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INTRODUCTION 
 

Glioblastoma (GBM) is the most malignant and frequent 

cancer type in the central nervous system (CNS). Most 

GBM (~90%) develop rapidly in elderly patients. The 

unclear pathogenesis leads to therapeutic difficulty  

and high mortality. Despite the similar histologic 

appearance, the primary and secondary GBM are distinct 

cancers that originate from various precursor cells and 

require different therapeutic approaches. In 2008, the 

high-throughput sequencing of WHO grade I-IV gliomas 

were performed. In 12% of samples, a novel mutation at 

codon 132 (R132) of isocitrate dehydrogenase 1 (IDH1) 

was identified in ~80% of secondary GBM as a decisive 

genetic signpost [1–4]. Meanwhile, in primary GBM, 

this mutation was occurred rarely (<5%) [5, 6]. Previous 

studies have identified that in secondary GBM, the IDH1 

(R132) mutation is a more objective and reliable 
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ABSTRACT 
 

Background: Glioblastoma in the brain is the most malignant solid tumor with a poor prognosis. Screening 
critical targets and exploring underlying mechanisms will be a benefit for diagnoses and treatment. IDH1 
mutation (R132) was used to distinguish glioblastoma grade and predict prognosis as a significant marker. 
However, the manner of IDH1 mutation regulating glioblastoma development was still unclear. 
Methods: To study the function of IDH1 mutation, multi-type sequencing data (transcriptome, methylation and 
copy number variation) from the GEO and TCGA database were analyzed using bioinformatics techniques. The 
biological functions of IDH1 mutation (R132) would be comprehensively evaluated from the regulatory 
networks, tumor immune microenvironment and clinical relevance. Then the analysis result would be validated 
by experimental techniques. 
Results: Compared with adjacent tissues, IDH1 was up-regulated in glioblastoma, which also positively 
correlated with the malignant degree and a poor prognosis. To further study the mechanism of mutated IDH1 
(R132) function, 5 correlated genes (FABP5, C1RL, MIR155HG, CSTA and BCL3) were identified by different 
expression gene screening, enrichment analysis and network construction successively. Among them, the BCL3 
was a transcription factor that may induce IDH1expression. Through calculating the correlation coefficient, it 
was found that in IDH1mut glioblastoma, the dendritic cell infiltration was reduced which may result in a better 
prognosis. In addition, the level of IDH1, FABP5, C1RL, MIR155HG, CSTA and BCL3 might also influence 
lymphocytes infiltration (eg. CD4+ T cell) and chemokine expression (CXCL family). 
Conclusions: IDH1 may participate in pathological mechanisms of glioblastoma via expression alteration or gene 
mutation. Furthermore, IDH1 mutation might improve prognosis via suppressing the expression of FABP5, C1RL, 
MIR155HG, CSTA and BCL3. Meanwhile, it was identified that BCL3 might perform similar immunomodulatory 
functions with IDH1 as an upstream transcript factor. 
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diagnostic marker than clinical observation [7, 8]. The 

IDH1 (R132) mutation had never been linked to GBM 

before but now the mechanism of GBM development is 

under intense investigation. 

 

IDH1 is the enzyme that performs key roles in  

various cellular functions, including the regulation of 

carbohydrate metabolism, epigenetics, differentiation, 

DNA repair, and redox states [9]. Dimers in the cytosol 

are essential for IDH1 enzymatic activity [10]. Dimeric 

IDH1 contains 2 active sites for catalyzing isocitrate to 

α-ketoglutarate (α-KG) by oxidative decarboxylation 

while generating reduced nicotinamide adenine 

dinucleotide phosphate (NADPH) from NADP+ [11]. 

The IDH1 R132 residue is almost heterozygous [9] and 

located in the isocitrate binding sites [4], which would 

suppress conversion from isocitrate to α-KG [12]. 

