/PS1 transgenic mice [78]. Intragastric 

administration of THSG has also been reported to exert 

anti-amyloidogenic and neurotrophic effects in a rat 

model of chronic neurodegenerative brain disorder [79]. 

Subcutaneous injection of THSG has been found to 

reverse stress-induced depression in a chronic restraint 

stress mouse model [64]. Recently, subcutaneous 

injection of THSG also showed attenuated stress-

induced depression in a mouse model by ameliorating 

the neurotrophin pathway [80]. Orally administered 

THSG has been reported to have protective effects 

against cerebral ischemia/reperfusion injury in rats [81]. 

Our findings support previous reports that oral 

administration of THSG possesses long-lasting 

protective capacity in the central nervous system, even 

though it improves cognitive outcomes after brain 
injury. The present study investigated the most likely 

properties and safe dosage of orally administered THSG 

on control cortical impact (CCI)-induced TBI outcomes, 

using motor and cognitive tests as a pilot study. Here, 

we suggest oral administration of 60 mg/kg THSG once 

daily for 21 days following post-TBI in subsequent 

research and clinical applications.  
 

There were some limitations in the study. The counts of 

apoptotic cells may depend on different animal ages, 

models and timelines of study. Previous studies reported 

that there were 3 to 5% neuronal apoptotic events in 

control/sham groups which using the similar 

TUNEL+NeuN setup with our study [82, 83]. We have 

counted around 300 to 420 neuronal cells 

(NeuN+DAPI+) in each sample with five ROIs in both 

sham+vehicle and sham+THSG groups, but we didn’t 

observe neuronal apoptotic events (Figure 5). Our 

results support the previous studies that TBI induced a 

significant increase in TUNEL-positive neuronal cells 

(more than 60%) while no TUNEL-positive nuclei were 

observed in the sham group [84]. Importantly, there 

were around 70% of TUNEL-positive cells were found 

in severe TBI patients and none of apoptotic neurons by 

TUNEL staining of cerebral cortex from five control 

cases [85]. Further detailed study will be required to 

identify the actual numbers of the apoptotic neurons in 

CNS in the physiological condition and after TBI. 

 

CONCLUSIONS 
 

The current study verified that THSG effectively 

protects against glutamate-induced excitotoxicity and 

cell death in astrocytes and cortical neurons. Our results 

also showed that THSG exerted neuroprotective effects 

against DNA damage induced by glutamate. Moreover, 

we identified the protective role of THSG in a TBI 

rodent model. To the best of our knowledge, this is the 

first study demonstrating that post-injury treatment with 

THSG improves TBI-induced behavioral impairment 

and brain lesion volume, which is involved in post-TBI 

anti-apoptosis. Our results also provide a new 

therapeutic strategy using THSG, which enhances 

neuronal plasticity following TBI. Our findings suggest 

that THSG may be an effective candidate against TBI-

induced brain lesions leading to the improvement of 

motor and cognitive impairment.  

 

MATERIALS AND METHODS 
 

Animals 
 

Adult male C57BL/6 mice (7 weeks old, 20–25 g) and 

pregnant female C57BL/6 mice were purchased from 

the National Laboratory Animal Center, Taipei, Taiwan, 

or from BioLASCO Taiwan Co., Ltd. All animals were 

housed under a constant 12 h light/dark cycle at room 

temperature (21–25° C) and humidity levels of 45%–

50%. Food and water were provided ad libitum. 
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Experiments were started after a one-week habituation 

period. The animal experimental protocols were 

approved by the Institutional Animal Care and Use 

Committee (IACUC) of the China Medical University 

(CMUIACUC-2018-086 and CMUIACUC-2020-265). 

All animal procedures were performed in compliance 

with the National Institutes of Health Guidelines for the 

Care and Use of Laboratory Animals.  

