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INTRODUCTION 
 

The replication factor C (RFC, activator 1) was first 

purified from the extracts of HeLa cells in human 

cervical cancer, participates as an important host factor 
in the replication of DNA [1, 2]. As a primer 

identification factor for DNA polymerase, RFC is a 

DNA binding protein with a specific structure and 
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ABSTRACT 
 

Objective: To reveal the expression and prognostic value of replication factor C family genes (RFCs) in patients 
with sarcoma. 
Results: The results showed that the mRNA expression levels of RFC2, RFC3, RFC4, and RFC5 were increased in 
sarcoma tissues. In addition, Cancer Cell Line Encyclopedia (CCLE) dataset analysis indicated that RFC1, RFC2, 
RFC3, RFC4, and RFC5 were elevated expressed in sarcoma cell lines. Moreover, Gene Expression Profiling 
Interactive Analysis (GEPIA) and Kaplan-Meier Plotter showed that highly expressed RFC2-5 were associated 
with poor overall survival (OS) or relapse-free survival (RFS) in sarcoma patients. The results of the Tumor 
Immune Estimation Resource (TIMER) database indicated that the expression of RFCs was negatively correlated 
with the infiltration of CD4+ T cells and macrophages. 
Conclusions: There were significant differences in the expression of RFCs between normal tissue and sarcoma 
tissue, and RFC2, RFC3, RFC4, and RFC5 might be promising prognostic biomarkers for sarcoma. 
Methods: The expression of RFCs was analyzed using the ONCOMINE dataset and GEPIA dataset. CCLE dataset 
was used to assess the expression of RFCs in the cancer cell line. The prognostic value of RFCs was evaluated by 
GEPIA and Kaplan-Meier analysis. Furthermore, the association between RFCs and their co-expressed genes 
were explored via ONCOMINE and GEPIA datasets. We used the TIMER dataset to analyze the immune cell 
infiltration of RFCs in sarcoma. 
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function [3]. In vivo, RFC plays an essential in cell 

biology cycles as a regulatory protein [4]. In humans, 

RFC is reported as a complex consisting of RFC1 (140 

kDa), RFC2 (40 kDa), RFC3 (38 kDa), RFC4 (37 kDa) 

and RFC5 (36 kDa) subunits [5]. The binding of the 

five subunits determines the physiological function of 

RFC. According to reports [6, 7], RFC can participate in 

excision repair and mismatch repair of damaged DNA 

by initiating signal transduction downstream of the 

checkpoint at the site of DNA damage by binding to the 

cell cycle checkpoint protein. In addition, RFC can load 

DNA polymerase and proliferating cell nuclear antigen 

(PCNA) onto the primer-bound DNA template to form a 

DNA-RFC-PCNA-DNA polymerase complex. And 

then, the polymerase complex extended along with the 

DNA template in the presence of deoxynucleotides 

(dNTPs), via the action of human single-stranded DNA 

binding protein (hSSB) [4]. As for interacting partners 

with a variety of proteins, not only are RFC factors 

involved in multiple processes in the normal cell cycle, 

but RFC factors also play an essential role in the 

transcription and proliferation of tumor cells. 

 

Further studies indicated that in the RFC family, 

different subunits have different roles in the cell cycle 

[4]. RFC1 DNA-binding domain contains the main, and 

of PCNA interacts directly with, involved in DNA 

synthesis, DNA repair, and cell cycle. Unlike other 

subunits, RFC1 is rarely reported to have a relationship 

with sarcoma. In the studies of Tang [8] and 

Pennaneach [9], it is pointed out that RFC1 can promote 

cell survival after DNA damage through the 

retinoblastoma (Rb) pathway, which is related to 

Hutchinson-Gilford Progeria Syndrome (HGPS). 