However, IDH1 R132 mutation in GBM is also a gain-

of-function alteration resulting in hampered production 

and accelerated consumption of NADPH, which 

produces the 2-hydroxyglutarate (2-HG) from α-KG 

[13–15]. The concentration of 2-HG in malignant 

IDH1mut GBMs would be increased about 100 folds 

[13]. Thus, mutant IDH1 could suppress the bio-

availability of α-KG and competitively inhibit α-KG-

dependent dioxygenases via increasing 2-HG, including 

histone demethylases and the TET family of 5-

methylcytosine (5mC) hydroxylases, which mediate 

DNA demethylation [16]. As a result, gliomas with 

mutant IDH1 manifest a CpG island methylator 

phenotype (CIMP), which epigenetically alters gene 

expression by DNA hypermethylation [17]. 2-HG could 

also block prolyl-hydroxylation of collagen, leading to 

defect in collagen protein maturation affecting glioma 

progression [18]. Brain-specific IDH1 (R132H) 

conditional knock in mice exhibited hemorrhage and 

perinatal lethality [19]. In addition, it suggests that 

IDH1mut glioma cells might have stem-cell-like features 

with growth advantage under neurosphere culture 

conditions [20]. 

 

B-cell CLL/lymphoma 3 (BCL-3), which belongs to the 

IκB family, can bind NF-κB homodimeric complexes of 

p50 or p52, which switches the transcriptional 

properties. BCL-3 overexpressed in breast cancer [21], 

nasopharyngeal carcinoma, endometrial cancer [22], 

hepatocellular carcinoma [23] and colorectal cancer 

[24] have been identified. Functionally, BCL-3 could 

participate in regulating the colony formation and cell 

cycle progression by regulating ubiquitination-mediated 

degradation of c-Myc in colorectal cancer [25]. Tu et al. 

[23] have reported that BCL3 promotes hepatocellular 

carcinoma growth by regulating cell proliferation and 
cell cycle through cyclin D1. However, the status and 

interaction with IDH1 of BCL3 in GBM have not been 

investigated. 

In the present study, via bioinformatic analysis of GBM 

transcriptome sequencing datasets from GEO and 

TCGA databases and in vivo verification, try to find out 

the potential mechanism of IDH1 mutation of GBM 

development. Firstly, all samples were divided into wild 

type and IDH1-mutant groups. The different expression 

genes were identified according to |log FC|≥1.0 and p-

value≤0.05 followed by enrichment analysis. In our 

study, via constructing a molecular network, the 

underlying mechanism of IDH1mut-BCL3 in GBM 

development was explored. The results laid a 

foundation for further studying the function of IDH1 

mutation, and also provided theoretical support for 

better screening markers/targets and designing the 

therapeutic schedule. 

 

MATERIALS AND METHODS 
 

Sequencing datasets 
 

On the one hand, the public GBM sequencing dataset 

(GSE122586) was obtained from the GEO database. 

According to the corresponding study [26], the GBM 

samples were collected in Beijing Tiantan Hospital 

from January 2005 to December 2009. The detailed 

sample information was introduced in Table 1. All 

surgically resected samples were rinsed with normal 

saline and then stored in liquid nitrogen immediately 

until use. All patients have voluntarily signed informed 

consent forms. The use of all human samples and the 

experimental procedures in that study were reviewed 

and approved by the Ethics Committee of Chinese 

Academy of Medical Sciences. In addition, another 

dataset GSE80729 contained U87 cells transfected with 

siRNA targeting BCL3 or control siRNA was used. The 

U87 glioma cell line is derived from a female patient 

with pleomorphic glioma. It differs from other glioma 

cell lines like U251 in cell proliferation, migration, and 

invasion. For example, U87 cells have exhibited a 

greater capacity for migration and invasion. 
 

On the other hand, the RNA-seq data (RSEM-

normalized), methylation array data (Illumina Human 

Methylation 450) and CNV data (Affymetrix SNP 6.0) 

of GBMs from the TCGA database were downloaded 

from the NIH National Cancer Institute GDC Data 

Portal (https://portal.gdc.cancer.gov/). Overall survival 

(OS) was identified from the diagnosis date until death 

or the end of follow-up. In addition, disease-free 

survival (DFS) was defined as the period from diagnosis 

until the first disease progression with the clinical sign. 

 

Microarray data and enrichment analysis 
 

Total RNA from cells and tissues was isolated using 

Trizol extractions (Invitrogen). The RNA quantity was 

https://portal.gdc.cancer.gov/
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Table 1. The clinical data of GBM patients. 

IDH1 gene type Wild type (n=73) R132 mutation (n=16) 

Age 12~70 (Average=46.7) 27~62 (Average=40.7) 

Gender Male (n=43), Female (n=30) Male (n=9), Female (n=7) 

Grade IV (n=73) IV (n=16) 

DFS time(days) 27~3293 (Average=491.8) 44~3478 (Average=1026.8) 

OS time(days) 27~3293 (Average=644.4) 101~3478 (Average=1190.8) 

 

assessed by NanoDrop®ND-1000 spectrophotometer 

(Agilent, Palo Alto, USA). 100 ng of total RNA was 

amplified using the Ambion® WT Expression Kit 

(4411973, Life Technologies). Then 5.5 μg of the 

cDNA was fragmented and labeled with the GeneChip® 

WT Terminal Labeling kit (901525, Affymetrix). 