 

Drug administration 

 

The 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-

glucoside (THSG) was kindly provided by Dr. Ching-

Chiung Wang in the Graduate Institute of 

Pharmacognosy, College of Pharmacy, Taipei Medical 

University, Taipei, Taiwan. The extraction and 

purification of THSG from Polygonum Multiflorum 

Thunb was performed as previously described [86]. In 

cell culture, THSG was dissolved in DMSO directly 

and then treated with medium for 2 h before L-

glutamate treatment. In the animal model, THSG was 

dissolved in deionized distilled water for animal 

feeding. Animals were given vehicle or THSG in 1h 

following TBI and sacrificed 24 h later. Another 

group of experimental animals continued with oral 

gavage once daily with vehicle or THSG (60 

mg/kg/day) from the next day after TBI or vehicle 

until 21 days to evaluate behavioral outcomes and 

tissue histology. Animals were randomly divided into 

four groups: sham + vehicle, sham + THSG, TBI + 

vehicle, and TBI with THSG treatment for analyzing 

acute response at 24 h or evaluating the behavioral 

test for 21 days after brain injury. 

 

Animal model of TBI 

 

Traumatic brain injury was induced by a controlled 

cortical impactor (CCI) TBI 0310 (Precision Systems 

and Instrumentation, LLC, Fairfax, VA, USA). TBI 

induction was described in our previous study [11]. 

Briefly, mice were anesthetized by intraperitoneal 

injection of Zoletil 50 (tiletamine hydrochloride and 

zolazepam hydrochloride, 25 mg/ml/kg, VIRBAC 

Laboratories, Carros, France) and Ilium Xylazil-100 

(Xylazine, 10 mg/ml/kg, Troy Laboratories, Australia) 

before surgery. After shaving and disinfection, the 

mouse skull underwent craniotomy at the left cortex 

using a drill. A 3 mm diameter impact head was settled 

0.5 mm posterior to the bregma and 0.5 mm lateral to 

the midline. The weight drops a head on the flat 

exposed brain surface with 2 mm impact depth, 5 m/s 

impact velocity, and 500 ms dwell time. After cortical 

brain injury, the mouse skull was replaced, and the skin 
was enclosed with wound clips. The animals were 

returned to their home cage under a heat lamp until 

recovery from anesthesia. 

Beam walking test 

 

Beam walking was performed and modified as 

described previously [87]. An 80 cm beam was placed 

50 cm above the table. Light was placed at the starting 

point and a black box was placed at the end of the 

beam to motivate the mice. The animal cage was 

moved to the experimental area at least 1 h before any 

behavioral test to allow habituation. Mice underwent 

two days of pre-training using a 28 mm wooden stick 

of four times/day, followed by a 12 mm beam 4 

times/day, before the first test. In the experimental 

trial, the time across the 6 mm beam starting from 0 

cm to 80 cm was recorded, and the number of foot 

slips were counted on day -1, 1, 3, 7, 10, 14, and 21 

following TBI. The time spent on the beam while 

animals froze and/or paused for excretion was 

excluded. The time taken for mice to cross the stick 

over 1 min counted as a maximum of 60 s. After the 

mice reached the box at the end of the beam, they were 

returned to their home cages. Data were averaged of 

three trials on each test day. 

 

Modified neural severity score (mNSS) 

 

To evaluate overall neurological deficits, the mNSS 

was assessed 1 d prior to and on day 1, 3, 7, 10, 14, 

and 21 after sham or brain injury. We used 10-points 

tasks of mNSS that were related to motor, reflex, 

sensory, balance, and seeking behavior post-injury 

according to a previous report [88, 89]. Each task was 

scored as 0 for a normal result or 1 when the animal 

failed to show functional impairment. The total score 

of each animal was recorded from 0 (intact) to 10 

(maximum deficit). 

 

Morris water maze 

 

The Morris water maze was used to determine 

learning and memory behavior, as previously 

described [48]. A 135 cm diameter circle tank was 

filled with non-fat milk at room temperature  

(21–24° C). Animals were treated with 60 sec/trial, 

four trials per day with a minimum of five-minute 

intervals, from random quadrants in a water tank. 