According to reports [10], RFC2 is one of the important 

components of the RFC complex that can unload PCNA 

and inhibit DNA polymerase activity, it is highly 

expressed in some sarcoma tissues and cells. RFC2, as a 

key gene, was upregulated in metastatic samples from 

Ewing's sarcoma patients [11]. Meanwhile, bio-

informatics analysis showed that the up regulation of 

this key gene reduced the overall survival rate of 

Ewing's sarcoma patients. As the dominant gene in the 

13q13 amplicon, RFC3 is considered to be an oncogene 

or anti-oncogene in different cancers based on its 

cellular and histological characteristics [12]. Recently, 

the study suggested that RFC3 is regulated by a series 

of miRNAs including miR-802 [13]. At the same time, 

it is reported that the up-regulated expression of miR-

802 is shown in osteosarcoma tissues and promotes cell 

proliferation by targeting p27 in U27 OS and MG-63 

cells [14]. Hence, RFC3 is also closely related to the 

cell proliferation of sarcoma tissue. In the DNA damage 
checkpoint pathway, RFC4 plays an important role and 

can enhance the anti-tumor activity of DNA-damaging 

chemotherapeutics [15]. A study has pointed out that 

changes in cell cycle regulation occur in several types 

of cancer, including osteosarcoma [16]. RFC4 interacts 

with CDK1, MAD2L1, NDC80, and BUB1, and acts on 

cell mitosis and cell cycle [13]. RFC5 is a necessary 

subunit to open the PCNA clamp during DNA 

replication. RFC5 participates in the repair and 

regulation of mismatches, nucleotide excision, cell 

cycle, and DNA double helix damage, [17, 18]. 

Studies have suggested that RFC5 is significantly up-

regulated in various cancer tissues or cells, and its 

expression increases as the disease progress [19–22]. 

However, the specific role of RFC5 in sarcoma is 

rarely expressed in more detail. So far, the expression 

program, functional role in sarcoma tissues, and 

impact on the prognosis of sarcoma patients by RFC5 

are still poorly known. 

 

In sarcoma patients, the pathological features conferred 

by RFC with different expression levels and their 

prognostic impact in these patients have been reported 

[4, 13]. To the best of our knowledge, there is still no 

research using bioinformatics to analyze the role of the 

RFC family in sarcoma. In our study, we summarized 

the expression and mutations of RFC genes in sarcoma 

to further analyze their process, latent function, and 

prognosis of sarcoma transcription levels. 

 

RESULTS 
 

The transcription level of RFCs in patients with 

sarcoma 

 

In mammalian cells, there have been identified five 

kinds of RFC factors. In the ONCOMINE database, the 

transcription level of RFC in cancer tissues was 

different from that in normal tissues (Figure 1). The 

mRNA transcription level of RFCs showed a significant 

difference between normal and sarcoma patients, except 

RFC1. In Detwiller Sarcoma’s dataset [23], RFC2, with 

a fold change of 3.287, was overexpressed in 

Fibrosarcoma (Table 1). In the database of Detwiller 

sarcoma [23], RFC3 expressed an increase in fibroids 

with a multiple change of 3.184. Detwiller sarcoma’s 

dataset [23] showed that RFC3 expression factor with 

the increased expression: the change of RFC3 in Round 

Cell Liposarcoma was 3.588, the change of RFC3 in 

patients with Synovial Sarcoma was 2.548, and the 

change of patients with Leiomyosarcoma was 2.624 

(Table 1). In Barretina Sarcoma’s dataset [24], RFC3 

was over-expressed than normal in the following 

sarcomas: 2.413 in myxoid/round cell liposarcoma, 

2.257 in myxofibrosarcoma, 2.514 in leiomyosarcoma, 

and 2.539 in pleomorphic liposarcoma. 
 

Detwiller Sarcoma’s dataset [23] suggests that RFC4 

over-expression was found in Leiomyosarcoma with a 
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fold change of 7.003, RFC4 over-expression was found 

in Pleomorphic Liposarcoma with a fold change of 

3.658, RFC4 over-expression was found in Malignant 

Fibrous Histiocytoma with a fold change of 4.337, and 

RFC4 over-expression was found in Fibrosarcoma with 

of a fold change of 3.579. In Barretina Sarcoma’s 

dataset [24], RFC4 was overexpressed in Leiomyo-

sarcoma with a fold change of 7.827. Barretina 

Sarcoma’s dataset [24] also indicated that RFC4 

overexpression is found in Pleomorphic Liposarcoma 

with a fold change of 4.682. RFC4 over-expression was 

found in Myxofibrosarcoma with a fold change of 

4.518, in Myxoid/Round Cell Liposarcoma with a 

change of 3.952, and in Dedifferentiated Liposarcoma 

with a change of 3.099. 