Libraries were sequenced either on Illumina HiSeq 

2000 or HiSeq 2500 using v3 chemistry. 

 

Followed by background deletion, quantile normalization, 

and probe assembly. Different expression genes (DEGs) 

between normal vs. tumor tissues were detected by the 

empirical Bayes method [27]. The p-values were adjusted 

for multiple comparisons using the Benjamini-Hochberg 

procedure [28]. Genes with adjusted p-value < 0.05 and 

|log FC| ≥ 1.0 were considered as differentially 

expressed. Enrichment analysis of DEGs was performed 

with DAVID [29] and ClueGO [30]. The enriched GO 

(BP: biological process; CC: cellular component; MF: 

molecular function) and pathway terms were listed with 

participant genes [31]. Some other databases used are 

listed in Table 2. 

 

Survival curves 

 

Overall survival analyses were performed using the R 

package survival [32], and the patients were 

dichotomized based on the median expression. Kaplan-

Meier estimator of survival was used to construct the 

survival curves. Log-rank tests (corresponding to a two-

sided z test) were used to compare overall survival 

between patients in different groups. The hazard ratio 

(HR) (95% confidence interval) was provided for 

comparison of the two groups. The p-values were 

adjusted for multiple testing based on the false discovery 

rate (FDR) according to the Benjamini-Hochberg method 

[33]. Proportional hazard assumptions were tested. 

 

RT-qPCR 
 

Total RNA was extracted using TRIzol® reagent 

(Takara Bio, Inc.). The concentration and purity of 

RNA were detected by NanoDrop®ND-1000 

spectrophotometer. Total RNA was reverse transcribed 

into cDNA (10 µg) using the PrimeScript™ RT reagent 

kit (Takara Bio, Inc.), according to the manufacturer's 

protocol. The reaction conditions of the reverse 

transcription were: incubation at 25° C for 10 min, 

additional incubation at 42° C for 30 min, and heating at 

95° C for 5 min. Then cDNA was diluted with DEPC 

water. Fluorescent RT-qPCR was performed according 

to the manufacturer's protocol. (Thermo Fisher 

Scientific, Inc.). The primers were designed and 

synthesized by Chongqing Life Biological Technology, 

Ltd. The reaction system volume was 25 µL consisting 

with cDNA (1 µL), 10X PCR buffer (2.5 µL), 10 

mmol/l dNTPs (2 µL), PCR upstream primers (1 µL), 

PCR downstream primers (1 µL), Taq DNA polymerase 

(1 µL), and deionized water (16.5 µL). The reaction 

conditions were as follows: pre-denaturation at 95° C 

for 5 min, denaturation at 94° C for 1 min, annealing at 

54° C for 45 sec, extension at 72° C for 1 min, in a total 

of 30 cycles, followed by extension at 72° C for 10 min. 

β-actin was used as the internal reference. The 

experiment was repeated 3 times independently. 

 

Immunohistochemistry (IHC) 

 

Before IHC staining, glioma specimens and normal 

brain tissues were fixed with 10% formalin and 

embedded with paraffin. The clinical samples were 

collected from clinical operation (Table 3). IHC staining 

followed standard protocol to evaluate the expression 

level of IDH1 and BCL3 in human tissues. Staining was 

graded on a scale of 0-3 according to the intensity and 

the percentage of immune-positive cells as follows: 0: 

no staining or <10% positive cells; 1: weak staining in 

>10% of cells or moderate staining in 10-70% of cells; 

2: moderate staining in >70% of cells or strong staining 

in 10-70% of cells; 3: strong staining in >70% of cells. 

 

Subcutaneous xenograft studies 

 

All experimental mice were purchased from the 

Chongqing Medical University. To further study the 

role of IDH1 in GBM growth, 1 × 107 U87 cells with 

different treatments were injected into the axilla of 6 

weeks old BALB/c nude mice. Tumor growth was 
determined by length (L) and width (W), which were 

measured at 4 weeks after the injection. The tumor 

volume (V), was calculated by V (mm3) = (L×W2) × 

0.5. The use of all mouse samples and the experimental 



www.aging-us.com 3859 AGING 

Table 2. List of databases. 

