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INTRODUCTION 
 

Although the immune system plays a pivotal role in 

maintaining cellular and tissue homeostasis and provides 

a critical defense mechanism against insults, immune 

dysregulation that causes sustained chronic low-grade 

inflammation leads to inflammatory disorders and is 

detrimental [1]. 
 

Aging is often accompanied by immunosenescence and 
immune dysregulation, which is characterized by aberrant 

apoptotic ability, enhanced basal inflammation, an 

imbalance in the proinflammatory and anti-inflammatory 

factors, and diminished ability to mount adequate immune 

responses to new pathogens. Aged adults have higher 

blood levels of inflammation markers than the normal 

baseline levels found in younger adults [2].  

 

The eye is an immune-privileged organ and therefore 

immune responses to foreign antigens are suppressed or 

inhibited. The eye is protected by anatomical barriers 

such as the blood-retinal barrier formed by tight junctions 

of the endothelial cells and also the retinal pigment 

epithelial (RPE) cells. Furthermore, retinal neurons, RPE 

cells, and ocular fluids express immune modulators that 

can suppress activation of complement, microglial cells, 
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ABSTRACT 
 

Inflammation plays a crucial role in the etiology and pathogenesis of AMD (Age-related Macular Degeneration). 
Humanin G (HNG) is a Mitochondrial Derived Peptide (MDP) that is cytoprotective in AMD and can protect 
against mitochondrial and cellular stress induced by damaged AMD mitochondria. The goal of this study was to 
test our hypothesis that inflammation-associated marker protein levels are increased in AMD and treatment 
with HNG leads to reduction in their protein levels. Humanin protein levels were measured in the plasma of 
AMD patients and normal subjects using ELISA assay. Humanin G was added to AMD and normal (control) 
cybrids which had identical nuclei from mitochondria-deficient ARPE-19 cells but differed in mitochondrial DNA 
(mtDNA) content derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates 
were extracted from untreated and HNG-treated AMD and normal cybrids, and the Luminex XMAP multiplex 
assay was used to measure the levels of inflammatory proteins. AMD plasma showed reduced Humanin protein 
levels, but higher protein levels of inflammation markers compared to control plasma samples. In AMD RPE 
cybrid cells, Humanin G reduced the CD62E/ E-Selectin, CD62P/ P-Selectin, ICAM-1, TNF-α, MIP-1α, IFN–γ, IL-1β, 
IL-13, and IL-17A protein levels, thereby suggesting that Humanin G may rescue from mtDNA-mediated 
inflammation in AMD cybrids. In conclusion, we present novel findings that: A) show reduced Humanin protein 
levels in AMD plasma vs. normal plasma; B) suggest the role of inflammatory markers in AMD pathogenesis, 
and C) highlight the positive effects of Humanin G in reducing inflammation in AMD.  
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and macrophages. However, acute insults contribute to 

retinal inflammation and subsequent retinal degeneration 

[3]. Inflammatory processes, primarily components of 

innate immunity including the complement system, 

microglia, macrophages, cytokines, and chemokines 

drive the progression of age-related macular degeneration 

(AMD) disease that is a leading cause of vision loss in 

the United States [4, 5]. A clinical hallmark of AMD is 

the formation of drusen deposits between the RPE cells 

and Bruch’s membrane, and drusen deposits are 

composed of inflammatory cytokines and complement 

proteins [6–8]. Cigarette smoking triggers the secretion 

and activation of proinflammatory cytokines and causes 

immune suppressive effects [9]. Recruitment of 

macrophages at the choroid leads to choroidal 

inflammation and abnormal blood vessel growth, thereby 

contributing to choroidal neovascularization in wet AMD. 

Macrophage polarization determines the potential of 

macrophages to regulate angiogenesis [10, 11]. AMD 

pathology is characterized by activation of inflammatory 

cytokines that in turn influences the polarization of 

macrophages. Furthermore, the infiltration of retinal 

microglia into the outer retina in the aged eye results  

in interaction of RPE cells with microglia, which in  

turn causes critical structural and physiological changes 

in the RPE, thereby contributing to neuroinflammation in 

AMD [12, 13]. 

 

Since inflammatory cells play a key role in the 

pathogenesis and progression of AMD, several 

therapeutic interventions for AMD have focused on 

reducing chronic inflammation to delay or prevent 

retinal degeneration in AMD [14, 15]. However, to our 

knowledge, no previous study has investigated the role 

of Humanin G, a S14G variant of Humanin, which is a 

cytoprotective mitochondrial-derived peptide that 

protects against RPE cell death in AMD [16, 17]. 

Therefore, in this study, we compared the protein levels 

of inflammation markers and investigated the effects of 

treatment with exogenous Humanin G in normal and 

AMD RPE transmitochondrial cybrid cells. We found 

differential levels of inflammation proteins between 

normal and AMD plasma samples and observed that 

treatment with Humanin G markedly reduced the protein 

levels of inflammation markers that were elevated in 

AMD RPE transmitochondrial cybrid cells. Our 

discovery is novel and may contribute to the development 

of therapeutics/ tools for reducing inflammation to 

alleviate AMD disease pathology. 

 

MATERIALS AND METHODS 
 

Human subjects 

 

The University of California Irvine’s IRB (Institutional 

Review Board) approved research with human subjects 

(Approval #2003–3131). All participants provided 

informed consent and clinical investigations were 

performed according to the tenets of Declaration of 

Helsinki. 

 

Cell culture 

 

Normal and AMD ARPE-19 transmitochondrial cybrid 

cell lines were created as described previously [8, 18–23]. 

Briefly, these cybrid cell lines were prepared by 

polyethylene glycol fusion of mitochondria DNA-

deficient ARPE-19 (Rho0) cell line with platelets isolated 

from normal subjects and AMD patients. Cybrid status 

and that the cybrids have acquired their mtDNAs from 

the donor individuals were confirmed using allelic 

discrimination, Sanger sequencing, and Next-Generation 

Sequencing. The base medium for cybrid cell lines is 

DMEM-F12 Medium (Cat. # 10-092CM, Fisher 

Scientific, Pittsburgh, PA, USA). DMEM-F12 Medium 

contains 3.15 g/L D-glucose, 2.5 mM L-glutamine, 15 

mM HEPES, 0.5 mM sodium pyruvate, and 1200 mg/L 

sodium bicarbonate. To make the complete growth 

medium, fetal bovine serum was added to the base 

medium to a final concentration of 10%. 