 

In the 2 databases, there were significant differences in 

mRNA transcription levels of RFC5. In Barretina 

Sarcoma’s dataset [24], RFC5 over-expression was found 

in Myxofibrosarcoma with a change of 2.033 compared 

with normal, and in Pleomorphic Liposarcoma with a 

change of 2.097. In Detwiller Sarcoma’s dataset [23], 

RFC5 over-expression was found in Leiomyosarcoma 

with a fold change of 5.371, in Fibrosarcoma with a 

change of 3.255, and in Malignant Fibrous Histiocytoma 

with a change of 4.134. 

 

 
 

Figure 1. The transcription level of RFCs in patients with sarcoma. 
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Table 1. The significant changes of rfc expression in transcription level between different types of sarcoma, NA: 
not available. 

Gene ID Types of sarcoma vs. normal Fold change P value t test Renferences 

RFC1 NA NA NA NA NA 

RFC2 Fibrosarcoma vs. Normal 3.287 6.42E-5 4.779 Detwiller Sarcoma 

RFC3 

Fibrosarcoma vs. Normal 3.184 5.00E-7 7.154 Detwiller Sarcoma 

Round Cell Liposarcoma vs. Normal 3.588 6.65E-7 7.393 Detwiller Sarcoma 

Synovial Sarcoma vs. Normal 2.548 6.13E-6 6.366 Detwiller Sarcoma 

Leiomyosarcoma vs. Normal 2.624 5.72E-5 5.351 Detwiller Sarcoma 

Myxoid/Round Cell Liposarcoma vs. Normal 2.413 5.49E-13 12.673 Barretina Sarcoma 

Myxofibrosarcoma vs. Normal 2.257 3.37E-11 9.037 Barretina Sarcoma 

Leiomyosarcoma vs. Normal 2.514 6.20E-10 8.700 Barretina Sarcoma 

Pleomorphic Liposarcoma vs. Normal 2.539 9.98E-8 7.117 Barretina Sarcoma 

RFC4 

Leiomyosarcoma vs. Normal 7.003 1.06E-9 10.790 Detwiller Sarcoma 

Pleomorphic Liposarcoma vs. Normal 3.658 4.03E-7 7.948 Detwiller Sarcoma 

Malignant Fibrous Histiocytoma vs. Normal 4.337 1.15E-7 7.444 Detwiller Sarcoma 

Fibrosarcoma vs. Normal 3.579 6.63E-7 6.866 Detwiller Sarcoma 

Leiomyosarcoma vs. Normal 7.827 1.46E-17 16.192 Barretina Sarcoma 

Pleomorphic Liposarcoma vs. Normal 4.682 4.85E-15 14.216 Barretina Sarcoma 

Myxofibrosarcoma vs. Normal 4.518 1.33E-15 17.566 Barretina Sarcoma 

Myxoid/Round Cell Liposarcoma vs. Normal 3.952 5.27E-12 18.791 Barretina Sarcoma 

Dedifferentiated Liposarcoma vs. Normal 3.099 3.56E-12 14.411 Barretina Sarcoma 

RFC5 

Myxofibrosarcoma vs. Normal 2.003 2.59E-13 10.719 Barretina Sarcoma 

Pleomorphic Liposarcoma vs. Normal 2.097 7.02E-9 7.985 Barretina Sarcoma 

Leiomyosarcoma vs. Normal 5.371 7.61E-6 6.193 Detwiller Sarcoma 

Fibrosarcoma vs. Normal 3.255 1.73E-5 5.368 Detwiller Sarcoma 

Malignant Fibrous Histiocytoma vs. Normal 4.134 8.80E-5 4.686 Detwiller Sarcoma 

 

Relationship between the mRNA transcription levels 

and the clinical pathological parameters in RFC in 

sarcoma patients 

 

We use the Gene Expression Profiling Interactive 

Analysis (GEPIA) dataset (http://gepia.cancer-pku.cn/) 

to compare different mRNA expression levels of RFCs 

in sarcoma and normal samples. The results showed that 

RFC2, RFC4, and RFC5 were upregulated in sarcoma 

patients, while the high expression levels of RFC1 and 

RFC3 were both with no significance. (Figure 2A–2G). 

 

Expression of RFC transforming factors in sarcoma 

cell lines 

 

Through the Cancer Cell Line Encyclopedia, we 

expanded our preclinical human cancer model of detailed 

annotation process (https://www.broadinstitute.org/ccle). 

The expressions of RFC1-5 were high in sarcoma cell 

lines (Figures 3A–3E). 