Database ID URL 

GEO Dataset https://www.ncbi.nlm.nih.gov/gds/?term= 

TCGA https://www.cancer.gov/ 

cBioportal of cancer genomics https://www.cbioportal.org/ 

TISIDB http://cis.hku.hk/TISIDB/index.php 

DSA http://cancer.digitalslidearchive.net/ 

The Human Protein Atlas https://www.proteinatlas.org/ 

STRING https://string-db.org/ 

GEPIA http://gepia.cancer-pku.cn/index.html 

hTFtarget http://bioinfo.life.hust.edu.cn/hTFtarget#!/ 

 

Table 3. List of databases. 

Patients ID GBM IDH1 mutation Sex Age Antibody 

3732 No No Female 64 IDH1 

2529 Yes No Female 37 IDH1 

3022 Yes No Female 62 IDH1 

2523 No No Female 45 BCL3 

2027213 Yes Yes Male 51 BCL3 

2007607 Yes Yes Male 48 BCL3 

21-911 Yes No Male 29 BCL3 

21-2133 Yes No Male 40 BCL3 

 

procedures in this study were reviewed and approved by 

the Ethics Committee of Chongqing University Three 

Gorges Hospital. 

 

Statistical analyses 

 

Available samples from TCGA data were adequate 

because sufficient power using equivalent tests was 

observed in a previous study [34]. To test for 

differential expression across two groups (tumor and 

normal), the R package DESeq2 was used on raw count 

data [35]. The p-values were adjusted for multiple 

testing based on the false discovery rate (FDR) 

according to the Benjamini-Hochberg approach [36]. 

For comparison of two patient groups, the two-sided 

Student’s t-test and Wilcoxon-rank sum test was used. 

For comparisons among multiple-patient groups, one-

way ANOVA and Tukey’s honest significant difference 

(HSD) post hoc tests were used. Distributions of data 

are shown either as individual data points, as box-and-

whisker plots, or as violin plots. The p-values were 

adjusted according to the Benjamini-Hochberg method. 

 

RESULTS 
 

The expression of IDH1 in GBM 
 

Abundant evidence suggested that IDH1 was functional 

in GBM progress while being regarded as a significant 

marker for the tumor classification. According to the 

RNA-seq of GBM from TCGA, it was detected that the 

IDH1 was up-regulated in GBM when compared with 

para-carcinoma tissue (Figure 1A). In addition, the 

expression level might be positively correlated with 

malignant degree (Figure 1B). The results may suggest 

that IDH1 plays a crucial role in tumorigenesis and 

malignant progression. The gene expression would be 

influenced by molecular characteristics like methylation, 

copy number and mutation. However, in GBM, the IDH1 

expression was not associated with them. (Figure 1C–

1E). Though the mechanism of IDH1 dysregulation was 

still unclear. The clinical data statistics showed that the 

lower IDH1 level could improve prognosis (overall 

survival not disease-free survival) (Figure 1F, 1G). To 

further confirm the carcinogenesis of IDH1 in GBM, in 

the subcutaneous xenograft mouse model, once IDH1 

expression was increased, the tumor growth rate was 

accelerated (Figure 1H). Thus, it was speculated that 

once the IDH1 mutation appeared, the IDH1 enzyme 

activity would be lost and lead to GBM growth 

suppression and prognosis improvement. 

 

The IDH1 mutation in GBM patients 

 

Gene mutation often appears in cancer patients. Through 

analyzing whole-genome sequencing data of GBM 

patients from TCGA, the molecular aberrations of IDH1 

were detected in nearly 7% of samples (Figure 2A). 

https://www.ncbi.nlm.nih.gov/gds/?term
https://www.cancer.gov/
https://www.cbioportal.org/
http://cis.hku.hk/TISIDB/index.php
http://cancer.digitalslidearchive.net/
https://www.proteinatlas.org/
https://string-db.org/
http://gepia.cancer-pku.cn/index.html
http://bioinfo.life.hust.edu.cn/hTFtarget#!/
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Figure 1. The expression of IDH1 in GBM. (A) The box figure shows the expression of IDH1 in tumor (n=163) and normal tissues (n=207) 

with error bars. The red box represents tumor samples and the green one represents normal samples. *, p-value≤0.05. (B) The protein level 
of IDH1 in different GBM grades. The pictures of immunohistochemistry results with different magnifications. (C–E) The scatter and box 
diagram shows the correlation between IDH1 mRNA level and methylation, copy number and mutation, respectively. The legend and 
coefficient of association were listed on the right. (F, G) The survivorship curves of OV and DFS with a confidence interval, respectively. The 
red curve represents samples with a higher level of IDH1. Oppositely, the blue one represents samples with a lower level of IDH1. The related 
parameters were listed on the right. (H) Representative images of subcutaneous tumors originated from transfected GBM cells and the 
corresponding statistical results. 
 