Visual cues were placed around the tank consistently 

during the tasks. Mice were gently guided to the 

platform where they stayed for over 30 s if they failed 

to find the target. After every trial was completed, the 

mice were immediately dried and cleaned with a towel 

and then put back in their home cages with warm 

light. Swimming path and distance covered to find the 

platform were measured for all animals on four 
consecutive days, from 16 to 19 days post-TBI. The 

probe test was conducted once for 60 s without a 

platform and with visual cues 1 h after the final 
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hidden platform trial. The percentage of travel time in 

the correct quadrant was recorded. 

 

Rota-rod test 

 

We used a Rota-rod device (Treadmill, SINGA 

Technology Corporation, Taiwan) to test the motor 

functions of the animals according to the description 

provided with the device [90]. We handled and pre-

trained the mice on the rod for 15 min/day for three 

consecutive days before the first trial. In the test, each 

mouse was subjected to an accelerating speed of 300 s 

from 0 rpm to 50 rpm five times at one-minute intervals. 

The time spent on the rod one day before TBI and at 1, 3, 

7, 10, 14, and 21 days after TBI was recorded. Data were 

averaged and represented on each experimental day. 

 

Perfusion and sectioning 

 

Mice were anesthetized and then transcardially 

perfused with cold heparinized saline followed by 4% 

paraformaldehyde 24 h or 21 days post TBI. The 

perfused brains were rapidly removed and fixed in 4% 

paraformaldehyde overnight. Brain tissues were 

transferred to 20% sucrose until they sank and then 

frozen in OCT gel for sectioning. Each brain was cut 

into 10 μm coronal sections on a cryostat (Shandon, 

Thermo Fisher Scientific), and the slides were stored 

at -80° C for histological analysis. 

 

Nissl staining 

 

To evaluate tissue loss, we measured the volume of 

TBI-induced neuronal loss from the injury sites using 

Thionin staining. Selected regions of interest in six 

coronal sections from bregma -0.5, -1, -1.5, -2, -2.5, and 

-3.0 mm with a 480 μm interval were collected to detect 

Nissl substance. Slides were stained by rinsing with 

distilled water several times, transferring to 70%, 95%, 

100% ethanol, and defatted with xylene. After alcohol 

rehydration, slides were rinsed with thionin buffer, 

followed by 95% ethanol with galactic acid, 95% 

ethanol until the color disappeared (for differentiating 

variables) and then in 100% ethanol for dehydration. 

Xylene was used, and the slides were covered with 

mounting solution and covered with a coverslip for 

tissue analysis. Photographs were taken using a Carl 

Zeiss microscope (Axiovert 200M, Carl Zeiss), and the 

volume of tissue loss area in the TBI-induced injury 

hemispheres was measured using Axiovision software 

(Carl Zeiss). The volume of tissue loss in each bregma 

level between the two sections was calculated using the 

formula: d*(A1+A2)/2 formula, where d indicates the 
distance between sections, and A1 and A2 are the 

measured areas in the two different sections. The total 

lesion size in the different treatments was averaged.  

Cell line and primary cortical neuronal culture 

 

C6 glioma neural cells were purchased from the 

American Type Culture Collection (ATCC) (10801 

University Boulevard, Manassas, VA, USA). C6 glioma 

cells were cultured in Dulbecco's modified Eagle's 

medium (DMEM) containing 10% heat-inactivated fetal 

bovine serum (FBS) (Gibco BRL, Grand Island, NY, 

USA), penicillin G (100 units/ml), and streptomycin 

(100 units/ml) in a humidified incubator maintained at 

37° C with a continuous supply of 5% CO2. The 

medium was replaced every two days. The following 

test was started after the cells reached 100% confluence. 

 

Primary cortical neuronal cell culture was performed 

using a previously described method with some 

modifications (Brewer et al., 1993). Time-pregnant 

C57BL/6 (E15-16) were anesthetized and sacrificed by 

cervical dislocation. The cerebral cortex from the 

embryonic fetus was carefully dissected and transferred to 

the medium on an ice-cold stage. Tissues were gently 

minced using sterile surgical micro scissors, digested in 

0.25% trypsin, and pipetted for dissociation of cells. After 

centrifugation, cells were re-suspended in HG-DMEM 

containing 100 U/mL penicillin-streptomycin solution and 

10% fetal bovine serum at an appropriate density of cells 

and grown on poly l-Lysine-coated plates in a 5% CO2 

humidified incubator at 37° C. HG-DMEM was changed 

to neurobasal medium containing 2% B27 supplement 

with antibiotics after four hours of incubation. Cells were 

changed to half of the medium at 4 days in vitro (DIV) 

and the entire medium was changed at DIV7 during 

incubation. Cortical neurons were maintained in primary 

culture for 7–8 days for use in the experiments. 