 

Prognostic value of RFCs in sarcoma 

 

We investigated the prognostic analysis of RFC1-5 in 

sarcoma using the plotter tool in the GEPIA and Kaplan 

Meier databases (Kaplan Meier plotter). Interestingly, in 

these two databases, poor overall survival (OS) and 

disease-free survival (DFS) of sarcoma were related to 

the upregulation of RFC1, but with meaningless (Figure 

4). The results, however, of the database suggested that 

high expression of RFC2 and RFC4 were associated 

with the poor DFS and RFS in sarcoma (Figure 4B, 

4D), with statistical differences. Nevertheless, increased 

RFC3 and RFC5 mRNA levels were associated with 

poor OS and RFS in sarcoma (Figure 4A, 4C, 4D). 

 

Co-expressed RFC genes and the correction between 

RFCs in sarcoma 

 

Analyzed genes co-expressed with RFC1, in Chen’s 

study [25], we found that RFC1 has been positively 

corrected by AKAP13, DCLK1, GLB1, DOCK2, CLTC, 

LOC100128361, MGC11082, CXorf65, and SLCO1A2. 

And then we analyzed genes co-expressed with RFC2 in 

the study of Stossi [26], the results showed that RFC2 

has been positively corrected by MRPS12, RBP1, 

MARS, SHMT2, NDUFAF3, CSNK2B, CDK16, 

DNAJB1, PDLIM4, MFAP2, SF3B4, SMAGP, CKB, 

TLE2, MAPKAPK3, FLII, HIP1R, ARHGDIA, and 

TERF2. Analyzed genes co-expressed with RFC3 in the 

http://gepia.cancer-pku.cn/
https://www.broadinstitute.org/ccle
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study of Schaefer [27], we found that RFC3 has been 

positively corrected by MTCH2, CCDC86, TRAPPC3, 

LRRC59, SMCR7L, DDX3X, PNO1, PCMT1, EIF4E, 

GLRX3, ARPC4, SLC25A1, DDA1, SNAP23, API5, 

CLIC4, and VAMP3. Genes co-expressed with RFC4 

were described in Chibon’s study [28], the results 

showed that RFC4 was positively corrected with 

MCM2, RMI1, NCAPG2, EZH2, FANCI, ZNF367, 

ATAD2, TYMS, RNASEH2A, ASF1B, and DTL. 

Genes co-expressed with RFC5 in the study of Chen 

[25], and we found RFC5 was positively corrected with 

ORC1L, RFC2, MRTO4, SDHIB, TMEM48, PPIH, 

 

 
 

Figure 2. The expression of RFCs in sarcoma. (A) The expression of RFC1 in pan-cancer. (B) The expression of RFC2 in pan-cancer.  
(C) The expression of RFC3 in pan-cancer. (D) The expression of RFC4 in pan-cancer. (E) The expression of RFC5 in pan-cancer. (F, G) The 
expression of RFCs in SARC. 
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CTPS, UBE4B, MAGOH, MRPS15, SNRNP40, 

POLE3, MDH2, WBSCR22, and NUDC (Figure 5A). 

Through the GEPIA database, we analyzed the mRNA 

expressions and calculated the correlations between 

RFCs with each other. The results showed that RFC1 

was positively corrected by RFC2 (R=0.39, p<0.05), 

RFC3 (R=0.52, p<0.05), RFC4 (R=0.41, p<0.05), and 

RFC5 (R=0.58, p<0.05) (Figure 5B). Furthermore, 

RFC2 was positively corrected with RFC3(R=0.57, 

p<0.05), RFC4(R=0.65, p<0.05), and RFC5(R=0.49, 

 

 
 

Figure 3. The expression of RFCs in sarcoma cell lines. (A) The expression of RFC1 in sarcoma cell lines, analyzed by CCLE. (B) The 

expression of RFC2 in sarcoma cell lines, analyzed by CCLE. (C) The expression of RFC3 in sarcoma cell lines, analyzed by CCLE. (D) The 
expression of RFC4 in sarcoma cell lines, analyzed by CCLE. (E) The expression of RFC5 in sarcoma cell lines, analyzed by CCLE. 
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p<0.05) (Figure 5B). RFC3 was both positively 

corrected by RFC4(R=0.59, p<0.05), and RFC5(R=0.52, 

p<0.05). RFC4 was positively corrected by 

RFC5(R=0.5, p<0.05) (Figure 5B). 