 
 

Figure 2. The IDH1 mutation in GBM. (A) Integrated view of clinical data and IDH1 aberration in GBM patients (370 samples). From top 

to bottom panels indicate: mutation spectrum, diagnosis age, sex, overall survival (months), tissue source site and mutation symbol of IDH1. 
The key to the color-coding is at the bottom. (B) The schematic diagram of IDH1 mutation site. The abscissa represents the amino acid 
sequence sites while the ordinate represents the number of mutant samples. (C) The survivorship curves of OV. The red curve represents 
samples with an IDH1 mutation and the blue one represents the wild type. (D) A scatter diagram shows the mRNA expression of IDH1 in wild 
type and mutated samples. The sequencing data (GSE122586) was from the GEO database. 
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Among them, about half of patients appear the classic 

base mutation (R132H/G) (Figure 2B). Statistical 

survival time showed that once IDH1 mutated, the 

prognosis will be better without significant difference 

(p-value=0.258) (Figure 2C). In the previous section, it 

was demonstrated the expression and mutation of IDH1 

were uncorrelated. To further confirm this conclusion, 

one transcriptome sequencing data (GSE122586) was 

detected and there was no significance between wild and 

mutated types (Figure 2D). All results may suggest that 

the IDH1mutation may suppress GBM development by 

losing key enzyme activity, like isocitrate binding. 

 

An enrichment analysis of DEGs regulated by 

IDH1mutation 

 

In addition to altering their expression and functions, 

some mutations may also cause similar changes in 

downstream or correlated genes. To study the 

underlying regulatory mechanism of IDH1 mutation, 

the DEGs in IDH1mut GBM were screened with |log 

FC|≥1.0 and p-value≤0.05 in both GEO and TCGA 

datasets (Figure 3A, 3B). To ensure accuracy and 

increase credibility, the dysregulated gene screened in 

both databases (n=102) were used for the next analysis 

(Figure 3C, 3D). Furthermore, there are 6168 genes 

associated with IDH1 in GBM. Among them, only  

16 genes (down-regulated: PDPN, TUBA1C, LGALS3, 

FABP5, ANXA2P1, ANXA2, C1RL, KCNE4, 

LGALS1, DCDC2, MIR155HG, CSTA, BCL3 and 

FBXO17; up-regulated: RANBP17 and DLL1)  

were dysregulated in IDH1mut GBM simultaneously  

(Figure 3E and Supplementary Figure 1). Following 

enrichment analysis for GO function (BP, MF and CC), 

some immune functions like the immune effector 

process (adjust p-value=7.831×10-6) and immune 

system development (adjust p-value=1.711×10-4) were 

enriched. It was hypothesized that IDH1 mutations 

could mediate tumor development via regulating the 

immune microenvironment. 

 

The immune correlation of IDH1 mutation in GBM 

 

In most cancer studies, the immune microenvironment 

was often considered as an extracellular factor affecting 

tumor development. Tumor cells can achieve immune 

 

 
 

Figure 3. The associated DEGs with IDH1 and enrichment analysis. (A, B) The volcano plots show all DEGs from GEO and TCGA 

databases, respectively. The red points represent up-regulated genes while the green ones represent down-regulated genes. The gray points 
represent genes with no significant difference. (C, D) The Venn diagrams show the up-regulated and down-regulated genes both in GEO and 
TCGA databases. (E) A Venn diagram shows the genes both associated with IDH1 and deregulated by IDH1 mutation. (F) A lattice diagram 
shows the result of GO enrichment analysis of screened genes. 
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escape or suppression by dysregulation of specific 

genes. It has been demonstrated that IDH1 mutation 

could be involved in immune functions by regulating 

the expression of multiple genes. To study the impact of 

IDH1 mutation on the GBM immune microenvironment 

more comprehensively, the correlation between IDH1 

mutation and lymphocyte infiltration, immune inhibitor, 

immunostimulator, MHC molecule, chemokine and 

chemokine receptor was calculated (Figure 4A). Almost 

lymphocyte infiltrations (Th1 cell) and all MHC 

molecule (HLA family) expression were negatively 

correlated with IDH1 mutation. Meanwhile, the 

expression of some immunostimulators (eg. KLRK1) 

and chemokine (eg. CCL3) were positively correlated 

 