 

ELISA measurement 

 

Humanin levels of plasma were measured by in-house 

humanin ELISA developed at UCLA. The rabbit anti-

human analogue HNG polyclonal anti-sera were 

produced at Harlan Laboratories (Indianapolis, IN, 

USA). IgG subclasses purified with a protein A column 

chromatography (Pierce Chemicals, Rockford, IL, USA) 

were used as capture antibodies. IgG was further 

purified with a Humanin G-conjugated ligand affinity 

column and labeled with biotin. This biotinylated 

ligand affinity purified anti-Humanin G IgG was used 

as detection antibody. To measure endogenous 

Humanin levels, synthetic Humanin purchased from 

Bachem (Torrance, CA, USA) was used as standard 

within the range of 0.1 ng/ml to 50 ng/ml. The intra- 

and inter-assay coefficient variations (CV) were less 

than 10%. Prior to assay, humanin was extracted in 

90% acetonitrile and 10% 1N HCl. Briefly, 200 μl of 

extraction reagent was added to 100 μl of plasma or 

protein extracts, gently mixed and incubated at room 

temperature for 30 min. The mixture was centrifuged, 

and the supernatant was removed and dried. The dried 

extract was reconstituted with 200 μl of phosphate buffer 

(50 mM sodium phosphate, 150 mM sodium chloride, 

0.5% Tween-20, pH 7.6) and then used for assay. Ninety-

six-well microtiter plates were coated with capture 

antibody at 0.5 μg/well in 200 μl of 50 mM sodium 
bicarbonate buffer, pH 9.5, incubated 3-4 h at room 

temperature on a shaker, and then washed with wash 

buffer followed by 2 washes with Superblock buffer 
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(Pierce Chemicals, Rockford, IL, USA). Standards, 

controls or extracted samples, and pre-titered detection 

antibody were added to the appropriate wells and 

incubated overnight. Wells were then washed followed 

by addition of streptavidin-HRP conjugate and further 

incubation for 30 min at room temperature. After 4 

washes with wash buffer, 200 μl/well of o-

phenylenediamine hydrochloride solution (1 mg/mL in 

hydrogen peroxide substrate) was added and incubated 

for 10-20 min. The reaction was stopped by the 

addition of 50 μl/well 2N H2SO4 and absorbance was 

measured on a plate spectrophotometer (Molecular 

Designs, Sunnyvale, CA, USA) at 490 nm. 

 

Treatment with Humanin G (HNG) 

 

Lyophilized HNG (Anaspec, Fremont, CA, USA) was 

reconstituted in water to obtain a stock solution that was 

subsequently dissolved in culture media to obtain a 3.2 

μM HNG working solution. In this study, all cybrids 

were treated with 3.2 μM HNG. At the beginning of our 

initial study with HNG, we tested a wide range of 

concentrations (based on the published Humanin 

literature) ranging from 0.8 to 10 μM to determine a low 

optimum working concentration of HNG in our ARPE-

19 cybrid cells. The HNG concentrations of 0.8 and 1.6 

μM did not show any protective effects. Our 

preliminary studies demonstrated that 3.2 μM was the 

lowest concentration that showed significant protective 

effects in the cybrid cells. Therefore, we used 3.2 μM as 

our final working concentration for all experiments with 

HNG. HNG treatment timepoint was 48 h. 

 

Protein extraction 

 

Normal and AMD cybrid cells were plated in six well 

plates, treated with Humanin G followed by incubation 

at 37° C. Cells were then lysed using RIPA buffer (Life 

Technologies, Carlsbad, CA, USA), supernatants were 

transferred to a new microfuge tube, and concentrations 

of proteins were measured using Bio-Rad Dc protein 

assay system (Bio-Rad Laboratories, Richmond, CA, 

USA) according to the manufacturer's instructions. 

 

Luminex protein assay 

 

Luminex assay is essentially a bead-based sandwich 

immunoassay that allows simultaneous detection of 

multiple analytes in a sample. Using the Luminex xMAP 

technology and MAGPIX (Luminex Corporation, Austin, 

TX, USA) instrument, we tested markers of inflammation 

pathways in the normal and AMD ARPE-19 

transmitochondrial cybrid cell lines. Inflammation 
Human Panel was purchased from Thermo Fisher 

Scientific (Waltham, MA, USA) and experiments were 

performed as per the manufacturer’s protocol. Briefly, 

the Luminex beads are internally dyed with precise 

proportions of red and infrared fluorophores to create 

spectrally unique signatures that can be identified by the 

Luminex xMAP detection systems (e.g., MAGPIX). This 

assay uses matched antibody pairs to identify the analyte 

i.e., the protein of interest. In a multiplexed assay, each 

spectrally unique bead is labeled with antibodies specific 

for a single target protein, and bound proteins are 

identified with biotinylated antibodies and streptavidin–

R-phycoerythrin. The conjugation of protein-specific 

antibodies to a distinct bead allows for analysis of 

multiple targets in a single well. For detection, the 

MAGPIX xMAP instrument contains two lasers, one to 

distinguish the spectral signature of each bead and the 

second to determine the magnitude of streptavidin–R-

phycoerythrin fluorescence, which is proportional to the 

amount of analyte bound. Multiplexing reduces costs and 

delivers faster, more reproducible results.  

 

Statistical analysis 

 

Results between groups were analyzed for differences 

using the unpaired non-parametric Mann-Whitney test 

(GraphPad Prism 5.0; GraphPad Software, CA, USA). 

Statistical significance was determined at P-values < 0.05. 

 

RESULTS 
 

Humanin protein levels in normal and AMD plasma 

 

To determine the levels of Humanin protein in the 

plasma from AMD patients and normal subjects, ELISA 

assay was performed. We found that Humanin protein 

levels were reduced by 36.58 % (P = 0.0155) in the 

plasma from AMD patients: 686.1 ± 52.67 (Mean ± 

SEM) pg/mL; n=10, compared to that in the plasma 

from age-matched normal subjects: 1082 ± 110.1 pg/mL; 

n=10 (Figure 1A). We found no significant difference in 

the mean ages of normal subjects vs. AMD patients: 

Normal: 73.30 ± 2.753 years; AMD: 76.60 ± 2.513 

years; P = 0.5702 (Figure 1B). 

 

Differential expression of inflammation markers 

between normal and AMD and effects of exogenous 

Humanin G on inflammation proteins 

 

To compare the protein levels of inflammation markers 

between: A) normal plasma (n=3-8) and AMD plasma 

(n=3-8), and B) untreated vs. HNG-treated normal 

(n=4-7) and AMD (n=4-7) RPE cybrid cells, we used 

the Luminex xMAP technology.  

 

We found that E-Selectin (Endothelial-Selectin)/ 
CD62E (CD62 (Cluster of Differentiation 62) antigen-

like family member E) protein level was significantly 

higher by 77.1% in AMD plasma compared to normal 
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plasma: P = 0.0293; Normal plasma = 1 ± 0.2215 a.u. 

(arbitrary units); AMD plasma = 1.771 ± 0.2484 a.u. 

(Figure 2A). Untreated AMD cell lysates also showed 

158.5 % higher CD62E/E-Selectin protein levels 

compared to untreated normal cell lysates: P = 0.0129; 

Normal untreated cell lysate (NL UN CL) = 1 ± 0.2392 

a.u.; AMD untreated cell lysate (AMD UN CL) = 2.585 

± 0.3239 a.u. (Figure 2B). Treatment with HNG 

reduced CD62E/E-Selectin protein levels by 64.62 % in 

AMD cells: P = 0.0129; AMD UN CL = 1 ± 0.1253 a.u.; 

AMD HNG-treated cell lysate (AMD HNG CL) = 

0.3538 ± 0.1020 a.u. (Figure 2C). Addition of HNG to 

normal cells reduced CD62E/E-Selectin protein levels 

by 13.8 %, but the difference was non-significant: P = 

0.7479; Normal UN CL = 1 ± 0.2392 a.u.; NL HNG CL 

= 0.8620 ± 0.1972 a.u. (Figure 2D). 

 

P-Selectin (Platelet-Selectin)/ CD62P (CD62 antigen-

like family member P) protein level was significantly 

higher by 75 % in AMD plasma compared to normal 

plasma: P = 0.0426; Normal plasma = 1 ± 0.1853 a.u.; 

AMD plasma = 1.750 ± 0.2407 a.u. (Figure 2E). 

