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INTRODUCTION 
 

DNA methylation, as one of the epigenetic 

modifications most well characterized, was involved in 
multiple biological processes in mammals. The main 

form of DNA methylation modification was 5mC, 

indicating that DNA methylation occurs on the  

fifth carbon atom of CpG dinucleotide cytosine residues 

[1–3]. Although technological advancements and novel 

mechanistic insights have altered strategies for treating 

hepatocellular carcinoma over the past decade, these 

improvements can only benefit a small number  

of patients, with five-year survival rates less than 50% 

[4–6]. However, a small group of patients with robust 

responses achieved astounding survival benefits from 

anti-checkpoint immunotherapy, which was represented 
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ABSTRACT 
 

Growing evidence has revealed the crucial role of epigenetics in tumor progression and immune response. 
However, the molecular subtypes and their microenvironment characterization mediated by DNA methylation 
regulators in hepatocellular carcinoma remain little known. In this study, we comprehensively integrated the 
transcriptome profiling of twenty DNA methylation regulators in hepatocellular carcinoma. Consensus 
clustering was used to identify distinct methylation regulator-related molecular subtypes. The prognostic DMS 
signature was constructed using principal components analysis. Most regulators experienced a low genomic 
variation, but we found a remarkably difference in mRNA expression of these regulators between normal and 
tumor tissues. Three distinct methylation regulator-related molecular subtypes were successfully identified 
according to the expression of 20 regulators, which had substantially different biological characteristics and 
prognosis. The classic carcinogenic pathways and stromal activity including TGF-beta, p53 and WNT signaling 
pathway were significantly activated in subtype B, leading to a survival inferiority in subtype B compared to 
other two subtypes. Further analysis demonstrated the constructed DMS signature was an independent 
predictive biomarker in patient prognosis. Two anti-checkpoint immunotherapy cohorts demonstrated patients 
with high DMS presented significantly improved treatment advantages and enhanced responses especially the 
survival prolonged. Generally, the high DMS groups improved more than 15% clinical response to 
immunotherapy than low DMS groups. In conclusion, this study identified three DNA methylation regulator-
related subtypes with distinct clinical, molecular and biological characteristics, and constructed a prognostic 
and immunotherapeutic relevant gene signature. It might help to promote individualized immunotherapy for 
hepatocellular carcinoma from the perspective DNA methylation regulators. 
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by the anti-PD-1/PD-L1 antibodies. Unfortunately, for 

the great majority of patients, the benefits are either 

minimal or nonexistent, far from meeting a clinical 

need. Furthermore, clinical response rates differ both 

within and between tumor types, indicating there 

existed intrinsic and adaptive immune resistance to anti-

checkpoint immunotherapy [7–9]. It was reported that 

several genes, regulated by hypomethylation or 

hypermethylation of the promoter, were significantly 

correlated with the initiation and progression of 

hepatocellular carcinoma. Qian et al. reported that  

the stemness and tumorigenicity in hepatocellular 

carcinoma were regulated by DNMT1-mediated 

methylation of BEX1 [10]. Luming et al. revealed  

that the enforced HOXD3 promoter methylation 

mediated by MeCP2 was involved in hepatocellular 

carcinoma progression via HB-EGF/EGFR pathway 

[11]. However, the molecular subtypes mediated by 

DNA methylation regulators and their roles in patient 

survival and immunotherapeutic efficacy remain 

unknown. In this study, we comprehensively analyzed 

the genomic characterization of 20 DNA methylation 

regulators, and their mediated molecular subtypes in 

hepatocellular carcinoma. We successfully defined three 

DNA methylation regulator-related molecular subtypes 

with distinct prognostic features and biological 

functions in hepatocellular carcinoma based on 369 

TCGA samples. We also constructed DNA methylation 

related signature (DMS) based on the overlapping 

differentially expressed genes across three subtypes, 

which was confirmed to be significantly related to the 

patient's prognosis and efficacy of anti-checkpoint 

immunotherapy. 