 
 

Figure 4. The immune correlation of IDH1 mutation in GBM. (A) The heat map shows the correlation of IDH1 and various immune 

indexes. The red box represents positive correlation and the blue one represents negative correlation. (B) The violin figures above show the 
infiltration of main lymphocyte types in wild type or IDH1 mutated samples. The following survivorship curves of OV show the correlation 
between lymphocyte infiltration and prognosis. The red curves represent the high level of infiltration and the blue ones represent the lower 
level of infiltration. 
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with IDH1 mutation. Lymphocyte infiltration is the 

most critical event directly regulating tumor immune 

escape or suppression in the microenvironment. In 

IDH1 mutated samples, the infiltration of B cell  

(p-value=0.018) and CD4+ T cell (p-value=0.016)  

were promoted while CD8+ T cell (p-value=0.023)  

and dendritic cell (p-value=0.017) were suppressed 

(Figure 4B). In addition, it was verified that only the 

infiltration of dendritic cells could significantly alter 

prognosis (Log-rank P=0.002). 

 

The clinical character of DEGs correlated with IDH1 

 

As mentioned above, a total of 16 DEGs were identified 

in IDH1mutated samples which also correlated with 

IDH1 expression. Among them, only 5 positively 

related genes (FABP5, C1RL, MIR155HG, CSTA and 

BCL3) would significantly induce the poor prognosis in 

GBM patients (p-value≤0.05) (Figure 5A). Notably, in 

the enrichment analysis above, FABP5, C1RL, CSTA 

and BCL3 could also participate in various immunology 

processes, like mature B cell differentiation. Therefore, 

it was concluded that FABP5, C1RL, MIR155HG, 

CSTA and BCL3 might mediate the functions of IDH1 

mutation in the GBM immune microenvironment. The 

correlations between the gene expression and 

lymphocyte infiltrations in the GBM patients were 

calculated (Supplementary Figure 2). Among them, 

MIR155HG, a non-coding gene, was not correlated with 

all types of lymphocyte infiltrations (p-value≥0.05). 

However, the dendritic cell infiltration was most 

significantly positively correlated with other genes level 

(p-value≤0.05). Compared with normal tissues, FABP5, 

C1RL, MIR155HG, CSTA and BCL3 were significantly 

increased in GBM (Figure 5B). Nevertheless, in IDH1mut 

GBM samples, all 5 genes were down-regulated 

significantly (Figure 5C). Besides MIR155HG, other 

genes also own higher molecular aberrations frequency in 

GBM (Figure 5D). It may suggest that in GBM, FABP5, 

C1RL, CSTA and BCL3 could be regarded as oncogenes 

like IDH1. 

 

BCL3 may regulate IDH1 as a transcription factor 

 

The genes screened previously, including IDH1, 

perform functions in an interactive network rather than 

independent manners. Based on the STRING database, 

an interactive network was constructed for 

systematically understanding gene functions (Figure 

6A). In this network, BCL3 may interact with most 

genes, including SP1, TP53 and MYC which were 

defined as crucial oncogenes. Moreover, IDH1 was 

predicted as a target of BCL3. In GBM tissue, BCL3 
was increased and positively correlated with IDH1 

(Figure 6B and Supplementary Figure 2). To further 

confirm that BCL3 could target IDH1, possible action 

sites were screened by ChIP-sequencing datasets. A 

total of 4 predicted sites were verified on IDH1 gene, 

among which one was in the promoter region near the 

TSS (transcription start site) (Chr2, 208265841-

208266367, signal value=4.69), others were in the gene 

body. The maximum signal peak was identified at Chr2, 

208255168-208255438 (signal value=5.50) where has a 

higher GC percent (Figure 6C). However, whether 

BCL3 regulates IDH1 and the specific binding site 

needs to be further studied. 

 

To confirm that BCL3 can positively regulate IDH1 in 

glioma, transcriptome sequencing data containing the 

glioma cells transfected with siRNA targeting BCL3 or 

control siRNA were analyzed (Figure 7). After DEG 

screening, a total of 355 up-regulated genes and 140 

down-regulated genes. In addition, the expression of 

IDH1was downregulated when BCL3 expression was 

disrupted. The result may further be confirmed that the 

BCL3 is a transcription factor of IDH1. 