Untreated AMD cell lysates also showed 198.9 % 

higher CD62P/P-Selectin protein levels compared to 

untreated normal cell lysates: P = 0.0317; NL UN CL = 

1 ± 0.1980 a.u.; AMD UN CL = 2.989 ± 0.7296 a.u. 

(Figure 2F). Treatment with HNG reduced CD62P/P-

Selectin protein levels by 60.99 % in AMD cells: P = 

0.0420; AMD UN CL = 1 ± 0.2441 a.u.; AMD HNG 

CL = 0.3901 ± 0.09880 a.u. (Figure 2G). Addition of 

HNG to normal cells reduced CD62P/ P-Selectin 

protein levels by 1.94 %, but the difference was non-

significant: P = 0.9347; Normal UN CL = 1 ± 0.1980 

a.u.; NL HNG CL = 0.9806 ± 0.1225 a.u. (Figure 2H). 

 

ICAM-1 (Intercellular Adhesion Molecule-1) protein 

was significantly increased by 83.6 % in AMD plasma 

compared to normal plasma: P = 0.0177; Normal 

plasma = 1 ± 0.2365 a.u.; AMD plasma = 1.836 ± 

0.1512 a.u. (Figure 2I). Untreated AMD cell lysates also 

showed 47.5 % higher ICAM-1 protein levels compared 

to untreated normal cell lysates: P = 0.0079; NL UN CL 

= 1 ± 0.1453 a.u.; AMD UN CL = 1.475 ± 0.06149 a.u. 

(Figure 2J). Treatment with HNG reduced ICAM-1 

protein levels by 30.82 % in AMD cells: P = 0.0303; 

AMD UN CL = 1 ± 0.04168 a.u.; AMD HNG CL = 

0.6918 ± 0.09460 a.u. (Figure 2K). Addition of HNG to 

normal cells showed no change in ICAM-1 protein 

levels: P = 0.5368; Normal UN CL = 1 ± 0.1453 a.u.; 

NL HNG CL = 1 ± 0.06405 a.u. (Figure 2L). 

 

TNF-α (Tumor Necrosis Factor-α) protein was 

significantly increased by 98.4 % in AMD plasma 

compared to normal plasma: P=0.0421; Normal 

plasma = 1 ± 0.09602 a.u.; AMD plasma = 1.984 ± 

0.2939 a.u. (Figure 3A). Untreated AMD cell lysates 

also showed 111.3 % higher TNF-α protein levels 

compared to untreated normal cell lysates: P = 0.0286; 

NL UN CL = 1 ± 0.1870 a.u.; AMD UN CL = 2.113 ± 

0.3367 a.u. (Figure 3B). Treatment with HNG reduced 

TNF-α protein levels by 46.09 % in AMD cells: P = 

0.0381; AMD UN CL = 1 ± 0.1594 a.u.; AMD HNG 

CL = 0.5391 ± 0.1198 a.u. (Figure 3C). Addition of 

HNG to normal cells caused no difference in TNF-α 

protein levels: P = 0.8857; Normal UN CL = 1 ± 

0.1870 a.u.; NL HNG CL = 1.045 ± 0.05271 a.u. 

(Figure 3D). 

 

MIP-1α (Macrophage IIP-10nflammatory protein-1α)/ 

CCL3 protein was increased by 185.2 % in AMD 

plasma compared to normal plasma: P = 0.0357; 

Normal plasma = 1 ± 0.2994 a.u.; AMD plasma = 2.852 

± 0.3444 a.u. (Figure 3E). Untreated AMD cell lysates 

also showed 212.2 % higher MIP-1α protein levels 

 

 
 

Figure 1. Humanin levels in plasma. (A) Humanin protein level was measured using ELISA assay. AMD patients had significantly reduced 
levels of Humanin protein compared to normal (control) subjects. (B) The difference in mean ages between normal subjects vs. AMD patients 
was non-significant. Data are presented as mean ± SEM. * P<0.05; ns: non-significant. 



www.aging-us.com 4251 AGING 

compared to untreated normal cell lysates: P = 0.0317; 

NL UN CL = 1 ± 0.3142 a.u.; AMD UN CL = 3.122 ± 

0.7811 a.u. (Figure 3F). Treatment with HNG reduced 

MIP-1α protein levels by 61.98 % in AMD cells: P = 

0.0173; AMD UN CL = 1 ± 0.2502 a.u.; AMD HNG 

CL = 0.3802 ± 0.09824 a.u. (Figure 3G). Addition of 

HNG to normal cells caused no change in MIP-1α 

protein levels: P = 0.6905; Normal UN CL = 1 ± 

0.3142 a.u.; NL HNG CL = 1.014 ± 0.1991 a.u. 

(Figure 3H). 

 

IFN-γ (Interferon-gamma) protein level was significantly 

higher by 186.1 % in AMD plasma compared to normal 

plasma: P = 0.0286; Normal plasma = 1 ± 0.1416 a.u.; 

AMD plasma = 2.861 ± 0.7355 a.u. (Figure 3I). 

Untreated AMD cell lysates also showed 137.3 % higher 

IFN-γ protein levels compared to untreated normal cell 

lysates: P = 0.0381; NL UN CL = 1 ± 0.1748 a.u.; AMD 

UN CL = 2.373 ± 0.6844 a.u. (Figure 3J). Treatment with 

HNG reduced IFN-γ protein levels by 62.86 % in AMD 

cells: P = 0.0381; AMD UN CL = 1 ± 0.2884 a.u.; AMD 

HNG CL = 0.3714 ± 0.09164 a.u. (Figure 3K). Addition 

of HNG to normal cells reduced IFN-γ protein levels by 

13.5 %, but the difference was non-significant: P = 1; 

Normal UN CL = 1 ± 0.1748 a.u.; NL HNG CL = 0.8650 

± 0.1353 a.u. (Figure 3L). 

 

 
 

Figure 2. Effect of Humanin G (HNG) on CD62E/E-Selectin, CD62P/P-Selectin, and ICAM-1 proteins. CD62E/E-Selectin 

protein was increased significantly in AMD plasma (A) and in AMD RPE cybrid cells (B) compared to their normal counterparts. 
Treatment with HNG reduced CD62E/E-Selectin protein levels in AMD RPE cybrid ells (C) but not in normal RPE cybrid cells (D), 
compared to their untreated counterparts. CD62P/P-Selectin protein was elevated in AMD plasma (E) and in AMD RPE cybrid cells  
(F) compared to their normal counterparts. Treatment with HNG reduced CD62P/P-Selectin protein levels in AMD RPE cybrid ells (G) but 
not in normal RPE cybrid cells (H), compared to their untreated counterparts. ICAM-1 protein was elevated in AMD plasma (I) and in 
AMD RPE cybrid cells (J) compared to their normal counterparts. Treatment with HNG reduced ICAM-1 protein levels in AMD RPE cybrid 
ells (K) but not in normal RPE cybrid cells (L), compared to their untreated counterparts. Data are presented as mean ± SEM. * P<0.05; 
** P<0.01; ns: non-significant. 
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IL-1β (Interleukin-1β) protein was significantly increased 

by 330.6 % in AMD plasma compared to normal plasma: 

P = 0.0286; Normal plasma = 1 ± 0.3704 a.u.; AMD 

plasma = 4.306 ± 1.289 a.u. (Figure 4A). Untreated 

AMD cell lysates also showed 224.5 % higher IL-1β 

protein levels compared to untreated normal cell lysates: 

P = 0.0286; NL UN CL = 1 ± 0.2377 a.u.; AMD UN CL 

= 3.245 ± 0.4314 a.u. (Figure 4B). Treatment with HNG 

reduced IL-1β protein levels by 68.31 % in AMD cells: P 

= 0.0286; AMD UN CL = 1 ± 0.1330 a.u.; AMD HNG 

CL = 0.3169 ± 0.09678 a.u. (Figure 4C). Addition of 

HNG to normal cells reduced IL-1β protein levels by 

5.45 %, but the difference was non-significant: P = 

0.8857; Normal UN CL = 1 ± 0.2377 a.u.; NL HNG CL 

= 0.9455 ± 0.1937 a.u. (Figure 4D). 

