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INTRODUCTION 
 
Lymphomas are a heterogeneous group of molecularly, 
biologically and clinically distinct lymphoproliferative 
malignancies [1]. Multiple therapies, such as 
chemotherapy, radiotherapy, immunotherapy and target 
therapy, have been developed for the treatment of 
lymphomas [2]. Although promising effects have been 
achieved by approaches, relapse and drug resistance are 
common. Therefore, developing novel strategies for 
lymphomas remains a primary concern currently [3, 4]. 
We had previously identified that the soluble form of 
CXCL16 and TNF-α may be used as prognostic 

markers and their combination could be a promising 
approach in the context of diffuse large B-cell 
lymphoma therapy [3, 4].  
 
Anti-cancer agents derived from natural plants have 
been reported to exhibit low toxicity and effective 
therapeutic activity in different types of tumors [5–7]. 
Ophiorrhiza pumila (O. pumila) is a Rubiaceae family 
plant that grows in many Asia countries, such as Japan, 
Vietnam, Philippines and China [8]. O. pumila has been 
considered to be a valuable alternative source of 
camptothecin (CPT), which is widely used to treat 
various cancers, such as colorectal, ovarian and lung 
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ABSTRACT 
 
Background: Current therapeutic strategies on patients with lymphomas remains limited. Previously we found 
the suppressive effect of Ophiorrhiza pumila (OPE) on hepatocarcinoma. In present study, the effect of OPE on 
lymphoma in vitro and in vivo were investigated. 
Methods: CCK-8 assay was applied to detect the effect of OPE on cell proliferation. Flow cytometry was used to 
analyze the effect of OPE on cell cycle distribution and apoptosis. Xenograft mouse model was conducted to 
determine the anti-tumor activity of OPE. TNUEL assay was performed to detect the apoptosis in tumor tissues. 
Western blot and immuno-histochemistry were used to determine protein expression. 
Results: In vitro tests indicate that OPE suppressed A20 cell proliferation in a dose- and time-dependent 
manner. OPE treatment induced cell cycle arrest at S phase and elevated apoptosis in A20 cells. OPE displayed a 
significant inhibition in tumor growth in a mouse xenograft model. OPE promoted apoptosis of tumor cell in the 
mouse model Cleaved caspase 3 expression and Bax/Bcl2 ratio were also enhanced. In addition, OPE 
suppressed A20 cell viability partially by reducing phosphorylation of EGFR. 
Conclusions: Our data showed that OPE suppressed the proliferation of lymphoma cells and promoted 
apoptosis in vitro and in vivo, which might be partially mediated by inactivating EGFR signaling. 
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cancer [9, 10]. Studies refer to the biosynthesis process 
of CPT in O. pumila are decumulating [8, 11, 12], but 
the function of O. pumila compounds in cancer have 
rarely been explored. Previously, we reported that 
treatment with O. pumila extract (OPE) suppresses the 
proliferation and migration of liver cancer cells, 
indicating an anti-cancer activity of OPE in 
hepatocarcinoma [13]. However, the effect of 
compounds of O. pumila on other types of cancers 
remains unknown.  
 
In this study, we aimed to investigate the cytotoxicity 
of OPE in lymphomas in vitro and in vivo, which may 
expand our understanding of the anti-cancer activity 
of OPE and may provide data for the discovery of 
novel compounds against B cell lymphomas from 
O. pumila. 

RESULTS 
 
OPE suppresses the proliferation and induces S phase 
arrest in A20 cells 
 
To determine the effect of OPE on cell viability, CCk-8 
assay was performed in A20 cells treated with different 
concentrations of OPE for 24 h, 48 h, and 72 h, 
respectively. The results showed that treatment with 
OPE significantly reduced A20 cell viability, which was 
in a time- and dose-dependent manner (Figure 1A–1C). 
The IC50 value (50% inhibition) of OPE was 223.75 
μg/mL at 24 h, 27.95 μg/mL at 48 h, and 26.4 μg/mL 
at 72 h. 
 