 

BCL3 and IDH1 in GBM immune microenvironment 

 

IDH1 mutation would alter the expression level of 

BCL3 (Figures 5C, 6D). Meanwhile, BCL3 was 

predicted to regulate IDH1 as a transcription factor. In 

addition, both BCL3 and IDH1 might participate in 

immune functions, like dendritic cell infiltration. To 

comprehensively study the mechanism of IDH1 and 

BCL3 in tumor immunity regulation, the correlation 

between the expression level and various immune 

events was calculated (Figure 8A). Interestingly, the 

result showed that BCL3 and IDH1 own a similar 

correlation of lymphocyte infiltration and immune 

factor expression. The correlated degrees of BCL3 were 

higher than those of IDH1 maybe also indicate that in 

the immune microenvironment, BCL3 owns a larger 

regulatory capacity. In different subtypes, the similar 

expression tendency of BCL3 and IDH1 further 

confirms they have a close relationship. 

 

DISCUSSION 
 

In a population-based study, the median overall survival 

of clinically diagnosed GBM patients with IDH1mut was 

234 days, significantly longer than IDH1wt patients (141 

days; p-value=0.003) [37, 38]. Furthermore, an analysis 

of GBM patients treated with surgery or/and 

radiotherapy showed that the mean overall survival of 

IDH1mut patients was 813 days, longer than patients 

with IDH1wt GBM (339 days; p-value <0.0001) [39]. 

However, the underlying mechanism of IDH1 mutation 

regulating the prognosis of GBM patients was still 

indistinct. In the present study, via bioinformatics 

analysis of multiple level sequencing datasets from 

GEO and TCGA databases, it was demonstrated that 
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IDH1was up-regulated in GBM when compared with 

adjacent tissue. And the IDH1 mutation did not 

significantly alter its expression level. However, in 

Bleeker’s study [15], it was found that NADPH 

production is hampered in GBM with IDH1 (R132) 

mutation. Moreover, mutated IDH1 consumes rather 

than produces NADPH. Thus, likely reducing NADPH 

levels even further. The low NADPH levels may 

 

 
 

Figure 5. The clinical character of crucial genes. (A) The survivorship curves of OV with confidence interval. The red curve represents 

samples with a higher level of the crucial gene. Oppositely, the blue one represents samples with a lower level. The related parameters were 
listed on the right. (B) The box figure shows the expression of genes in tumors (n=163) and normal tissues (n=207) with error bars. The red 
boxes represent tumor samples and the blue ones represent normal samples. *, p-value≤0.05. (C) The violin figures represent the expression 
level of crucial genes in both wild type and IDH1 mutated samples. (D) Integrated view of clinical data and gene aberration in GBM patients 
(370 samples). From top to bottom panels indicate: mutation spectrum, diagnosis age, sex, overall survival (months), tissue source site and 
mutation symbol of genes. The key to the color-coding is at the bottom. 
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sensitize GBM to irradiation and chemotherapy, thus 

explaining the prolonged survival of patients with 

mutated glioblastoma [40, 41]. 

 

Through analysis of transcriptome sequencing data, 

FABP5, C1RL, MIR155HG, CSTA and BCL3 were 

screened which were positively correlated with IDH1 and 

down-regulated in IDH1mut GBMs. However, whether 

mutated IDH1 regulate these genes expression and the 

mechanism is still unknown. According to the references 

[15], once IDH1 mutated, the function would be changed. 

The tumor metabolite 2-HG could be produced from α-

KG by accelerating NADPH consumption [13, 14]. The 

increased 2-HG competitively suppresses the α-KG-

dependent dioxygenases which mediate DNA 

demethylation [16]. Thus, in GBM, it was speculated that 

IDH mutation regulates gene expression in an epigenetic 

manner like DNA hypermethylation rather than direct 

regulation. 