IL-13 (Interleukin-13) protein was significantly 

increased by 336.5 % in AMD plasma compared to 

normal plasma: P = 0.0043; Normal plasma = 1 ± 

0.1707 a.u.; AMD plasma = 4.365 ± 1.076 a.u.  

(Figure 4E). Untreated AMD cell lysates also showed 

177.6 % higher IL-13 protein levels compared to 

untreated normal cell lysates: P = 0.0286; NL UN CL = 

1 ± 0.1896 a.u.; AMD UN CL = 2.776 ± 0.4021 a.u. 

(Figure 4F). Treatment with HNG reduced IL-13 

protein levels by 57.63 % in AMD cells: P = 0.0421; 

AMD UN CL = 1 ± 0.1448 a.u.; AMD HNG CL = 

0.4237 ± 0.1280 a.u. (Figure 4G). Addition of HNG to 

normal cells did not cause any change in the IL-13 

protein levels: P = 1; Normal UN CL = 1 ± 0.1896 a.u.; 

NL HNG CL = 1.020 ± 0.2515 a.u. (Figure 4H). 

 

 
 

Figure 3. Effect of Humanin G (HNG) on TNF-α, MIP-1α, and IFN-γ proteins. TNF-α protein was elevated in AMD plasma (A) and in 

AMD RPE cybrid cells (B) compared to their normal counterparts. Treatment with HNG reduced TNF-α protein levels in AMD RPE cybrid ells  
(C) but not in normal RPE cybrid cells (D), compared to their untreated counterparts. MIP-1α protein was elevated in AMD plasma (E) and in 
AMD RPE cybrid cells (F) compared to their normal counterparts. Treatment with HNG reduced MIP-1α protein levels in AMD RPE cybrid ells 
(G) but not in normal RPE cybrid cells (H), compared to their untreated counterparts. IFN-γ protein was elevated in AMD plasma (I) and in 
AMD RPE cybrid cells (J) compared to their normal counterparts. Treatment with HNG reduced IFN-γ protein levels in AMD RPE cybrid cells  
(K) but not in normal RPE cybrid cells (L), compared to their untreated counterparts. Data are presented as mean ± SEM. * P<0.05; ns: non-
significant. 
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IL-17A (Interleukin-17) protein was significantly 

increased by 145.7 % in AMD plasma compared  

to normal plasma: P = 0.0317; Normal plasma = 1  

± 0.2619 a.u.; AMD plasma = 2.457 ± 0.4793 a.u. 

(Figure 4I). Untreated AMD cell lysates also showed 

101.4 % higher IL-17A protein levels compared to 

untreated normal cell lysates: P = 0.0159; NL UN CL = 

1 ± 0.2259 a.u.; AMD UN CL = 2.014 ± 0.2994 a.u. 

(Figure 4J). Treatment with HNG reduced IL-17A 

protein levels by 48.31 % in AMD cells: P = 0.0303; 

AMD UN CL = 1 ± 0.1487 a.u.; AMD HNG CL = 

0.5169 ± 0.1098 a.u. (Figure 4K). Addition of HNG to 

normal cells caused no change in the IL-17A protein 

levels: P = 0.8413; Normal UN CL = 1 ± 0.2259 a.u.; 

NL HNG CL = 1.087 ± 0.1721 a.u. (Figure 4L). 

 

IP-10 (Interferon-gamma-induced Protein 10)/ CXCL10 

(C-X-C motif chemokine Ligand 10) protein was 

significantly higher by 193.5 % in AMD plasma 

compared to normal plasma: P = 0.0286; Normal plasma 

= 1 ± 0.3277 a.u.; AMD plasma = 2.935 ± 0.7114 a.u. 

(Figure 5A). 

 

IL-4 (Interleukin-4) protein was significantly higher by 

118.5 % in AMD plasma compared to normal plasma: P 

= 0.0317; Normal plasma = 1 ± 0.1770 a.u.; AMD 

plasma = 2.185 ± 0.4348 a.u. (Figure 5B). 

 

IL-10 (Interleukin-10) protein was significantly higher 

by 189.7 % in AMD plasma compared to normal 

plasma: P = 0.0159; Normal plasma = 1 ± 0.3180 a.u.; 

AMD plasma = 2.897 ± 0.6058 a.u. (Figure 5C). 

 

 

IL-12p70 (Interleukin-12, p70) protein was significantly 

higher by 107.7 % in AMD plasma compared to normal 

plasma: P = 0.0101; Normal plasma = 1 ± 0.2275 a.u.; 

AMD plasma = 2.077 ± 0.2757 a.u. (Figure 5D). 

 

 
 

Figure 4. Effect of Humanin G (HNG) on IL-1β, IL-13, and IL-17A proteins. IL-1β protein was elevated in AMD plasma (A) and in AMD 

RPE cybrid cells (B) compared to their normal counterparts. Treatment with HNG reduced IL-1β protein levels in AMD RPE cybrid ells (C) but 
not in normal RPE cybrid cells (D), compared to their untreated counterparts. IL-13 protein was elevated in AMD plasma (E) and in AMD RPE 
cybrid cells (F) compared to their normal counterparts. Treatment with HNG reduced IL-13 protein levels in AMD RPE cybrid ells (G) but not in 
normal RPE cybrid cells (H), compared to their untreated counterparts. IL-17A protein was elevated in AMD plasma (I) and in AMD RPE cybrid 
cells (J) compared to their normal counterparts. Treatment with HNG reduced IL-17A protein levels in AMD RPE cybrid ells (K) but not in 
normal RPE cybrid cells (L), compared to their untreated counterparts. Data are presented as mean ± SEM. * P<0.05; ** P<0.01; ns: non-
significant. 
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MCP-1 (Monocyte Chemoattractant Protein-1)/ CCL2 

(Chemokine C-C motif Ligand 2) protein was 

significantly higher by 113.5 % in AMD plasma 

compared to normal plasma: P = 0.0081; Normal plasma 

= 1 ± 0.2085 a.u.; AMD plasma = 2.135 ± 0.3358 a.u. 

(Figure 5E). 

 

IFN-α (Interferon-alpha) protein was significantly 

higher by 133.3 % in AMD plasma compared to normal 

plasma: P = 0.0173; Normal plasma = 1 ± 0.3335 a.u.; 

AMD plasma = 2.333 ± 0.3108 a.u. (Figure 5F). 

 

DISCUSSION 
 

In this study, we examined the levels of Humanin and 

inflammation proteins in plasma from AMD vs. normal 

groups and investigated the effects of Humanin G on 

inflammatory proteins in normal and AMD RPE trans-

mitochondrial cybrid cells. We demonstrated 

significantly reduced Humanin protein levels in the 

plasma of AMD patients compared to that in the plasma 

of age-matched normal subjects that served as controls. 