 

Association between RFCs and infiltration levels of 

immune cells in sarcoma 

 

We explored the relationship between the expression 

level of RFCs and immune cell infiltration in sarcoma 

using the TIMER database. The results showed that 

RFC1-5 were all positively correlated with tumor 

purity, negatively correlated with the infiltration of 

CD4+ T cell and macrophage, with significance. 

(Figure 6). 

DISCUSSION 
 

The role of RFC factor dysregulation in many types of 

cancer has been reported [29–32]. Similarly, we found 

that mRNA expression levels of RFC2, RFC3, RFC4, and 

RFC5 from RFC family genes were upregulated in 

sarcoma tissues. The imbalance of RFC may lead to the 

disorder of the cell cycle, which is no longer regulated by 

normal physiological mechanisms, and may further lead 

to the cancerization of normal tissues. RFC1 is generally 

considered to be an important part of DNA replication and 

repair in the RFC family [33]. Moggs et al. [34] found that 

when the expression of RFC1 is inhibited, the 

proliferation of estrogen receptor-negative breast  

cancer cells is also inhibited. Bermudez et al. [35]

 

 
 

Figure 4. The prognostic value of mRNA level of RFC factors in sarcoma patients. (A, B) The prognostic value of mRNA level of RFC 
factors in sarcoma patients, analyzed by GEPIA. (C, D) The prognostic value of mRNA level of RFC factors in sarcoma patients, analyzed by 
Kaplan-Meier plotter. 
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pointed out that overexpression of RFC1 can prevent 

histone H3K56 from over-acetylation. Celic et al. [36] 

indicated that over acetylated histone H3K56 will 

induce cell death. Through our study, although in 

ONCOMINE database suggested that the mRNA 

expression of RFC1 gene in sarcoma patients was non-

difference from the normal, CCLE database indicated 

that that the RFC1 gene expression in sarcoma cell lines 

 

 
 

Figure 5. Co-expression genes of RFCs, and the correction between RFCs in sarcoma. (A) Co-expression genes of RFCs in sarcoma, 

analyzed by Oncomine. (B) The correction between RFCs in sarcoma, analyzed by GEPIA. 
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shows a high expression status, we can still consider 

that RFC1 gene is highly expressed in sarcoma cells. 

Using the GEPIA and Kaplan Meier plotter databases, 

we determined the prognostic value of the RFC1 gene 

in sarcoma, and although high expression of RFC1 was 

associated with poor OS and DFS in sarcoma patients, it 

was not statistically significant, so RFC1 expression did 

not predict sarcoma patients related prognosis. 

 

Some evidence suggested that RFC2 was a key gene, 

and its upregulation was related to the metastasis and 

prognosis of Ewing’s sarcoma [11]. Xiong et al. [37] 

showed that RFC2 was closely related to 

nasopharyngeal carcinoma, and the up regulation of 

RFC2 expression was obviously high in patients with 

nasopharyngeal carcinoma than normal. Meanwhile, 

other studies have shown that the expression level of 

RFC2 was also higher in the normal tissues than in 

patients with glioblastoma [38]. There was a study 

pointed out that in patients with choriocarcinoma, high 

expression of RFC2 may have the effect of predicting 

the prognosis of the disease [39]. Therefore, RFC2 

may play an oncogene in a variety of malignant 

tumors. Until now, there is no definite research 

showing the specific effect of RFC2 in sarcoma. In our 

study, the expression of RFC2 in fibrosarcoma was 

3.287 times higher than in normal tissues. Through the 

CCLE database, we found that RFC2 was also up-

regulated in sarcoma cell lines. Meanwhile, in the 

analysis of GEPIA and Kaplan Meier plotter, we also 

found that patients with sarcoma with high expression 

of RFC2 had poor disease-free survival (DFS), which 

was statistically significant. Therefore, RFC2 not only 

plays an oncogene role in fibrosarcoma but also has a 

latent function in predicting disease outcomes in 

sarcoma. 