 

RESULTS 
 

Genomic characterization of DNA methylation 

regulators in hepatocellular carcinoma 

 

We extracted a total of 20 DNA methylation regulators 

from TCGA-LIHC and GSE14520 datasets, including 

14 readers (SMUG1, NTHL1, TDG, UNG, MECP2, 

UHRF1, UHRF2, ZBTB4, ZBTB33, ZBTB38, MBD1, 

MBD2, MBD3, MBD4), 3 erasers (TET1, TET2, 

TET3) and 3 writers (DNMT1, DNMT3A, DNMT3B) 

[12]. The analysis of mutational landscape for 20 DNA 

methylation regulators showed that in hepatocellular 

carcinoma, only 33 samples of 364 samples 

experienced at least one mutation, accounting for 

9.07% (Figure 1A). The CNV analyses indicated these 

regulators also a relatively low CNV alteration 

frequency in hepatocellular carcinoma. TET2, MBD3, 

UHRF1, DNMT1, MBD2 and MBD2 mainly focused 

on the frequency of copy number deletion, while 

DNMT3A, ZBTB33, MECP2 and NTHL1 exhibited 

copy number amplifications (Figure 1B). The position 

of 20 regulators in chromosome was shown in  

Figure 1C. Based on the TCGA-LIHC cohort, we 

found the expression of DNA methylation regulators 

between normal tissues and tumor tissues showed 

significant difference. TET2, ZBTB4, MBD4, 

ZBTB38 and NTHL1was significantly down-regulated 

in tumor tissues, while TET3, SMUG1, MBD1, TET1, 

UNG, DNMT3A, MECP2, DNMT3B, DNMT1  

and UHRF1 was significantly up-regulated in tumor 

tissues (Figure 1D). Survival analyses with the 

univariate Cox regression model revealed their crucial 

roles in the patient outcomes, of these, DNMT3A, 

UHRF1, DNMT1, DNMT3B and TET1 the risk 

factors for hepatocellular carcinoma. However, other 

regulators did not show a significant effect on 

prognosis (Figure 1E). Additionally, we found tumors 

with the up-regulated eraser genes showed a high 

expression of writer genes, except for TET2 eraser 

gene (Supplementary Figure 1A–1C). 

 

Consensus clustering for identifying methylation 

regulator-related molecular subtypes 

 

Based on the protein-protein interaction (PPI) network 

constructed by the STRING, we found these regulators 

showed a widespread protein interaction (Figure 2A). 

Further analysis showed that these regulators exhibited 

significant positive correlations at mRNA expression 

levels (Figure 2B). A network was used to visualize  

the prognostic significance and interaction among  

these regulators.(Figure 2B) Previous studies showed 

that DNA methylation play anti-tumor immune  

effects by regulating cell infiltration in the tumor 

microenvironment [13, 14]. We therefore explored the 

correlation between tumor environment cell infiltration 

and DNA methylation regulators. We found ZBTB4, 

MBD2 and DNMT1 present a significant correlation 

with most cell infiltration abundance (Figure 2C). The 

consensus clustering was used to identify the distinct 

molecular subtypes mediated by DNA methylation 

regulators in hepatocellular carcinoma. According to 

the expression of 20 regulators, all tumor samples 

were clustered into three distinct subtypes. We termed 

these subtypes as methylation regulator-related molecular 

subtype A, B and C, respectively (Supplementary 

Figure 2). Survival analysis revealed a significant 

difference on prognosis between three subtypes, with 

particularly prominent survival advantage in subtype  

A and C, and the survival inferiority in subtype B 

(Figure 2E). NTHL1, MBD3 and SMUG1 were 

characteristically expressed in subtype A, DNMT3A, 

TET1, DNMT3B, TET3, UHRF2, DNMT1, UHRF1, 

TDG and UNG characteristically expressed in subtype 
B, while ZBTB4, MBD4, ZBTB33, TET2 and 