In addition, we reported activation of inflammation 

markers in AMD plasma and AMD RPE cybrid  

cells compared to their normal/control counterparts. 

Furthermore, we demonstrated that treatment with 

exogenous Humanin G can revert the abnormal levels of 

inflammation proteins found in AMD samples to close to 

normal ranges. These findings are novel and significant 

as ocular inflammation contributes to retinal degeneration 

and is a crucial player in the etiology and pathogenesis of 

AMD [24]. 

 

The strong potential of the most conserved 

mitochondrial-derived peptide, Humanin and its more 

potent variant Humanin G in protecting damaged 

mitochondria and RPE cells is well-established in retinal 

diseases including AMD [17, 25, 26]. Our previous study 

with Humanin G showed that mitochondria from AMD 

patients are severely damaged and highlighted the 

protective role of Humanin G against mitochondria-

mediated and amyloid-β-induced cell death in AMD 

transmitochondrial ARPE-19 cybrids. One mechanism by 

which Humanin G protected AMD cybrid cells from 

death was through stabilization of mitochondria and 

prevention of mitochondrial death. In that study, real-

time PCR with primers spanning 503–2484 bps 

mtDNA regions showed increased numbers of mtDNA 

lesions in this region of the AMD mitochondrial 

genome [16]. 

 

 

Figure 5. Protein levels of IP-10, IL-4, IL-10, IL-12p70, MCP-1, and IFN-α. IP-10 (A), IL-4 (B), IL-10 (C), IL-12p70 (D), MCP-1 (E), and  
IFN-α (F) protein levels were remarkably higher in AMD plasma compared to normal plasma. Data are presented as mean ± SEM. * P<0.05; 
** P<0.01; ns: non-significant. 
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In the current study, we found that the plasma levels of 

endogenous Humanin protein were significantly lower by 

36.58 % in AMD patients compared to that in age-

matched normal subjects. To our knowledge, this is the 

first study that has reported notably reduced Humanin 

protein levels in AMD patients, thereby corroborating the 

pivotal role of Humanin in maintaining tissue 

homeostasis and normal functioning in the eye. Our study 

is consistent with previous studies showing that aging is 

accompanied by markedly reduced Humanin levels and 

adequate Humanin levels are proportional to increased 

lifespan and better health, since reduced Humanin levels 

are observed in aging-related illnesses such as 

Alzheimer’s disease and diabetes [27, 28]. Along similar 

lines, Humanin protein levels are remarkably higher in 

the plasma and skeletal muscle of humans following 

high-intensity exercise and resistance training, indicating 

a role of Humanin in regulating glucose metabolism as 

well [29, 30]. With age, the amount of baseline Humanin 

decreases in the hypothalamus, cortex, and skeletal 

muscle [31]. Moreover, treatment with exogenous 

Humanin G is known to reduce the expression of markers 

associated with aging-related disorders [32]. Therefore, 

we tested the effects of Humanin G on inflammatory 

markers in this study. 

 

During the course of inflammation, endothelial cell 

activation leads to the expression of cell adhesion 

molecules, which mediate the trafficking of inflammatory 

and immune cells toward the sites of inflammation and 

promote their interaction with the activated endothelium 

[33]. Selectins/CD62 are cell adhesion molecules that are 

cell surface C-type lectins and soluble transmembrane 

glycoproteins involved in acute and chronic inflammation 

processes and facilitate the adhesive process in 

inflammation by enabling leukocyte rolling on vascular 

surfaces [34–37]. E-Selectin i.e., CD62E/ ELAM-1 

(Endothelial-Leukocyte Adhesion Molecule 1), is a 115 

kDa endothelial cell surface specific adhesion molecule 

that is expressed by the SELE (Selectin E) gene in 

humans. It is composed of an N-terminal C-type lectin 

domain, an EGF (Epidermal-Growth-Factor)-like 

domain, a conserved protein domain of six short 

consensus repeats of cysteine residues, a transmembrane 

domain, and a cytoplasmic tail. The expression of E-

Selectin on endothelial cells is stimulated by pro-

inflammatory cytokines, and results in adhesion of 

endothelial cells to the vascular lining and accumulation 

of blood leukocytes at the sites of inflammation [38]. In 

our study, we found that compared to their normal 

counterparts, AMD plasma and AMD RPE cells 

expressed significantly elevated protein levels of E-

Selectin (CD62E) by 77.1 % and 158.5 % respectively, 
indicating the involvement of E-Selectin in AMD-related 

inflammation. Next, we demonstrated notably higher 

P-Selectin (CD62P) protein levels in the AMD plasma 

and AMD RPE cybrid cells by 75 % and 198.9 % 

respectively, indicating the significant contribution of 

P-Selectin in ocular inflammation. Consistent with our 

results, a previous study reported elevated levels of P-

Selectin are found in non-arteritic anterior ischemic optic 

neuropathy, indicating that increased P-Selectin is a 

pathological marker associated with this ophthalmologic 

disease [39]. P-Selectin was also elevated in diseases 

with an inflammatory component such as rheumatoid 

arthritis [40]. P-Selectin i.e., CD62P is encoded by the 

SELP gene and is localized to the α-granules of platelets 

and Weibel-Palade bodies of endothelial cells. In 

response to stimulation by thrombin or other agonists 

such as histamine or collagen, P-Selectin is translocated 

to the surface of activated platelets (thrombocytes) and 

activated endothelial cells, where it plays a critical role in 

the recruitment of leukocytes to the site of injury during 

inflammation. P-Selectin is composed of an N-terminal 

C-type lectin domain, an EGF (Epidermal-Growth-

Factor)-like domain, a conserved complement regulatory 

domain consisting of nine short consensus repeats of 

cysteine residues, a transmembrane domain, and a 

cytoplasmic tail region [41–44]. A recent study that 

examined the expression of Selectins in the retina and 

choroid of AMD patients and compared the allele and 

genotype frequencies between AMD patients and 

controls, demonstrated that a single SNP (Single 

Nucleotide Polymorphism) located within an intron of 

SELP gene (rs3917751) is statistically associated with 

dry AMD in their study cohort. This was the only 

ancestral risk allele for dry AMD that was found in the P-

Selectin gene [45]. Our current study revealed that 

treatment with HNG decreased the protein levels of both 

E-Selectin and P-Selectin by 64.62 % and 60.99 % in 

AMD RPE cybrid cells compared to normal, thereby 

indicating that Humanin G suppresses inflammation by 

downregulating E- and P-Selectins. This is an important 

finding since inhibition of E-Selectin using microRNAs 

suppresses endothelial cell inflammation [46].  

 

Apart from Selectins, we also examined another cell 

adhesion molecule – ICAM-1 (Intercellular adhesion 

molecule-1). ICAM-1 i.e., CD54 (Cluster of 

Differentiation 54) encoded by the ICAM-1 gene is a 

transmembrane glycoprotein that is typically expressed 

on endothelial cells and facilitates the binding of 

leukocytes to vascular endothelium [47]. In the current 

study, we found significantly increased protein levels of 

ICAM-1 in AMD plasma and AMD RPE cybrid cells by 

83.6 % and 47.5 % respectively, and treatment with HNG 

reduced the ICAM-1 protein by 30.82 % in AMD RPE 

cybrid cells. Similar to our study, a previous study 

demonstrated that subfoveal choroidal neovascular 
membranes (CNVMs) surgically excised from AMD 

patients have higher protein levels of ICAM-1 compared 

with those in the normal eye [48]. Increased ICAM-1 
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protein levels were also found in the choroid and sclera 

of hypercholesterolemic New Zealand rabbits [49]. Our 

results are consistent with previous studies showing 

enhanced ICAM-1 protein levels in the aqueous humor 

samples of wet AMD patients and notable upregulation 

of retinal ICAM-1 in a VEGF (Vascular Endothelial 

Growth Factor)-induced retinal leukostasis rat model. 