 

In a study on osteosarcoma [13], it was pointed out that 

RFC3, CDK1, MAD2L1, NDC80, BUB1, etc. jointly 

participated in the related links of the disease prognosis 

 

 
 

Figure 6. Relationship between differentially expressed RFC genes and immune cell infiltration. The immune cells we analyzed 
included B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. 
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of osteosarcoma. According to the study of patients with 

acute myeloid leukemia (AML) [40], RFC3 was found 

to be highly expressed in their tumor cells. In addition, 

in the study of ovarian cancer patients [12], the average 

survival time of patients with high RFC3 expression 

levels was only 7.7 months, while that of patients with 

normal expression was as long as 92.9 months. Highly 

expressed RFC3 has been confirmed to be a predictive 

gene in Kaposi’s sarcoma [41], breast cancer [42], 

esophageal adenocarcinoma [43], and hepatocellular 

carcinoma [44]. In summary, this means that RFC3 may 

act as an oncogene in cancers. Consistent with our 

analysis, in this study, the RFC3 high expression was 

found in sarcoma tissue. Using the CCLE database, the 

results suggested that RFC3 was also highly expressed in 

human sarcoma. In ONCOMINE, the mRNA expression 

level of RFC3 was up-regulated, which was specifically 

reflected in fibrosarcoma, leiomyosarcoma, mucosal 

fibrosarcoma, smooth muscle sarcoma, pleomorphic 

liposarcoma, and so on. Meanwhile, the results 

illustrated that highly expression RFC3 was associated 

with poor OS in patients with sarcoma, which was 

statistically significant. 

 

Previous study has shown that RFC4 is highly 

expressed in cancer tissues such as hepatocellular 

carcinoma [15], non-small cell lung cancer (NSCLC) 

[45], prostate cancer [46], breast cancer [20], and 

cervical cancer [47]. In addition, some scholars further 

proposed that RFC4 may serve as a potential prognostic 

biomarker and therapeutic target [4]. In general, RFC4 

has been discussed and studied in various cancers, but 

its exact function in sarcoma has not been described yet. 

At the same time, highly expressed RFC4 was related to 

the RFS difference in sarcoma, and there was statistical 

significance, that is, the DFS of sarcoma patients with 

high expression of RFC4 was worse. It seemed that 

RFC4 not only acted as an oncogene in sarcoma 

patients but also had a certain predictive effect on the 

prognosis of sarcoma patients. 

 

RFC5 can repair mismatches, DNA double helix 

damage, and nucleotide excision during the cell cycle 

[18]. These biological characteristics have been 

confirmed in research to be related to the progression 

of cancer [17]. Similar to other subunits of the RFC 

family, RFC5 is expressed in a variety of cancers, such 

as head and neck squamous cell carcinoma [48], 

prostate cancer [49], cervical cancer [50], and diffuse 

large B-cell lymphoma (DLBCL) [51] than the normal. 

Hence the exact function of RFC5 in sarcoma is still 

inconclusive. In our study, highly expressed RFC5 was 

significantly correlated with poor OS in sarcoma 
patients, and there was statistical significance. It 

suggests that patients with high expression of rfc5 

sarcoma usually have poor overall survival. 

The expression levels of the five RFC family members 

were negatively correlated with the infiltration of CD4+ 

T cells and macrophages. Immune cells in the tumor 

microenvironment can promote or inhibit tumor 

activity, which is considered to be an important 

determinant of clinical outcomes and immunotherapy. 

The RFCs expression levels were negatively correlated 

with the infiltration level of CD4+ T cells and 

macrophages. Past studies have shown that CD4+ T 

cells played active roles in anti-tumor immunity. CD4+ 

T cells could target tumor cells in a variety of ways, 

directly eliminate tumor cells through the cytolytic 

mechanism, or indirectly interact with tumor cells by 

regulating the tumor immune microenvironment [52]. 

This indicated that the expression of RFCs might affect 

the development of sarcoma by regulating the 

infiltration of immune cells, thereby affecting the 

prognosis of patients. This study could provide more 

detailed immune information for the immunotherapy of 

sarcoma patients. 

 

After understanding the heterogeneity and complexity 

of the molecular biology of sarcoma, this study 

systematically analyzed the expression and predictive 

value of RFC in sarcoma. Our results indicated that 

increased expression of RFC2-5 in sarcoma tissue might 

play an important role in the occurrence of sarcoma and 

could be used as a potential indicator of diagnosis. The 

expression level of RFC2-5 has predictive effects on the 

survival period of patients with sarcoma. Thus, 

transcriptional RFC2-5 are latent prognostic markers to 

improve the survival and prognostic accuracy of 

sarcoma. 

 

However, such a study still has some limitations. First, 

it can only respond to some relationships between RFC 

factors and sarcomas, and the role of some subunits in 

sarcomas under a partially defined pathological 

classification, so it cannot make a deeper analysis. 