ZBTB38 characteristically expressed in subtype C 

(Figure 2D–2F). 
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Figure 1. Landscape of DNA methylation regulators in hepatocellular carcinoma. (A) The mutation landscape of 20 DNA 
methylation regulators in TCGA-LIHC cohort. (B) The Copy number variation frequency of 20 DNA methylation regulators. (C) The position of 
the 20 regulators in the chromosome. (D) Expression of 20 regulators in tumor and normal samples based on TCGA-cohort. (E) Survival 
analyses for the 20 regulator genes using univariate Cox regression model. All data analyses were based on the TCGA-LIHC cohort. CNV, copy 
number variation. Ns, not significant. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 2. Identification of DNA methylation regulator-related molecular subtypes in hepatocellular carcinoma. (A) The protein-

protein interactions (PPI) network between DNA methylation regulators using STRING database. (B) A network was used to visualize the 
prognostic significance and expression correlation among these regulators. (C) The correlation between DNA methylation regulator 
expression and immune cell infiltration levels. (D) The hierarchical clustering of 20 DNA methylation regulators among three molecular 
subtypes. (E) Survival analyses for three distinct DNA methylation regulator-related molecular subtypes. (F) DNA methylation regulators 
expressed in the three molecular subtypes. All data analyses were based on the TCGA-LIHC cohort. Neg, negative; Pos, positive; Ns, not 
significant. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Characteristics of distinct methylation regulator-

related molecular subtypes 

 

Considering the association between tumor 

microenvironment and DNA methylation, we investigate 

the difference in immune infiltration abundance among 

three subtypes. The infiltration level of activated CD8 

T cell, activated CD4 T cell, CD56bright natural killer 

cell, gamma delta T cell, neutrophil and Type 2 T 

helper cell were significantly different between the 

three molecular subtypes (Figure 3A). Although 

subtype B showed a relatively immune cell infiltration, 

numerous classic carcinogenic pathways and stromal 

activity were significantly activated in subtype B 

including WNT signaling pathway, p53 signaling 

pathway and TGF-beta signaling pathway, leading to a 

survival inferiority compared to other two subtypes 

(Figure 3B, 3C). The transcriptome difference between 

three subtypes was investigated to further reveal the 

underlying biological characteristics in there three 

molecular subtypes, and a total of 1037 overlapping 

differentially expressed genes (DEGs) were obtained 

(Figure 3D). The GO enrichment analysis 

demonstrated the DEGs were prominently associated 

with the DNA methylation related biological pathways 

(Figure 3E). 

 

Construction of prognostic signature based on 

overlapping DEGs 

 

We have showed that these 1037 genes were closely 

related to the three molecular subtypes we have 

identified. Therefore, we again performed consensus 

clustering on the expression of these 1037 genes to 

determine the ability to reproduce these three 

subtypes in hepatocellular carcinoma. The results 

confirmed that, based on the expression of 1037 

genes, we could still identify three distinct subtypes in 

hepatocellular carcinoma, we termed these subtypes 

derived from these 1037 gene expression as Gene 

cluster A, B and C (Supplementary Figure 3 and 

Figure 4A). Survival analysis for these three groups 

showed a significant difference, prominent survival 

advantage in Gene.cluster A and C, and the survival 

inferiority in Gene.cluster B (Figure 4B). It was found 

the three gene clusters exhibited specific DNA 

methylation-related transcriptome characterization, 

respectively (Figure 4C). Further analyses indicated 

DNMT1, DNMT3A and DNMT3B showed a 

significantly high expression in Gene.cluster B 

compared to other two clusters, while ZBTB33, 

ZBTB38, ZBTB4 were remarkably up-regulated in 

Gene.cluster C (Figure 4D). Considering the crucial 
role of methylation regulator mediated molecular 