Cell cycle arrest is an important event related to cell 
growth. Hence, OPE may affect the viability of A20 

 

 
 
Figure 1. OPE inhibits the proliferation and induces S phase arrest in A20 cells. (A–C) OPE inhibits the proliferation of A20 cells. 
A20 cells were treated with different concentrations of OPE (0, 6.25, 12.5, 25, 50, and 100 μg/mL) for 24 h (A), 48 h (B), and 72 h (C), 
respectively, and the cell viability was examined by CCK-8 assay. (D, E) OPE induces S-phase arrest in A20 cells. A20 cells were treated with 
different concentrations of OPE (0, 25, 50, and 100 μg/mL) for 48 h, and cell cycle distribution was accessed by flow cytometry. (F) Western 
blot was carried out to detect the expression of cell cycle-associated proteins. Data are presented as means ± SD of at least three 
independent experiments. (*p < 0.05; **p < 0.01; ***p < 0.001, compared to the untreated control). 
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cells by inducing cell cycle arrest. Flow cytometry 
analysis showed that administration of OPE 
significantly altered the cell cycle distribution. The 
percentages of A20 cells at S phase for 0 μg/mL, 
25 μg/mL, 50 μg/mL, and 100 μg/mL groups were 
29.7%, 37.3%, 59.5%, and 67.5%, respectively (Figure 
1D and 1E). In consistent with these results, Western 
blot analysis showed that the expression of Cyclin A2, a 
key mediator of S phase, was markedly reduced (Figure 
1F). Together, these results suggest that OPE could 
induce S phase cell cycle arrest in A20 cells. 
 
OPE triggers apoptosis of A20 cells 
 
Apoptosis is a key process in regulating cell death. 
Therefore, we wondered whether OPE had an effect on 
A20 cell apoptosis. A20 cells were treated with 
different concentrations of OPE, and the apoptotic rate 
was ascertained by flow cytometry. Exposure to OPE 
led to a remarkable increase in apoptotic cell 
population, which was in a dose-dependent manner 
(Figure 2A and 2B). The percentages of apoptotic cells 
in 0 μg/mL, 25 μg/mL, 50 μg/mL, and 100 μg/mL 
groups were 0.38%, 13.27%, 22.28%, and 38.95%, 
respectively. In consistent with these results, OPE 

treatment significantly elevated the expressions of 
apoptosis proteins, Bax and cleaved-caspase 3, but had 
no significant effect on Bcl2 expression (Figure 2C). 
The expression ratio of Bax/Bcl2 was increased after 
OPE exposure (Figure 2D). Together, these results 
indicate that OPE suppressed A20 cell growth via 
triggering apoptosis. 
 
OPE represses A20 cell growth in vivo 
 
Next, we determine whether OPE had an anti-lymphoma 
activity in vivo by using a xenograft mouse model. 
Treatment with OPE significantly decreased the tumor 
development of derivate from A20 cells, which was also in 
a time- and dose-dependent manner (Figure 3A and 3C). 
The inhibitory rates at Day 21 for 15 mg/kg and 45 mg/kg 
were 58.4% and 77.9%, respectively (Figure 3A). There 
was no significant difference in the body weight among 
different groups (Figure 3B).  
 
OPE induces apoptosis in A20-derived tumors 
 
To access the effect of OPE on the apoptosis in A20-
derived xenografts, TUNEL staining was performed. 
Consistent with the in vitro results, increased TUNEL- 

 

 
 