Second, disadvantages still exist in the precision of 

treatment and prediction, but some genomic, as well as 

proteomic evidence, can be provided for the study of the 

corresponding sarcomas. Further studies also need to 

combine immunohistochemical as well as correlative 

analysis of tumor cytology, which will facilitate the 

diagnosis and treatment of sarcomas with greater 

precision. Third, the ONCOMINE database had been 

taken offline on January 17, 2022, so the figure with 

case numbers in specific subtype vs ‘normal’ cases 

cannot be obtained. 

 

CONCLUSIONS 
 

In conclusion, this finding systematically showed the 

expression of the RFC gene in sarcoma tissue and the 

prognosis effect on sarcoma patients. Our results 
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indicate that increased expression of RFC2-5 in 

sarcoma tissue may show an essential role in the 

occurrence of sarcoma and can be used as latent 

indicators for diagnosing sarcoma. Expression levels of 

RFC2-5 have a predictive effect on the total survival 

(OS) or disease-free survival (DFS) of sarcoma patients. 

Therefore, transcription of RFC2-5 is a potential 

prognostic marker for improving survival and 

prognostic accuracy in sarcoma patients. The results of 

this study may provide new ideas for diagnosis and 

prognosis in sarcoma patients to select potential 

prognostic biomarkers. 

 

MATERIALS AND METHODS 
 

ONCOMINE analysis 

 

ONCOMINE (https://www.oncomine.com/) is an online 

microarray database focused on cancer. In different 

cancers, it can analyze the transcript levels of the RFC 

gene family. Comparison of mRNA expression of the 

RFC gene family in clinical cancer tissue specimens and 

mRNA expression in normal controls was performed 

using the student's t-test for significance of the mean 

difference. Respectively, the cut-off was defined as 

0.01, and the fold change of p-value was 2. 

 

GEPIA dataset 

 

Gene expression analysis interactive analysis dataset 

(GEPIA), a newly developed interactive online gene 

bioinformatics analysis platform, is a way of RNA 

sequencing analysis. The database contains data from 

9736 tumor tissues and 8587 normal tissues from The 

Cancer Genome Atlas (TCGA) as well as Genotype-

Tissue Expression (GTEx) (http://gepia.cancer-pku.cn/) 

GEPIA shows a series of custom-made features such as 

gene differential expression analysis of tumor tissue 

versus normal tissue, but also correlation analysis 

depending on the type of pathological stage of cancer, 

analysis of patient survival, similar genetic tests, 

correlation analysis, and dimension reduction analysis. 

 

CCLE dataset 

 

CCLE (Cancer Cell Line Encyclopedia), an 

oncogenomics research project, is led by the Broad 

Institute of MIT at Harvard. Similar to the above 

databases, CCLE is also a large, publicly available 

tumor genome database. It collects and collates 

profiling data of 1457 tumor cell lines, 84434 genomes, 

which includes gene expression data, chromosomal 

copy data as well as massively parallel sequencing data. 

In sarcoma cell lines, we illustrated the expression 

levels of the RFC gene family using the CCLE 

database. 

Kaplan-Meier plotter 
 

The Kaplan Meier plotter is a publicly available online 

database (https://www.kmplot.com) constructed based on 

microarray and RNA SEQ data from public databases 

such as TCGA, geo, and EGA. The prognostic value of 

signal transducer and activator of transcription protein 

(STAT), as well as mRNA expression, was assessed 

using this online database containing expression data and 

survival information for the analyzed genes as well as 

259 clinical sarcoma patients. To analyze the overall 

survival (OS) and progression-free survival (RFS), of 

patients with sarcoma, those samples were divided into 

two groups by median expression (high expression vs. 

low expression) and evaluated by Kaplan Meier survival 

plots with hazard ratios (HR, hazard ratio) with 95% 

confidence intervals (CI, confidence interval) and log-

rank P values. TIMER database 
 

Through the TIMER database, we evaluated the effect 

of RFC expression level on tumor immune cell 

infiltration. TIMER database contains the data of tumor-

infiltrating immune cells in more than 10000 samples of 

32 types of cancers from TCGA [53]. On this basis, we 

analyzed the effects of the expression level of the RFC 

gene family on six common immune cell infiltration 

levels: CD4 + T cells, CD8 + T cells, B cells, 

neutrophils, dendritic cells, and macrophages. 
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