subtypes in prognosis, we constructed the prognostic 

signature based on prognosis-related overlapping 

DEGs using the PCA algorithm, which we termed as 

DMS signature (Supplementary Table 1). The alluvial 

diagram also revealed the changes of sample attributes 

including methylation regulator-related molecular 

subtypes, Gene.cluster, survival status and DMS 

(Figure 4E). We performed the correlation analysis 

between DMS score and 20 methylation regulator 

expression based on TCGA cohort, and found DMS 

score had the most significant positive correlation 

with NTHL1 (cor=0.58, Supplementary Figure 4), and 

the most significant negative correlation with DNMT1 

(cor=-0.75, Supplementary Figure 4). Additionally, a 

significant distinction on DMS between methylation 

regulator-related molecular subtypes as well as 

between Gene.clusters was observed. Subtype A and 

Gene.cluster A displayed a highest median DMS, 

while the subtype B and Gene.cluster B displayed a 

lowest median DMS (Figure 4F, 4G). Hepatitis B 

virus positive patients presented a lower DMS (Figure 

5A), while hepatitis C virus positive patients 

presented a higher DMS (Figure 5B). We did not 

observe the significant difference on DMS between 

low and high ALT patients (Figure 5C). Based on the 

optimal cut-point at -1.88 acquired from MaxStat 

algorithm, patients were classified as high and low 

DMS group (Figure 5D). Patients in the high DMS 

group experienced a remarkable survival benefit 

compared to low DMS group (Figure 5E). We then 

used the external validation set GSE14520 to validate 

the prognostic value of DMS in hepatocellular 

carcinoma. We still observed a significant survival 

advantage in high DMS group than low DMS group 

(Figure 5F). Although the statistical P value was 

insignificant, patients with high DMS still 

experienced an advantage trend in recurrence-free 

survival compared to those with low DMS. The 

landscape of somatic mutation in the low and high 

DMS groups was then further investigated. The tumor 

mutation burden did not show a significant difference 

across low and high DMS groups (Figures 5H, 5I, 6A, 

6B). We used the waterfall plot to summarize the 

distinction on tumor mutation burden between low 

and high DMS groups (Figure 5H, 5I). We used the 

multivariate Cox regression model to further reveal 

the value of DMS in predicting patient prognosis, and 

found DMS signature was as an independent 

biomarker in predicting patient outcomes (Figure 6C). 

However, given the range of hazard ratio 95% CI 

(0.96 to 0.99, p = 0.008), we still needed to be 

cautious about this result. We than perform GSEA 

enrichment analysis, and found the classic 

carcinogenic signaling pathways were significantly 

activated in the low DMS group such as MAPK, 
MTOR, P53, TGF-beta and WNT signaling pathways, 

which could lead to the worse prognosis in patients 

with low DMS (Figure 6D). 
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Figure 3. Characteristics of distinct DNA methylation regulator-related molecular subtypes. (A) The abundance of 28 tumor 

microenvironment cell infiltration among three molecular subtypes. (B, C) GSVA enrichment showing the activation states of biological 
pathways in distinct molecular subtypes. (D) The Venn diagram showing 1037 overlapping differentially expressed genes (DEGs) between 
three DNA methylation regulator-related molecular subtypes. (E) GO functional enrichment analyses for 1037 overlapping differentially 
expressed genes. All data analyses were based on the TCGA-LIHC cohort. Neg, negative; Pos, positive; Ns, not significant. *P < 0.05; 
**P < 0.01; ***P < 0.001. 
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Figure 4. Construction of prognosis-related DMS signature. (A) Consensus matrices of DNA methylation subtype-related genes. for 

k=3. (B) Survival analyses for three distinct Gene.clusters. (C) The hierarchical clustering of1037 overlapping differentially expressed genes 
among three Gene.clusters. (D) Difference in the 20 DNA methylation regulator expression among three Gene.clusters. (E) The alluvial 
diagram showing the changes of sample attributes including methylation regulator-related molecular subtypes, Gene.cluster, survival status 
and DMS. (F) Differences in DMS score across three Gene.clusters. (G) Differences in DMS score across three distinct methylation regulator-
related molecular subtypes. All data analyses were based on the TCGA-LIHC cohort. Neg, negative; Pos, positive; Ns, not significant. *P < 0.05; 
**P < 0.01; ***P < 0.001. 
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Figure 5. Prognostic value and external validation of DMS signature. (A) Differences in DMS score between hepatitis B virus positive 