Figure 2. OPE enhances apoptosis in A20 cells. (A, B) Flow cytometry analysis of apoptosis of A20 cells after treatment with OPE 
(0, 25, 50, 100 μg/mL) for 48 h. (C) Western blot analysis of the expression levels of apoptosis-related proteins. A20 cells were treated with 
OPE (0, 25, 50, and 100 μg/mL) for 48 h, and Western blot was conducted with the indicated antibodies. (D) The alteration of the Bax/Bcl2 
ratio in A20 cells following treatment with OPE. Data are presented as means ± SD of at least three independent experiments. (*p < 0.05; 
***p < 0.001, compared to the untreated control). 
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positive cells were observed in OPE-treated groups 
(15 mg/kg and 45 mg/kg) compared with the NC group 
(Figure 4A). Western blot analysis of the tumor tissue 
samples also showed that the expression levels of 
cleaved caspase 3 and Bax were dose-dependently 
increased following the treatment of OPE, while no 
significance in the expression of Bcl2 was observed 
(Figure 4B). Consistently, treatment with OPE resulted 
in an increase in the expression ratio of Bax/Bcl2 in 
tumor tissues (Figure 4C). In agreement with these 
results, immuno-histochemistry staining showed that 
there were more cleaved caspase3-positive cells and 
fewer Ki67-postive cells in OPE-treated groups than in 
the NC group (Figure 4D). Together, these results 
suggest that OPE induces A20 cell apoptosis in vivo. 
 
OPE suppresses A20 cell proliferation via inactivation 
of EGFR 
 
EGFR signaling plays a vital role in the regulation of 
apoptosis. Therefore, we investigated whether OPE had 

an effect on the activation of EGFR. Indeed, Western 
blot analysis showed that administration of OPE 
remarkable reduced the phosphorylation of EGFR in 
A20 cells (Figure 5A). Also, the phosphorylation of 
AKT, a downstream target of EGFR signaling, was 
reduced after OPE treatment (Supplementary Figure 1). 
Consistently, the level of p-EGFR in tumors isolated 
from OPE-treated mice (15 mg/kg and 45 mg/kg) was 
significantly decreased (Figure 5B). Treatment with 
EGF could partially restore the cell viability of A20 
cells (Figure 5C and 5D). Moreover, administration of 
EGF restrained the enhanced effect of OPE on the 
apoptosis rate of A20 cells (Figure 5E). Together, these 
results implied that EGFR suppression partially 
accounted for the anti-proliferative activity of OPE in 
A20 cells. 
 
DISCUSSION 
 
Exploring the functional activity of the extract of a 
certain plant is an important step for discovering novel 

 

 
 
Figure 3. OPE suppresses A20 cell growth in vivo. (A) The effect of OPE on the volume of tumor derived by A20 cells. A20 cells were 
subcutaneously injected into the right oxter of Balb/c mice followed by the treatment with DMSO (NC), 15 mg/kg, or 45 mg/kg OPE (n = 4). 
The tumor volume was measured every other day. (B) The body weight of Balb/c mice after tumor cell inoculation and treatment. (C) The 
representative images of isolated tumors from Balb/c mice. Data are presented as means ± SD. (*p < 0.05; ***p < 0.001, compared to the 
untreated control). 
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anti-cancer agents. In addition to alkaloids, O. pumila 
also produce anthraquinones, glucosides, and chlorogenic 
acid, which are potential chemoprotective compounds 
against cancers [10, 14, 15]. In our research, the dried 
whole plant of O. pumila were crushed, and extracted 
by 95% (v/v) ethanol, the extract solution was 
concentrated and produced ethanol extract (OPE). 
Although we have reported that OPE has an anti-liver 
cancer activity [13], its activity in lymphomas remains 

unclear. In present study, we found that OPE inhibits 
the proliferation and induces cell cycle arrest and 
apoptosis in A20 cells. Moreover, OPE suppresses A20 
tumor growth in vivo. Thus, our findings highlight an 
anti-lymphoma activity of OPE.  
 