 

Cell viability assay 

 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide) assay was used to detect 

mitochondrial reductase to determine the cell metabolic 

activity, as previously described [91, 92]. C6 glioma 

cells were seeded at a density of 6×103 cells/well in 96-

well plates for 24 h. After pre-treatment for 2 h with 

dose-dependent THSG or vehicle, 20 mM L-glutamate 

or vehicle were then added for a further 24 h. Cells were 

washed twice with phosphate-buffered saline (PBS); 

MTT solution (M2128, Sigma) was then added to the 

medium for an additional 4 h at 37° C. The supernatant 

was removed, and the dark blue formazan crystals were 

dissolved with 0.1 N HCl in isopropanol at room 

temperature. The absorbance was read at 570 nm using 

a microplate reader. Similarly, 6×104 embryonic 

primary cortical neurons/well were seeded in 96-well 
plates for 7 days and then treated with vehicle or THSG 

2 h prior to another 24 h treatment with 100 μM L-

glutamate (G5889, Sigma). MTT procedures were 
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performed according to the manufacturer’s instructions 

(M6494, Life Technologies), and each well was 

quantified for analysis at a wavelength of 540 nm. 

 

DNA fragmentation 

 

DNA fragmentation tests were used to determine DNA 

integrity as a sign of cell death, based on published 

reports [93]. C6 glioma cells were seeded at 6×104 

cells/ml in 6-well plates and incubated for 24 h before 

the experiment. For primary cortical neurons, 4×106 

cells/ml were cultured for treatment until DIV7. Cells 

under the different treatments were collected and 

washed with cold PBS, then lysed in 100 μl of lysis 

buffer (100 mM NaCl, 50 mM Tris-HCl pH8.0, 0.5 M 

EDTA pH8.0, and 0.5% SDS) with proteinase K 

(P2308, Sigma) for 3 h at 56° C, and then treated with 

0.5 mg/mL RNase A for an additional 1 h at 56° C. 

DNA was extracted using phenol/chloroform/isoamyl 

alcohol (25:24:1, v/v, Sigma). Equal amounts of DNA 

and loading buffer were loaded onto a 1.8-2% agarose 

gel containing SYBR Safe (1:10000, Invitrogen) and 

run at 100 V for 40 min in TAE buffer; the gel was then 

observed and photographed under UV light. 

 

LDH cytotoxicity assay 

 

Cytotoxicity was assessed based on the release of 

lactate dehydrogenase (LDH) using a cytotoxicity 

detection kit (ab65393 LDH Cytotoxicity Assay Kit, 

Abcam, USA), a colorimetric assay for the 

quantification of cell death based on the measurement 

of lactate dehydrogenase activity released from the 

cytosol of damaged cells into the supernatant. Primary 

neurons were seeded at a density of 6×104 cells per well 

in 96 well plate for 7 days. After experimental 

treatment, each well was mixed with LDH reaction 

buffer and gentle shaking at room temperature for 30 

min. Cells without any treatment served as low controls. 

A high control was treated with the cell lysis solution. 

Each sample was assayed in triplicate, and the 

wavelength was measured at 450 nm. To determine the 

percentage of cytotoxicity, the average absorbance 

values of the triplicate readings were calculated, and the 

values were substituted into the following equation: 

Cytotoxicity (%) = (test sample value – low control 

value / high control value – low control value) × 100. 