and negative group in TCGA-LIHC cohort. (B) Differences in DMS score between hepatitis C virus positive and negative group in TCGA-LIHC 
cohort. (C) Differences in DMS score between ALT high and low group in GSE14520 cohort. (D) The MaxStat R package identified the optimal 
cut-off point to dichotomize DMS. (E) Kaplan-Meier curves showing the survival difference between the low and high DMS groups in TCGA-
LIHC cohort. (F) External validation the value of DMS in predicting patient prognosis in GSE14520 cohort. (G) Kaplan-Meier curves showing 
the recurrence-free survival difference between the low and high DMS groups in GSE14520 cohort. (H, I) The waterfall plot showing the 
differences of TMB landscape between low and high DMS groups in TCGA-LIHC cohort. (H) High DMS group. (I) Low DMS group. Neg, 
negative; Pos, positive. 
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Role of DMS in predicting efficacy of immunotherapy 

 

The breakthrough of immunotherapy represented by 

immune checkpoints in cancer treatment has brought 

encouraging and instructive strategies for the successful 

cure of cancer. To further revealed the predictive  

values of DMS signature in patients treated with  

anti-checkpoint immunotherapy, we collected two 

immunotherapy cohorts with completed survival 

information including IMvigor210 cohort with the 

intervention of PD-L1 antibody and TCGA-SKCM 

cohort with the intervention of PD-1 and CTLA-4 

antibody. In the IMvigor210 cohort, compared with 

patients with low DMS score, patients with high DMS 

score had a prominent clinical benefit and therapeutic 

advantage. The survival in the high-DMS group was 

 

 
 

Figure 6. The value of DMS in predicting clinical outcomes in patients with hepatocellular carcinoma. (A) Differences in tumor 
burden mutation between low and high DMS groups. (B) The correlation between tumor burden mutation and DMS score. (C) Multivariate 
cox regression analysis for DMS in predicting patient’s survival in TCGA-LIHC cohort. (D) GSEA enrichment analysis showing the activated 
biological pathways in patients with low DMS. All data analyses were based on the TCGA-LIHC cohort. Cor, correlation. 
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significantly prolonged (Figure 7A–7C). In the TCGA-

SKCM cohort, we still observed the treatment 

advantages in the high-DMS group than low-DMS 

group, emphasizing the predictive value of DMS 

signature in patient receiving immune checkpoint 

blockade therapy (Figure 7D–7G). In addition, when 

stratifying patients by DMS and neoantigen mutational 

burden, we found that patients with neoantigen burden 

as well as high DMS features had significantly 

improved survival when receiving immunotherapy 

(Figure 7H). 

 

DISCUSSION 
 

With the in-depth understanding of the heterogeneity 

and complexity of tumor microenvironment, increasing 

evidence highlights the critical role of DNA 

methylation in inducing immune escape and immuno-

therapeutic drug resistance [15–18]. Nevertheless, 

DNA methylation regulator mediated molecular 

subtypes, microenvironmental characteristics under 

these subtypes as well as the impacts on 

immunotherapeutic efficacy still remain little known. 

Identifying the distinct molecular subtypes in order for 

classifying patients will promote the development of 

individualized treatment of cancer. Additionally, 

identification of the DNA methylation regulator 

mediated molecular subtypes may help reveal potential 

biomarkers significantly related to clinical response  

to immunotherapy and potentially uncover novel 

immunotherapeutic targets [19, 20].  

 

In this research, we comprehensively integrated the 

transcriptome data of 20 DNA methylation regulators. 

Although all the regulators experienced a low genomic 

variation, there existed a remarkably difference in 

mRNA expression between normal and tumor tissues. 

According to the expression of 20 regulators, we 

successfully revealed three distinct DNA methylation 

regulator-related molecular subtypes in hepatocellular 

carcinoma, which had substantially different biological 

characteristics and prognosis. Subtype A was 

characterized by the higher expression of NTHL1, 

MBD3 and SMUG1, with a particularly prominent 

survival advantage; Subtype B characterized by the up-

regulation of DNMT3A, TET1, DNMT3B, TET3, 

UHRF2, DNMT1, UHRF1and TDG, with a significantly 

survival inferiority; while ZBTB4, MBD4, ZBTB33, 

TET2 and ZBTB38 characteristically expressed in 

subtype C whose prognosis was similar with subtype A. 