Anti-cancer compounds commonly trigger tumor cell 
death via inducing cell cycle arrest [16–18]. For 
example, the ethanolic extract of Cordyceps cicadae 

 

 
 
Figure 4. OPE induces apoptosis in A20-derived tumors. (A) The effect of OPE on tumor apoptosis. The tumor apoptosis was 
evaluated by TUNEL staining (green). DAPI (blue) was used to stained nuclei. (B) Western blot analysis of apoptosis-related proteins in 
tumor tissues. (C) The alteration of the Bax/Bcl2 ratio in tumor tissues following treatment with OPE. (D) Immunohistochemistry staining 
analysis of the cleaved caspase3-positive cells and Ki67-postive cells in tumor tissues. Data are presented as means ± SD of at least three 
independent experiments. (*p < 0.05; **p < 0.01; ***p < 0.001, compared to the untreated control). 
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exerts its antitumor activity in gastric cancer cells 
by inducing S phase arrest [19]. Withaferin A 
suppresses glioblastoma cell growth in triggering 
G2/M arrest [20]. In our study, OPE induced a 
S phase arrest in A20 cells. Of note, previously we 
reported that OPE could induced a G2/M arrest in 
liver cancer cells [13]. Thus, these results indicate 
that the action of OPE on cell cycle distribution is 
cell type-dependent. 
 
Given the critical role of apoptosis in cancer cell 
survival [21], we also accessed the effect of OPE on 
apoptosis. As expected, a significantly increased 
number of apoptotic cells was visualized in OPE-treated 
group compared with the control group. Consistent with 
the in vitro result, TUNEL assay also showed a higher 
apoptotic rate in A20 tumor tissues isolated form OPE-
treated mice compared with those from the control 
mice. Furthermore, Western blot analysis showed that 
the expression of apoptosis-related proteins, cleaved 
caspase 3 and Bax, two key mediators in the apoptosis 
process [22, 23], were significantly elevated, 
confirming the enhanced effect of OPE on A20 cell 
apoptosis. 
 
A series of signaling pathways had been report involved 
in the proliferation, apoptosis, and survival of 
lymphoma cells, including EGFR signaling [24–27]. 

EGFR is a member of ErbB family which plays vital 
roles in many processes associated with tumor 
development, such as proliferation, survival, migration 
and apoptosis [28, 29]. The PI3K/AKT signaling 
pathway is considered as an attractive target for the 
development of new anticancer agents [30]. EGFR is 
also an upstream protein in the PI3K/AKT signal 
transduction pathway, which is an important target in 
cancer research [31]. Thus, targeting EGFR/AKT 
signaling is considered to be a crucial strategy of cancer 
therapy [32]. Recent evidence has revealed that EGFR 
signaling is implicated in the progression of lymphoma. 
It has been reported that EGFR activation contributed to 
PDGFD induced-ibrutinib resistance in diffuse large 
B-cell lymphoma (DLBCL) [33]. LncRNA TUC338 
promotes the proliferation of DLBCL cells via 
activating EGFR pathway [34]. These studies indicate 
that the activation of EGFR signaling confers the 
malignancy of DLBCL. Our data showed that OPE 
could significantly reduce the phosphorylation of 
EGFR, as well as the phosphorylation of AKT. The 
suppression of EGFR signaling could induce apoptosis 
and lead to cell death, consistent with previous studies 
[35, 36]. Moreover, restoration of EGFR activity 
partially reversed the effects of OPE on cell viability 
and apoptosis. Hence, our results indicate that EGFR 
suppression contributes to the anti-proliferative effect of 
OPE in A20 cells. 

 

 
 
Figure 5. OPE suppresses A20 cell proliferation via inactivation of EGFR. (A) Western blot analysis of the expression and 
phosphorylation of EGFR in A20 cells. (B) Western blot analysis of the expression and phosphorylation of EGFR in A20 cell-derived tumors. 
(C) The viability of A20 cells after treatment with OPE (50 μg/mL) together with or without EGF (50 ng/mL). (D) The apoptosis of A20 cells 
after treatment with OPE (50 μg/mL) together with or without EGF (50 ng/mL). (E) Flow cytometry analysis of apoptosis of A20 cells 
treatment with OPE (μg/mL) together with or without EGF (50 ng/mL) for 48 h. Data are presented as means ± SD of at least three 
independent experiments. (*p < 0.05; ***p < 0.001, compared to the untreated control). 
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CONCLUSIONS 
 
