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INTRODUCTION 

The quality of oocytes declines by aging, resulting in 
their low competences for pregnancy and live birth [1–
3]. Although the major causes of poor quality in oocytes 
following aging are chromosomal abnormality [4, 5], 
age-dependent increases in cellular [6] and DNA [7] 
damages induced by reactive oxygen spices, decreased 
mitochondrial copy number and ATP production [8] 
were also found. These abnormalities accumulated 
during aging and eventually lowered oocyte quality. 
Thus, it is important to develop methods to restore the 
oocyte quality in infertile women with advanced age to 
establish an anti-aging therapy. 

Resveratrol is a type of plant polyphenol found in grape, 
red wine, peanuts etc. and available as a supplemental 
diet with the anti-oxidative and inflammatory actions 
[9]. Furthermore, resveratrol has demonstrated to 
activate Sirtuins implicated in anti-aging cellular 
processes and to promote mitochondrial functions [10]. 
In a recent study, anti-aging activity of resveratrol to 
prevent the decline of oocyte quality during aging was 
examined by feeding young mice with drinking water 
including resveratrol for 6 and 12 months [11]. This 
study revealed increases in litter size under natural 
mating in mice following 12 months resveratrol intake, 
but not after the 6 months treatment. At the molecular 
level, resveratrol intake decreased the expression of an 
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ABSTRACT 

The quality of oocytes declines by aging, resulting in their low competences for fertility. Here, resveratrol 
treatment showed increases in the rates of implantation and live offspring as well as decreases in the abortion 
rate as short as one week after treatment, although the number of ovulated oocytes and the rates of 
fertilization and blastocyst formation were not changed following resveratrol treatment. Resveratrol treatment 
did not cause abnormalities mouse estrous cycles and body weights. No abnormality was detected in both 
fetuses and placentas after 22 weeks of resveratrol treatment and the fetuses had normal fertility. Positive 
correlations were found between serum resveratrol levels and pregnancy and live offspring rates as well as 
ovarian expression levels of Sirt1, Sirt3, Sirt4, Sirt5, and Sirt7. The mitochondrial membrane potential and ATP 
content but not copy number of mitochondrial DNA in oocytes was increased in aging mice with resveratrol 
treatment. In conclusion, we demonstrated the restoration of oocyte quality in aging mice in addition to the 
prevention of their quality decline during aging by restoring mitochondrial functions by resveratrol treatment 
without adverse effects in the animals and their offspring. 
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aging marker p21 in ovaries to levels comparable to 
those in young mouse counterparts [11]. Although this 
study demonstrated the prevention of aging-induced 
decline of fertility by a long-term resveratrol treatment 
from young age, such a long treatment starting from 
young age is not practical in clinical settings. 
 
To establish an anti-aging therapy for women with 
advanced age, it is important to find a protocol with short-
term treatment. Therefore, in order to develop the basis 
for future clinical application, we sought to determine the 
effect of a short-term resveratrol treatment on the 
restoration of reduced fertility in aging mice using models 
at different treatment period of resveratrol. We 
demonstrated increases in the rates of implantation and 
live pups as well as decreases in the abortion rate as short 
as one week after resveratrol treatment. We further found 
positive correlations between serum resveratrol levels and 
pregnancy and live pups rates as well as ovarian 

expression levels of Sirt1, Sirt3, Sirt4, Sirt5, and Sirt7 as 
potential downstream anti-aging effectors. With increased 
mitochondria-related Sirt3, Sirt4, and Sirt5 expressions, 
we demonstrated the restoration of mitochondrial function 
in oocytes following resveratrol treatment. 
 