Inhibition of ICAM-1 bioactivity significantly reduced 

retinal leukostasis and vascular permeability, thereby 

indicating that ICAM-1 plays a key role in inflammation 

and VEGF-induced retinal leukostasis [50, 51]. Retinal 

leukostasis, a manifestation of retinal inflammation, is 

induced by pro-inflammatory cytokines and VEGF, and 

is characterized by an increase in the number of static 

leukocytes in the retina, enhanced adhesion of leukocytes 

and monocytes to retinal endothelial cells, reduced retinal 

blood flow, luminal narrowing of retinal capillaries, and 

decreased perfusion pressure [52–54]. Humanin G’s 

ability to reduce ICAM-1 protein is remarkable because 

targeted homozygous knockout of ICAM-1 gene in a 

laser injury-induced choroidal neovascularization (CNV) 

mouse model notably inhibited CNV as evidenced  

by substantially diminished volume of CNV lesions  

and decreased fluorescein leakage in ICAM-1deficient  

mice compared to wild-type mice after laser 

photocoagulation injury [55]. In addition to the retina, 

ICAM-1 is involved in corneal inflammatory processes 

as well. ICAM-1-deficient mice show significant reduced 

neovascularization compared to controls, thereby 

indicating that ICAM-1 is a mediator of inflammation-

associated and VEGF-induced corneal neovascularization 

[56]. Our results underscore the importance of cell 

adhesion molecules in AMD pathology and highlight the 

vital role of HNG in alleviating retinal inflammation in 

AMD. 

 

Next, we tested the protein levels of cytokines and 

chemokines and investigated the effects of Humanin G 

treatment on the expression of the pro-inflammatory 

markers of NLRP3 inflammasome. TNF-α (Tumor 

Necrosis Factor alpha) is a key player in the pathogenesis 

of AMD as reduced TNF-α levels in the serum are 

associated with higher visual acuity score in AMD 

patients [57]. The transcription of TNF-α is genetically 

regulated and in the promoter region of the TNF-α gene, 

three SNPs were detected: TNF-α-863 (rs1800630), TNF-

α-308 (rs1800629) and TNF-α-238 (rs361525). Promoter 

polymorphisms at -238, -308, and -863 SNP positions 

could potentially regulate TNF-α production, and these 

polymorphisms may have implications for AMD 

pathogenesis due to an imbalance in inflammatory 

processes caused by dysregulation of TNF-α production 

[58–60]. TNF-863CC/TNF-308GA and TNF-

308GA/TNF-238GG SNP genotypes combinations are 

associated with increased risk of AMD [61]. Only -308 
G/A TNF-α gene polymorphism is associated with 

AMD. The TNF-α -1031 T/C polymorphism is 

significantly associated with wet AMD in the Taiwan 

Chinese population [62]. We report a 98.4 % increase in 

TNF-α protein levels in the plasma of AMD patients and 

a 111.3 % elevated TNF-α protein in the AMD RPE 

cybrid cells compared to their normal counterparts. This 

suggests the pivotal role of TNF-α in retinal inflammation 

in AMD. Consistent with our results, TNF-α protein 

levels were found to be significantly higher in the 

vitreous of AMD patients compared to that in normal 

individuals [63]. Significantly increased serum levels of 

TNF-α protein and associated retinal ischemia were 

found in Eales’ disease which is an idiopathic 

inflammatory retinal vasculopathy [64]. Moreover, 

TNF-α protein levels were markedly increased in the 

retina, RPE and choroid of Cxcr5 receptor-deficient mice 

[65]. Chronic exposure to TNF-α alters RPE morphology 

by interfering with RPE cell differentiation, development 

of transepithelial potential, and RPE tight junction 

formation, thereby resulting in RPE cells that resemble 

aged and diseased RPE cells found in AMD [66]. Higher 

levels of soluble TNF-receptor II protein have been found 

in the plasma of both early dry AMD and wet AMD 

patients, indicating systemic inflammation [67]. In our 

study, we discovered that addition of exogenous 

Humanin G to AMD RPE cybrid cells reduces the 

protein levels of TNF-α by 46.09 % compared to their 

untreated counterparts, thereby indicating that Humanin 

G could be used an effective inhibitor of TNF-α-induced 

ocular inflammation and might therefore alleviate AMD 

pathology. Although the effects of Humanin G on TNF-α 

in AMD have not been demonstrated before, along 

similar lines, it has been shown that administration of 

TNF-α inhibitors such as Adalimumab, a subcutaneous 

anti-TNF-α drug, in combination with anti-VEGF 

therapy improves visual acuity [68]. Intravitreal and 

intraperitoneal injections of Adalimumab prevent retinal 

degeneration and photoreceptor cell death by preventing 

TNF-α upregulation and reducing inflammation, 

oxidative stress, and apoptosis [69, 70]. 

 

Retinal inflammation, a major contributory factor  

in AMD pathogenesis, is characterized by chemokine- 

mediated infiltration of macrophages and microglia 

from the inner retina into the subretinal space. We 

found that the Monocyte Chemoattractant Protein-1 

(MCP-1)/ CCL2 protein levels were significantly 

upregulated by 113.5 % in the plasma of AMD patients 

compared to normal plasma. This finding is important 

as MCP-1 is known to be secreted by RPE cells in 

response to oxidative stress damage and facilitates the 

migration and infiltration of macrophages and 

monocytes [71]. We next investigated the role of MIP-
1α (Macrophage Inflammatory Protein-1α) i.e., CCL3 

(C-C Motif Chemokine Ligand 3), a CC chemokine that 

is secreted by macrophages and binds to CCR1 and 
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CCR5 chemokine receptors. MIP-1α mediates the 

recruitment of leukocytes and inflammatory cells to the 

site of inflammation in response to tissue injury. MIP-

1α mediates wound healing and is involved in both cell-

mediated immunity and systemic and mucosal humoral 

immune responses [72, 73]. We found a significant 

increase in MIP-1α protein levels by 185.2 % and 212.2 

% in the AMD plasma as well as in the AMD RPE 

cybrid cells respectively, compared to that in the normal 

counterparts. Our results are consistent with previous 

studies that showed MIP-1α gene expression is notably 

upregulated and its function is nonredundant in retinal 

degeneration [74]. MIP-1α protein levels were 

remarkably elevated in aqueous humor samples 

obtained from the eyes of patients with exudative  

AMD and polypoidal choroidal vasculopathy, compared 

to that in control eyes. In addition, MIP-1α gene 

expression and protein levels were significantly 

upregulated due to post-ischemic pro-inflammatory 

response, in a mouse model of ischemic retinopathy [75, 

76]. Humanin G-treated AMD RPE cybrid cells showed 

61.98 % decreased MIP-1α protein levels compared 

with the untreated AMD RPE cybrid cells. Humanin G-

induced suppression of MIP-1α might prevent AMD-

associated ocular inflammation since previous studies 

have shown that inhibition of MIP-1α activity using 

neutralizing antibodies caused partial suppression of 

inflammation-induced retinal neovascularization, 

thereby indicating the critical contribution of MIP-1α in 

inflammation-induced retinal neovascularization [77]. 