 

TUNEL assay for neurons 

 

Terminal deoxynucleotidyl transferase (TdT) dUTP nick 

end labeling (TUNEL) was used to detect apoptotic cells 

by labeling the 3’-hydroxyl terminus of DNA strand 
breaks. To test the anti-apoptotic effects of THSG on 

neurons, mouse brain tissue was collected for cryosection 

24 h after TBI. Slides of mouse brains were warmed, 

washed with PBS, and permeabilized with 0.1% Triton-X 

100 and 0.1% (w/v) sodium citrate for 20 min. Slides 

were then co-stained with neuron markers and detected as 

immunofluorescence following the protocol of the in situ 

Cell Death Detection Kit (Roche Diagnostics GmbH, 

Mannheim, Germany). Briefly, sections were blocked 

with 1% normal goat serum in PBS containing 0.1 % 

Tween 20 for 40 min at room temperature. The sections 

were then added with the primary anti-mouse monoclonal 

antibody, NeuN (1:1000, ab104224, Abcam) and 

incubated overnight at 4° C. After rinsing with PBS, the 

sections were incubated with the secondary antibody, 

conjugated anti-mouse IgG (H+L) (1:500 A21424, Alexa 

Fluor 555 Conjugate) for 1 h at room temperature in the 

dark. The sections were rinsed and the mixture of label 

and enzyme solution was added for 90 min in a dark  

37° C humidity incubator. Sections were rinsed and 

mounted with Vectashield Antifade Mounting Medium 

with DAPI (H-1800, Vector Laboratories, Burlingame, 

CA, USA) to analyze the number of fluorescence-

expressing cells from five ROI images of each brain 

section. 

 

Immunofluorescence 

 

We evaluated protein expression levels 21 days after 

TBI in the hippocampal dentate gyrus of mice. Slides of 

mouse brains were washed with PBS, immersed in 0.5% 

Triton-X-100 for 20 min, and then blocked with 1% 

normal goat serum in PBS containing 0.1 % Tween  

20 for 40 min at room temperature. Sections were  

then diluted with the primary rabbit polyclonal  

antibody Doublecortin (1:200, #4604, Cell Signaling 

Technology) and incubated overnight at 4° C. After 

rinsing with PBS, the specimen sections were incubated 

with Anti-Rabbit IgG (H+L) (1:500 A11034, Alexa 

Fluor 488 Conjugate) for 1 h at room temperature in the 

dark. Slides were washed in PBS, mounted with 

mounting medium with DAPI (H-1800, Vector 

Laboratories), and sealed with coverslips for analysis. 

Images were captured using a fluorescence microscope. 

In vitro, cells were discarded from the medium, washed 

with PBS, and fixed with 4% paraformaldehyde at room 

temperature. Cells were permeabilized using 0.1% 

Triton-X100, followed by blocking with 2% bovine 

serum albumin. Cells were incubated with diluted 

primary antibody mouse monoclonal antibody MAP-2 

(1:500, sc-74421, Santa Cruz) overnight at 4° C. After 

washing with PBST, diluted secondary antibodies were 

added for 1 h and then mounted with DAPI for 

fluorescence microscopy.  

 

Statistical analysis 

 

Data are presented as the mean ± standard error 

(SEM). One-way ANOVA and one-way ANOVA with 
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repeated measures were used for the data analysis. 

Analysis was then performed using the Tukey, Fisher's 

LSD, and Scheffe tests. Student’s t-test and paired t-

test were used to compare between groups. P-values 

were considered statistically significant at p < 0.05. 

All statistical analyses were performed using the SPSS 

version 25 software. Bar charts were made using 

Sigma Plot 12.0. 
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included in the article; further inquiries can be directed 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Effects of THSG on rotarod performance following post-TBI. Evaluation of motor coordination by rotarod 
test in THSG treatments after TBI for 21 days. The time staying on rotarod with accelerating speed was measured. Data represent the mean ± 
SEM (n = 6 per group). **, P < 0.01 TBI + Vehicle vs. Sham + Vehicle group; ***, P < 0.001 TBI + Vehicle vs. Sham + Vehicle group; ##, P < 0.01 
TBI + THSG vs. Sham + Vehicle group; ###, P < 0.001 TBI + THSG vs. Sham + Vehicle group. 