The immune infiltration analysis for the three molecular 

subtypes showed the activated CD4 T cell and activated 

CD8 T cell presented a higher infiltration level in the 

subtype B whose survival was bad. We than further 

analyzed the characteristics of the biological function of 

each molecular subtype to clarify the reasons for the 

poor prognosis of subtype B with high levels of immune 

infiltration. We found numerous classic carcinogenic 

signaling pathways and stromal activity including WNT, 

p53 and TGF-beta signaling pathway were significantly 

activated in subtype B, which could result in a survival 

inferiority in subtype B. Subtype B exhibits 

characteristics of stromal activation, which may mediate 

immune escape of this subtype. Previous studies have 

classified tumors into three immune subtypes, including 

immune-inflamed, immune-excluded, and immune-

desert. Although the immune-excluded subtype shows 

similar immune activation characteristics to the immune-

inflamed subtype, the activated immune cells are 

localized around tumor cell nests without infiltrating into 

the tumor parenchyma, which leads to the false immune 

activation. Consistent with the characteristics of the 

immune-excluded subtype, immunotherapy can activate 

immune cells around the tumor, but cannot stimulate 

their infiltration into the tumor interior, resulting in a 

low response rate of such tumors to immunotherapy. 

[21–25]. TGF-beta promotes the growth, infiltration  

and metastasis of tumor cells by inducing immune 

escape, promoting blood vessel formation, and  

inducing epithelial-mesenchymal transition [26, 27].  

In the previous studies, Zhang et al. also revealed  

three subtypes with distinct molecular, tumor 

microenvironment and clinical characterization in gastric 

cancer based on the expression of 21 m6A RNA 

methylation regulators, of these, the tumor micro-

environment characterization under m6Acluster B 

subtype was highly consistent with immune-excluded 

phenotype [28]. Shen et al. reported three subtypes with 

distinct metabolic characteristics using the expression of 

23 m6A RNA methylation regulators in hepatocellular 

carcinoma, and constructed m6Ascore signature to 

predict the prognosis and treatment response [29]. The 

above suggested that tumor heterogeneity could be 

further revealed by molecular classification of tumors by 

a specific gene set. At present, the transformation of  

cold tumors into hot tumors by targeting the 

immunophenotype of the tumor has become a hot topic 

in the field of cancer research. Previous studies have 

shown that MYC amplification mediated CCL23, CCL5, 

PD-L1, CD47 and IL1β expression decreased could 

induce macrophages and DCs inactivation, and also  

limit the recruitment of T cells, B cells and natural killer 

cells [30, 31]. Considering the high expression of 

DNMT3A, TET1, DNMT3B, TET3, UHRF2, DNMT1, 

UHRF1and TDG in Subtype B, changing the tumor 

microenvironment cell infiltration characteristics by 

reversing expression of these DNA methylation 

regulators may be more clinically practical. Based on 

the overlapping differentially expressed genes, we 
constructed DMS signature to further reveal the value of 

these molecular subtypes in evaluating patient’s 

prognosis and efficacy of immunotherapy. Subtype A 
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Figure 7. Role of DMS in predicting efficacy of immunotherapy. (A) Kaplan-Meier curves displaying the survival difference of high and 

low DMS groups in IMvigor210 cohort. (B) The ratio of clinical response types in high DMS and low DMS groups in the IMvigor210 cohort 
when treated with anti-PD-1 immunotherapy. (C) Differences in DMS score between different clinical response types in the IMvigor210 
cohort. (D) Survival analyses for DMS in TCGA-SKCM cohort. (E) The ratio of clinical response types in each group in the TCGA-SKCM cohort. 
(F, G) Differences in DMS score between different clinical response types in the TCGA-SKCM cohort. (H) Survival analyses for patients 
receiving anti-PD-L1 immunotherapy stratified by both neoantigen burden and DMS signature. (I) Differences in DMS score among different 
immune phenotypes. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. NEO, neoantigen burden. 
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exhibited a high DMS and subtype B showed a low 

DMS. DMS signature was proved to be an independent 

biomarker to predict the prognosis of patients. 