 

A molecular network including IDH1 and correlated 

genes was constructed. Among them, lower levels of 

FABP5, C1RL, MIR155HG, CSTA and BCL3 could 

improve the prognosis in GBM patients. To understand 

the function of this network, the enrichment analysis 

showed that the critical genes (FABP5, C1RL, CSTA 

 

 
 

Figure 6. IDH1 may be a target gene of BCL3. (A) The interact network contains IDH1 and associated genes. The squares represent the 
transcription factors and the circles represent genes. (B) The protein level of BCL3 in normal and GBM tissues. The pictures of 
immunohistochemistry results with different magnifications. (C) Schematic diagram of transcription factor targeting sites. (D) The 
immunohistochemical images of BCL3 in wild type and IDH1 mutation type samples, respectively. 
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and BCL3) could also participate in various immunology 

processes. It has been studied that in GBM, FABP5 

expression correlated with an undifferentiated tumor 

phenotype as a known tumor-associated antigen that 

could respond to B cell [42, 43]. It was also confirmed 

that C1RL was upregulated in GBM, especially 

mesenchymal GBM and primary GBM. Increased C1RL 

expression accompanied the IDH1-wt phenotype in both 

lower-grade glioma (LGG) and GBM. C1RL- associated 

genes were mainly enriched in biological processes 

related to the immune response. C1RL expression was 

also correlated with reduced tumor purity and increased 

M2 macrophage infiltration [44]. Followed by the 

immune score, it was hypothesized that the IDH1 may 

combine with BCL3 to change the GBM immune 

microenvironment like dendritic cell infiltration. In 

addition, CSTA upregulation has previously been 

described in human malignant gliomas: CSTA positive 

cells in GBM tumor samples were located close to  

tumor blood vessels, particularly in leukocytes and 

inflammatory host cells, possibly reflecting the level of 

inflammatory cells in the tumor tissue. CSTA expression 

displayed a significant correlation with markers (CD68 

and CXCR4) of invasive GBMs [45]. 

 

 
 

Figure 7. The DEGs in glioma treat with BCL3 siRNA. (A) The expression density of each sample. (B) The box plot shows the distribution 

of raw read counts. (C) The volcano plots show all DEGs of GSE80729 databases. The red points represent up-regulated genes while the blue 
ones represent down-regulated genes. The black points represent genes with no significant difference. (D) The expression of IDH1 in control 
and BCL3-siRNA group, each group has 3 replicate samples. 
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BCL3 was previously found to be a putative proto-

oncogene in human cancers and attenuates the efficacy 

of temozolomide in glioblastoma cells [46]. Only one 

published study has proved that in the mouse xenograft 

model, BCL3 inhibited tumor growth via positively 

regulating STAT3/p-STAT3 and the downstream 

targets including cyclin D1 [47]. In our study, 

according to ChIP-sequencing data, multiple BCL3 

predicted sites on the IDH1 gene sequence were 

identified. Therefore, it was speculated that BCL3 

might regulate the expression of IDH1 which also 

needs further research. Through functional enrichment 

analysis, both IDH1 and BCL3 were found to be 

involved in multiple immune activities. Previous 

studies have found that BCL3 could be involved in 

immune response in various cancer types [48–50]. 

After calculating immune correlation, lots of 

similarities were found between both 2 genes. For 

example, both IDH1 (partial. cor=0.289) and BCL3 

(partial. cor=0.512) were positively correlated with 

dendritic cell infiltration. Dendritic cells are the  

most powerful antigen-presenting cells. DC-based 

vaccination has the potential to target and eliminate 

GBM cells and enhance the responses of malignant 

cells to the existing therapies with minimal damage to 

healthy tissues [51]. The efficacy of this therapy can 

be strengthened in several ways like regulation of 

regulators in the GBM microenvironment [52]. This 

will provide a basis for better research on the role of 

IDH1 mutation in GBM, and has guiding significance 

for the development of new therapeutic protocols 

based on the immune function of IDH1 and BCL3. 

 

 
 

Figure 8. The immunoscore of BCL3 and IDH1 level. (A) The heat map shows the correlation between IDH1 or BCL3 levels and various 

immune indexes. The red box represents positive correlation and the blue one represents negative correlation. (B–E) The violin plots 
represent the expression of IDH1 and BCL3 in various subtypes. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The expression level correlation between IDH1 and DEGs. The red line represents the linear regression 
equation, and the correlation was calculated by Spearman and Pearson algorithms simultaneously (with p-value). The yellow dots represent 
samples with IDH1 mutations, the blue ones represent samples neither mutated and the white ones represent no profiled for mutations. 
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Supplementary Figure 2. The immune correlation of key genes. The correlation between expression levels of key genes and tumor 

purity or 6 classical immune cell infiltrations was calculated. Each dot represents a tumor sample. The blue line represents the correlation 
curve. 