MIP-1α plays a vital nonredundant role in chronic and 

acute inflammation-mediated retinal degeneration, and 

MIP-1α-deficient mice show reduced damage to the 

blood-retinal barrier compared with controls [65]. 

 

We demonstrated that AMD plasma and AMD RPE 

cybrid cells had 186.1 % and 137.3 % higher protein 

levels of IFN-γ (Interferon-gamma), which is secreted by 

the T Helper Type 1 (Th1) cells and its activation is a 

hallmark of adaptive and innate immune responses [78, 

79], IFN-γ causes RPE cell death by increasing 

intracellular iron concentration, oxidative stress, lipid 

peroxidation, glutathione depletion, and activation of the 

JAK-STAT signaling pathway [80]. IFN-γ along with 

other cytokines induces the secretion of IL-6 from RPE 

cells [81]. In our study, addition of Humanin G reduced 

the IFN-γ protein by 62.86 % in AMD RPE cybrid cells 

compared to untreated AMD RPE cybrid cells. This 

highlights the potential of Humanin G to alleviate IFN-γ-

mediated inflammatory responses in AMD, and it is 

important since IFN-γ plays a crucial role in the 

pathogenesis of AMD by: a) inducing the expression  

of VEGF in human RPE cells via the Phosphoinositide 
3-kinase (PI3K)/mammalian target of rapamycin  

(mTOR) signaling pathway; b) enhancing mitochondria-

generated ROS in human RPE cells; c) regulating the 

activation of the complement cascade; d) reducing 

complement inhibition; e) macrophage polarization; and 

f) diminishing the deposition of amyloid-β plaques in 

neuroinflammation [82–87]. Furthermore, Interferon 

gamma-inducible protein-10 (IP-10) i.e., C-X-C motif 

chemokine ligand 10 (CXCL10) is an α-chemokine that 

plays a key role in T cell adhesion to endothelial cells 

and as a chemoattractant to lymphocytes and monocytes 

[88]. We observed 193.5 % higher IP-10 protein  

levels in AMD plasma vs. normal plasma samples. This 

is consistent with recent studies which reported markedly 

elevated IP-10 levels in the postmortem eyes from dry 

AMD, geographic atrophy i.e., advanced AMD, and 

neovascular AMD patients [89]. Moreover, in our study, 

we found notably enhanced Interferon-alpha (IFN-α) 

protein levels by 133.3 % in AMD plasma samples 

compared to normal plasma. This finding suggests the 

involvement of IFN-α in AMD pathology since IFN-α 

causes retinopathy by inducing retinal vein occlusion, 

retinal ischemia, leukocyte infiltration, capillary non-

perfusion, cotton wool spot formation, and accumulation 

of immune cells in the retinal vasculature [90, 91].  

 

The IL-1β cytokine binds to the IL-1RI receptor and  

is an established biomarker for retinal diseases. It 

mediates the degeneration of rods by impairment of 

retinal glutamate homeostasis and severe loss of cone 

segments causing subsequent loss of visual acuity in 

AMD [92, 93]. IL-1β protein was notably increased by 

330.6 % in the plasma and by 224.5 % in the cell lysates 

of AMD samples vs. controls, showing similar degree of 

involvement of IL-1β in both the AMD patients as well 

as AMD RPE cybrid cells. Our results are consistent with 

a previous study that demonstrated significant increase in 

the IL-1β protein levels in the serum of AMD patients 

[94]. Previous studies reported that both the ~31 kDa 

inactive pro-form and the cleaved ~17 kDa active form of 

IL-1β protein were significantly elevated in the vitreous 

samples obtained from patients with neovascular AMD 

and polypoidal choroidal vasculopathy, compared to 

controls [95–98]. Furthermore, IL-1β gene was markedly 

upregulated in the retinal vessels of diabetic retinopathy 

rats, and IL-1β protein levels were also elevated in the 

serum, vitreous fluid, and aqueous humor samples of 

diabetic retinopathy patients. These studies demonstrated 

a correlation between IL-1β and cell death in diabetic 

retinopathy [99–106]. Higher IL-1β protein levels are 

also associated with photoreceptor cell death and 

diminished visual fields in retinitis pigmentosa [107, 108]. 

Remarkably increased gene and protein levels of IL-1β 

were found in the blood and aqueous humor of glaucoma 

patients, establishing IL-1β as a risk factor in glaucoma 

pathogenesis [109]. In the retina and vitreous of patients 
with retinal detachments, higher IL-1β levels were 

reported [110, 111]. Macular edema also led to an 

increase in the IL-1β protein levels in the aqueous humor 
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and vitreous samples [112, 113]. Elevated IL-1β levels 

were demonstrated in the aqueous humor and 

supernatants of posterior eye cups in an in vivo 

experimental autoimmune uveoretinitis (EAU) model, 

and administration of anti-IL-1β antibody remarkably 

decreased the EAU scores [114, 115]. Intravitreal 

injections of amyloid-beta, a component of the drusen in 

dry AMD, caused a remarkable increase in IL-1β protein 

in the vitreous of the treated rats compared with controls 

[116]. Moreover, in the in vivo, ex vivo, and in vitro 

models of retinopathy of prematurity, IL-1β was notably 

increased in the RPE/ choroid and caused choroidal 

involution, loss of RPE and photoreceptors, retinal 

degeneration, and visual deterioration. In addition, we 

found that exogenous Humanin G caused significant 

decrease in the IL-1β protein levels by 68.31 % in AMD 

RPE cybrid cells vs. untreated controls. Our results are 

novel as no previous study has demonstrated the 

Humanin G-mediated suppression of IL-1β protein in 

transmitochondrial AMD RPE cybrid cells. This finding 

is significant because inhibition of IL-1β using IL-1R 

receptor antagonist and recombinant IL-1Ra alleviates 

the damaging effects of IL-1β, markedly decreases 

subretinal neovascularization after laser injury, and 

substantially reduces photoreceptor cell apoptosis in 

AMD [117–120]. In addition, the expression of IL-1β 

gene and protein is upregulated several fold in rodent 

retinas following photo-oxidative damage and inhibition 

of IL-1β using siRNAs or neutralizing antibodies 

suppressed chemokine-induced inflammation and retinal 

degeneration in AMD [121, 122].  

 

IL-13 is a 13 kDa cytokine secreted by T helper type 2 

(Th2) cells, CD4 cells, natural killer T cell, basophils, 

and eosinophils among other cell types, and regulates 

allergic inflammation and IgE synthesis. In the current 

study, plasma from AMD patients had 336.5 % higher 

IL-13 protein levels whereas AMD RPE cybrid cells 

showed 177.6 % increase in IL-13 protein. Along similar 

lines, IL-13 protein levels were remarkably higher in the 

aqueous humor of AMD patients vs. controls, and IL-13 

inhibited RPE cell proliferation [123]. Moreover, 

treatment of AMD RPE cybrid cells with Humanin G 

reduced IL-13 protein levels by 57.63 % compared to 

their untreated counterparts. This suggests Humanin G’s 

potential in suppressing IL-13-induced ocular 

inflammatory responses and is significant since inhibition 

of IL-13 reduces intraocular inflammation in acute-

inflammation-induced retinal pathology [124].  