Additionally, DMS was correlated with hepatitis B and 

C. Similar to the subtype B, low DMS group was 

significantly enriched in the classic carcinogenic 

signaling pathways such as MAPK, MTOR, P53, TGF-

beta and WNT signaling pathways. Using two anti-PD-

1/L1 and anti-CTLA immunotherapeutic cohorts, we 

found the DMS signature could predict the patient 

response to immunotherapy. The checkpoint 

immunotherapy significantly improved the clinical 

response and prolonged the survival in patients with 

high DMS score compared with those with low DMS 

score. Generally, the high DMS groups improved more 

than 15% clinical response to immunotherapy than low 

DMS groups. This suggested that the DNA methylation 

regulator related gene signature could predict the 

efficacy and clinical responses in patients treated with 

anti-checkpoint immunotherapy. 

 

CONCLUSIONS 
 

This study identified three DNA methylation regulator 

mediated subtypes with distinct clinical, molecular and 

biological characteristics in hepatocellular carcinoma, 

and constructed DMS signature, which could serve as 

an independent predictive biomarker in patient survival 

and response to immunotherapy. It may help promote 

individualized immunotherapy for hepatocellular 

carcinoma from the perspective DNA methylation 

regulators. 

 

MATERIALS AND METHODS 
 

Sample datasets collection and processing 

 

In total, we collected 20 DNA methylation regulators 

based on existed published studies [12]. For training 

cohorts, we downloaded RNA sequencing data of 

TCGA-LIHC with FPKM types from The Cancer 

Genome Atlas (TCGA) Genomic Data Commons (GDC) 

Data Portal (https://portal.gdc.cancer.gov/) via 

TCGAbiolinks R package [32]. Then, we transformed 

the FPKM value into TPM values [33]. The copy 

number variation (CNV) data and somatic mutation were 

acquired from UCSC Xena public data hubs 

(http://xena.ucsc.edu/). The corresponding clinical 

information were curated from the TCGA GDC. The 

GSE14520 from Gene Expression Omnibus (GEO) 

database served as validation set [34]. The GSE14520, 

which was based on the Affymetrix Human Genome 

U133A 2.0 Array (GPL571), investigated the gene 
expression subtypes in tumor and paired non-tumor 

tissue of HCC patients as well as healthy donor liver. 

We used the affy R package to perform data 

preprocessing [35]. A total of 369 patients in TCGA-

LIHC cohort and 221 patients in GSE14520 cohort  

with completed survival information were selected  

for further analysis. The median age was 59 years  

and 51 years in TCGA-LIHC and GSE14520  

cohort, respectively. 255 patients and 170 patients  

were diagnosed with stage I/II in TCGA-LIHC  

and GSE14520 cohort, respectively. The baseline 

characteristics of patients in the TCGA-LIHC and 

GSE14520 cohorts was presented in Table 1.  

We included two immunotherapy cohorts after a 

systematical publicly search: The IMvigor210 cohort, 

which investigated the PD-L1 antibody in advanced 

urothelial cancer, was acquired from http://research-

pub.Gene.com/imvigor300corebiologies. The raw count 

data was also transformed into TPM value. The TCGA-

SKCM cohort, which investigated PD-1 and CTLA-4 

antibody in advanced melanoma, was acquired from 

TCGA GDC data portal. The FPKM data was 

downloaded and then converted to TPM value. 

 

Crosstalk among DNA methylation regulators 

 

We constructed an expression-survival network to reveal 

a relationship of DNA methylation regulator connection, 

interactions and prognosis in hepatocellular carcinoma. 

We identified the protein-protein interactions (PPI) 

between DNA methylation regulators using the STRING 

database [36]. 