In conclusion, OPE mediated A20 cell growth 
suppression by inducing apoptosis and cell cycle arrest. 
In addition, OPE displayed a significant inhibition in 
tumor growth in a mouse model, which might be related 
to enhanced cleaved caspase 3 expression and Bax/ 
Bcl2 ratio. Moreover, OPE exerts its proliferation-
suppressive activity in A20 cells involves in 
inactivation of EGFR. Our findings imply that OPE 
might be a promising target for lymphoma therapy. 
However, the molecular mechanisms of the anti-
lymphoma activity of OPE still needs to be further 
investigated. 
 
MATERIALS AND METHODS 
 
Reagents and materials 
 
Antibodies against cleaved caspase-3, Bcl-2, Bax, 
GAPDH, and HRP-conjugated secondary antibodies 
were purchased from Cell Signaling Technology 
(USA). Antibodies against Cyclin D1, Cyclin A2, 
Cyclin B1 were purchased from Proteintech (USA). 
OPE was obtained as reported previously 
(Supplementary Figure 2 and Supplementary Table 1) 
[13]. OPE was dissolved in methanol to make the 100 
mg/mL solution and stored at −20°C until use. 
 
Cell culture 
 
A murine lymphoma cell line, A20 cell line, which was 
pathologically mimic the diffuse large B cell 
lymphoma, were purchased from the American Type 
Culture Collection (ATCC, USA). A20 cells were 
maintained in 1640 medium plus 10% FBS and 1% 
penicillin/streptomycin and were incubated in an 
incubator with 5% CO2 at 37°C. 
 
Cell viability analysis 
 
CCK-8 assay was performed to determine the viability 
of A20 cells after treatment with OPE. In brief, A20 
cells (8~1.2 × 103 per well) in 100 µL completed 1640 
medium were placed in 96-well plates and were 
exposed to different concentrations of OPE (0, 6.25, 
12.5, 25, 50, 100, and 200 µg/ml). After treatment for 
24 h, 48 h, and 72 h, 10 µL of CCK-8 reagent (Dojindo, 
Japan) was added to each well and incubation for 2~4 h. 
The absorbance was then measured at 450 nm on a 
microplate spectrophotometer.  
 
Cell cycle analysis 
 
Flow cytometry was applied to investigate the influence 
of OPE on cell cycle distribution as described 

previously [13]. Briefly, A20 cells were incubated with 
different concentrations of OPE (0, 25, 50, and 100 
μg/mL). After treatment for 48 h, A20 cells were 
harvested, washed with PBS, and stained using the Cell 
Cycle Staining Kit (MultiSciences, China). The 
distribution of cell cycle was analyzed by the CytoFlex-
LX flow Cytometer (Beckman, USA). 
 
Apoptosis analysis 
 
The apoptosis of A20 cells treated with OPE was 
detected by using the Annexin V-FITC apoptosis 
detection kit (BD, USA). A20 cells (3 × 105 cells per 
well) were placed in 6-well plates and were exposed to 
different concentrations of OPE (0, 25, 50 100 µg/mL). 
48 h post-incubation, A20 cells were collected and 
washed once with PBS. A20 cells were incubated with 
5 μL Annexin V-FITC and 5 µL PI in 200 µL 
1 × binding buffer. Then 200 µL 1 × binding buffer was 
added to each sample. Samples were analyzed on a flow 
cytometer (BD Biosciences) and the data was analyzed 
using the CytExpert software (BD Biosciences).  
 