 

IL-17 is a key cytokine produced by the T helper 17 

(Th17) cells, which are derived from CD4+ cells. IL-17 

is also secreted by CD8+ T cells, NK cells, and other 
immune cells and is involved in the neovascularization 

and pathogenesis of ocular diseases such as AMD, 

diabetic retinopathy, retinal vein occlusion, and 

retinopathy of prematurity. IL-17 causes ocular 

neovascularization by cytoskeleton remodeling, 

regulation of VEGF, and activation of complement 

components [125]. IL-17 mediates VEGF-induced 

angiogenesis by promoting the mitogenic activity of 

VEGF and VEGF-induced growth of vascular endothelial 

cells and triggers the secretion of IL-1β from RPE cells 

via activation of NLRP3 inflammasome [126, 127]. 

Similar to previous studies that have demonstrated 

notably elevated IL-17 protein levels in the serum of 

AMD patients and in RPE cells which constitutively 

expressed IL-17 receptors i.e., IL17 RA, IL-17RC, and 

ACT1 [128], we found that IL-17 protein levels were 

increased by 145.7 % in AMD plasma and were 101.4 % 

higher in AMD RPE cybrid cells compared to controls. 

Our findings corroborate the important role of IL-17 in 

AMD-associated inflammation and pathology since the 

expression of IL-17A and its receptor IL-17RC is 

markedly upregulated in the macular lesions of 

advanced-stage AMD donors compared to normal tissue 

[129]. IL-17A activates Caspase-3 and Caspase-9 pro-

apoptotic proteins, thereby causing cytotoxicity in RPE 

cells. The expression of IL-17 and its receptor IL-17RC 

is upregulated in AMD eyes compared to controls [130]. 

IL-17A mediates blood-retinal barrier damage by 

activating the JAK1 signaling cascade, thereby leading to 

the disruption of tight junctions in RPE cells and 

endothelial cells [131]. IL-17 promotes the proliferation, 

migration, and tube formation in human choroidal 

endothelial cells by activating CCL2 and CXCL8 in RPE 

cells, thereby contributing to choroidal endothelial cell 

angiogenesis [132]. Next, we investigated the effects of 

Humanin G and discovered that treatment with Humanin 

G reduced IL-17A protein levels by 48.31 % in AMD 

RPE cybrid cells, thereby highlighting the ability of 

Humanin G to suppress IL-17-mediated retinal 

inflammation. This finding is important since it has been 

shown that knockdown of IL-17RC using siRNA reduces 

IL-17-mediated pathology in RPE cells [124]. 

 

IL-4 is a cytokine that mediates the differentiation  

and activation of T helper 2 cells and is a key regulator 

of humoral immune responses [133]. Polymorphisms  

of IL-4 -590 T/T or T/C genotypes is a potential  

genetic marker for the development of AMD pathology, 

and IL-4 promotes pathological angiogenesis and 

choroidal neovascularization, thereby leading to retinal 

degeneration [134, 135]. The 118.5 % upregulation of 

IL-4 protein in AMD plasma vs. normal plasma 

highlights its vital role in AMD-related inflammation. 

 

IL-10 regulates macrophage functioning in the eye and 

promotes choroidal neovascularization in AMD. IL-10 
deficiency alleviates choroidal neovascularization-

induced damage and favors retinal health. [136] IL-10 

protein was higher by 189.7 % in AMD plasma vs. 
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normal plasma, consistent with previous studies and 

underlining its involvement in ocular inflammatory 

response in AMD. 

 

IL-12p70 is primarily secreted by macrophages and 

dendritic cells and is a heterodimer comprised of p35 and 

p40 subunits. IL-12p70 which mediates the expression of 

IFN-γ and contributes to innate and adaptive immune 

responses, was found to have 107.7 % elevated protein 

levels in AMD plasma compared to normal plasma in our 

study. This underlines the crucial role of IL-12p70 in 

AMD pathology as it has been previously confirmed that  

IL-12p70 is upregulated in response to inflammation and 

oxidative stress in ARPE-19 cells [137]. 

 

To our knowledge, this is the first report that confirms 

the protective role of Humanin G against inflammation  

in AMD RPE transmitochondrial cybrid cells and it is 

significant because reducing ocular inflammation could 

alleviate its damaging effects observed in the RPE cells 

that eventually lead to retinal degeneration in AMD 

pathogenesis.  

 

In conclusion, our study reports novel findings that: A) 

demonstrate a decline in endogenous Humanin protein 

levels in plasma from AMD patients compared to 

normal subjects; B) underscore the role of cell adhesion 

molecules, cytokines, and chemokines in AMD-

associated inflammation (Figure 6) and subsequent 

cellular damage in AMD RPE cybrid cells that has been 

observed in our previous studies; and C) establish  

the positive effects of Humanin G in reducing  

the expression of inflammatory markers in AMD RPE 

transmitochondrial cybrid cells and therefore demonstrate 

 

 
 

Figure 6. Schematic showing the function(s) of cell adhesion molecules, cytokines, and chemokines. E-Selectin,  

P-Selectin, and ICAM-1 are cell adhesion molecules that are involved in the recruitment of leukocytes to the site of injury during 
inflammation. MIP-1α, MCP-1, TNF-α, IFN-γ, IFN-α, IL-1β, IL-13, IL-17A, IL-4, IL-10, IL-12p70, and IP-10 are pro-inflammatory cytokines/ 
chemokines that promote RPE cell death, loss of photoreceptors, oxidative stress, retinal degeneration, breakdown of blood-retinal barrier, 
geographic atrophy, pathologic angiogenesis, and choroidal neovascularization, subsequently leading to the development of AMD. 
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the potential of Humanin G in reducing AMD-associated 

inflammation in vitro (Figure 7). Since we found elevated 

inflammatory proteins in the AMD plasma, which 

suggests that inflammation might be more systemic and 

not just confined to the retina, we speculate that a baseline 

systemic inflammation may make the retinal cells more 

susceptible to damage, thereby leading to AMD pathology. 
 

It is important to note that in cells that are stressed/ 

damaged, Humanin G acts to suppress the inflammatory 

proteins that may contribute to the development of 

AMD. It is noteworthy that in the cells that are healthy 

and have a normal homeostasis, Humanin G does not 

exert any negative impact. This is significant because to 

be used successfully to treat diseases, you want the drug 

to be targeting the diseased cells but have no negative 

impact on the healthy cells. 
 

Further studies are required to gain an in-depth 

understanding of the mechanisms underlying Humanin 

G-mediated suppression of inflammation in AMD and to 

establish Humanin G’s therapeutic potential as an 

inhibitor of AMD-associated inflammation. Furthermore, 

in addition to administration of Humanin G, knockdown 

or knock-out of the studied inflammatory markers using 

siRNA or CRISPR editing, may present a new line of 

treatment for AMD. 
 

 

Figure 7. Schematic showing the potential action of 
Humanin G. Treatment with Humanin G reduces the levels of 
inflammation-associated proteins namely CD62E (E-Selectin), 
CD62P (P-Selectin), ICAM-1, TNF-α, MIP-1α, IFN-γ, and IL-1β. This 
is turn might decrease retinal inflammation, reduce RPE cell death 
and oxidative stress, thereby preventing retinal degeneration. This 
may delay the development/ progression of AMD. 
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