 

Consensus clustering for twenty DNA methylation 

regulators 

 

In order to identify distinct DNA methylation  

regulator mediated molecular subtypes in hepatocellular 

carcinoma, we performed consensus molecular 

clustering according to the mRNA expression of 

twenty DNA methylation regulators. The R package 

ConsensuClusterPlus was used and 1,000 times  

for subtype clustering were repeated in order for 

classification stability [37]. 

 

Gene set variation analysis (GSVA) 

 

The GSVA enrichment analysis was used to reveal the 

specified activated biological pathways among distinct 

DNA methylation subtypes. The enrichment score 

represented the relative activity of each biological 

pathway. The hallmarker and ‘c2.cp.kegg.v6.2.symbols’ 

get sets were acquired from the Molecular Signatures 

Database (MSigDB) for GSVA. We also estimated the 

tumor microenvironment abundance of immune cell 

infiltration including activated CD4 T cell, CD8 T cell, 
B cell and other cell types. The gene sets for estimating 

infiltration abundances were obtained from the 

published study [28, 38–40]. 

https://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
http://research-pub.gene.com/imvigor300corebiologies
http://research-pub.gene.com/imvigor300corebiologies
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Table 1. Baseline characteristics of patients in the TCGA-LIHC and GSE14520 cohorts. 

Cohorts TCGA-LIHC (n=369) GSE14520 (n=221) 

Age, years 59 (16 - 94) 51 (21 - 77) 

Sex   

Male 248 191 

Female 121 30 

Status   

Alive 239 136 

Dead 130 85 

Stage   

Stage I/II 255 170 

Stage III/ IV 90 49 

Unknown 24 2 

Hepatitis B virus infection   

Positive 44 212 

Negative 147 6 

Unknown 178 3 

 

Identification of differentially expressed genes and 

functional annotation 

 

We identified the differences in mRNA transcriptome 

between the three molecular subtypes in hepatocellular 

carcinoma with the Limma R package [41]. The p value 

less than 0.001 was the criterion for screening the 

differentially expressed genes. Then we applied the R 

package clusterProfiler to perform the functional 

annotation for these differentially expressed genes [42]. 

The term BP (biological process) was selected for 

revealing the biological function of these genes. 

 

Construction of prognosis related DMS signature 

 

First, we adopted the univariate Cox regression model 

to reveal the prognostic value for these differentially 

expressed genes in hepatocellular carcinoma. Then the 

principal component analysis (PCA) was performed for 

the expression of genes with the prognosis P value 

<0.05. The signature scores were composed of principal 

components 1 (PC1) and 2 (PC2) [28, 43]. The DMS 

signature was defined as follows: 

 

DMS (PC1 PC2 )i i=  +  

 

where i is the expression of subtypes-related genes with 

a significant prognosis. 

 

Statistical analysis 

 
The Kruskal-Wallis and One-way ANOVA tests was 

used to execute the difference significance test for three 

groups or more [44]. The difference analyses between 

the two groups was based on Wilcoxon test. The 

survival curves with the basis of log-rank tests and the 

Kaplan-Meier method were generated with the 

survminer R package. We classified patients into low 

and high DMS groups through the optimal cut-off point 

obtained from the MaxStat R package [45]. All 

statistical P-values were two-sided, and a p < 0.05 was 

statistically significant. All data was processed through 

the software R 4.0.5. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Difference in writer gene expression between low and high eraser genes. (A) TET1. (B) TET2. (C) TET3. 
Data analyses were based on the TCGA-LIHC cohort. 
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Supplementary Figure 2. Consensus matrices of 20 DNA methylation regulators for k = 2, k=3, k=4 and k=5. Data analyses were 

based on the TCGA-LIHC cohort. 
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Supplementary Figure 3. Consensus matrices of 1037 overlapping differentially expressed genes for k = 2, k=3, k=4 and k=5. 
Data analyses were based on the TCGA-LIHC cohort. 
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Supplementary Figure 4. Correlation between DMS score and expression of 20 DNA methylation regulators. The numbers in 

the circles represented the correlation coefficients. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Prognostic analysis for these 1037 overlapping differentially expressed genes using the 
univariate Cox regression model. 