Western blot analysis 
 
A20 cells were exposed to different concentrations of 
OPE (0, 25, 50, and 100 μg/mL) for 48 h. A20 cells 
were resuspended in RIPA buffer with proteinase 
inhibitors (Sigma, USA) and incubated on ice for 
20 min. The lysate was then centrifuged at 12,000 rpm 
at 4°C for 20 min. The supernatant was collected and 
the protein concentration was determined with the BCA 
protein Assay Kit (Thermo Scientific, USA). Total 
proteins from different samples were separated and 
transferred to PVDF membranes (Millipore, USA). The 
membrane was blocked with 5% milk in TBS-Tween 
for 1 h at room temperature, and was incubated with 
primary antibodies at 4°C overnight. After 3 washes 
with TBS-Tween, the membrane was incubated with 
HRP-conjugated secondary antibodies at room 
temperature for 1 h. An enhanced chemiluminescence 
(ECL) kit (Millipore, USA) was used to detect the 
protein bands and Image J software was used to 
determine the relative protein expression.  
 
Animal experiments 
 
Male Balb/c mice (6–8 weeks, 16–20 g) were housed 
in-group in cages at a mean constant temperature 
(25 ± 2°C), humidity (55 ± 5%) and illumination 
(12 h light-dark cycle), and free access to standard 
pellet chow and water. The animal experiments were 
approved by the Institutional Animal Care and Use 
Committee of Foshan University. 5 × 106 A20 cells in 
PBS were subcutaneously injected into the right oxter 
of Balb/c mice. When the tumors reached 
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50~100 mm3, mice were randomly divided into three 
groups: the control group, low-dose group and high-
dose group (n = 4). Mice in the control group were 
gavagely administered with PBS. Mice in the low-
dose group were gavagely administrated with 
15 mg/kg OPE, while mice in the high-dose group 
was gavagely administrated with 45 mg/kg OPE 
every other day. The administration was continued 
for 10 days. At the end of experiment, rats were 
euthanized with CO2 and tumors were isolated.  
 
TUNEL analysis 
 
Tumor tissues were fixed and embedded in paraffin. 
Tissue sections were cut, deparaffinized, repaired with 
protease K, and permeabilized. Then sections were 
stained with the Fluorescein (FITC) TUNEL Cell 
Apoptosis Detection Kit (Servicebio, Wuhan, China). 
The nuclei were stained with DAPI. Tumor sections 
were visualized under a fluorescence microscopy 
(Zeiss, Germany). 
 
Immunohistochemistry 
 
Tumor tissues were fixed with 4% paraformaldehyde 
and embedded into paraffin. Paraffin sections (4 μm-
thick) were deparaffinized, antigen-retrieved, and 
treated with 3% hydrogen peroxide. Then, sections were 
blocked with 3% BSA, followed by incubation with 
primary antibodies (cleaved casepase-3 and Ki-67 
antibodies, Cell signaling technology) overnight at 4°C. 
After washed with PBS, sections were incubated with 
HRP-conjugated secondary antibodies and color was 
detected using a DAB detection kit. Sections were 
counterstained with hematoxylin. Three random fields 
per tumor were selected and the number of positively 
stained cells per 40×field were counted.  
 
Statistical analysis 
 
All experiments were repeated three times and the 
data were represent as means ± SD. Comparisons 
among two groups were analyzed using unpaired 
two-tailed Student’s t-test. Comparisons among more 
than two groups were performed by the one-way 
analysis of variance (ANOVA) using the SPSS 19.0 
software. A p < 0.05 was considered statistically 
significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. Western blot analysis of the expression and phosphorylation of AKT in A20 cells following OPE 
treatment. 
 
 

 
 

Supplementary Figure 2. HPLC-MS2 analysis of the OPE. (A) UV chromatogram (210 nm). (B) Total ion chromatogram (positive 
ion mode). 
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Supplementary Table 
 
Supplementary Table 1. Compounds identified from the chromatogram of OPE by HPLC-MS2. 

Peak Retention time (min) MS (m/z) MS2 (m/z) Tentative compounds Relative peak area (%) 
1 7.2 513.26 351.16 pumiloside 4.37 
2 12.6 497.25 335.19 deoxypumiloside 3.39 
3 14.5 349.11 337.19 camptothecin 8.48 
4 32.5 383.26 327.15 aknadinine 16.0 
5 46.1 413.31 301.11 β-stigmasterol 2.42 

 
 