RESULTS 
 
Resveratrol did not affect mouse estrous cycle and 
body weight 
 
To assess the effect of resveratrol on ovarian follicle 
development, we determined changes of estrous cycle by 
vaginal smear of epithelial cells. As shown in Figure 1B, 
there was no difference in the average of estrous cycle 
pattern among four groups with different feeding period 
of resveratrol (0, 1, 12 and 22 weeks), suggesting no 
effect of resveratrol treatment on follicle growth. The 
animal body weights at 25 and 47 weeks of age were 

 

 
 
Figure 1. Study design and effects of resveratrol (Res) treatment on estrous cycle and body weight during mouse aging. (A) 
Forty ICR mice at 25 weeks (wks) of age were housed until 47 weeks of age and fed with or without Res. These mice were divided into four 
groups (10 mice in each group) depending on four different feeding durations: 0 (control), 1, 12 and 22 weeks. In addition, young mice 
served as controls in some experiments to confirm aging changes in reproduction. Mice were weighed and recorded at the start of 
resveratrol treatment (25 weeks of age) and at 47 weeks of age. After 47 weeks of age, ovulated oocytes were collected and then in vitro 
fertilization-embryo transfer was performed to determine the number of ovulated oocyte and the rates of fertilization, blastocyst 
formation, implantation, live pups and abortion. Some ovulated oocytes were used for the analyses of mitochondrial functions. (B) Estrous 
cycles during 22 weeks of treatment. Estrous cycles were evaluated using the smear of vaginal epithelial cells every 48 hours (n = 8–10 
animals, n = 78 observations in each animal). (C) Body weights of each group at 25 and at 47 weeks of age at the start and end of 
resveratrol treatment, respectively (n = 8–10 animals). Bars represent means ± SE. 
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also measured to ensure that addition of resveratrol to 
the diet did not affect feeding behavior which could 
influence follicle development via body weight changes. 
We found that the body weights were not altered by 
resveratrol treatment and the weights were not increased 
after 25 weeks of age (Figure 1C). 
 
Resveratrol improved age-associated infertility 
 
For further insight into the potential of resveratrol 
treatment in the improvement of age-associated 
infertility, IVF-ET was conducted in the four groups of 
aging mice. Although aging mice without resveratrol 
treatment exhibited significantly reduced number of 
ovulated oocytes as compared with young counterparts, 
the number of ovulated oocytes in the resveratrol-treated 
groups was comparable to that in aging control mice 
(Figure 2A). The rates of fertilization and blastocyst 
formation were not declined by aging in our protocol 
and thus these was no room for improvement of these 
reproductive outcomes by the resveratrol treatment 
(Figure 2A–2C). After embryo transfer, the rates of 
implantation and live pups in aging mice without 
resveratrol treatment became <4-fold lower (Figure 2D 
and 2E) and the abortion rate became 2-fold higher than 
those in young animals (Figure 2D–2F). The resveratrol 
treatment dramatically improved these reproductive 
outcomes and those proportions in aging mice with a 
long-term treatment (22 weeks) reached similar levels as 
their young counterparts (Figure 2D–2F). Of note, the 
rates of implantation, live pups and abortion were also 
improved even in the group with a short-term treatment 
(one week) (Figure 2D–2F). 
 
To confirm the safety of resveratrol treatment, gross 
morphology was evaluated in fetuses and placentas at 
Caesarean section. As shown in Figure 2G, no abnormal 
finding was detected in both live fetuses and 
corresponding placentas derived from embryos obtained 
from mice with 22 weeks of resveratrol treatment. The 
fetuses were further nursed by foster mothers and 
developed normally (Figure 2H: 10 days after Caesarian 
section). After mating, these mice delivered healthy 
pups (Figure 2I). 
 
Serum resveratrol levels correlated with 
implantation and live offspring rates and expression 
of ovarian Sirtuin family genes 
 
To evaluate the correlation between serum resveratrol 
levels and the rates of implantation and live offspring, 
the resveratrol levels in animals of all experimental 
groups were measured by high performance liquid 
chromatography (HPLC) -tandem mass spectrometry 
(MS/MS). After confirmation of the absence of 
resveratrol in serum without resveratrol treatment 

(aging controls), positive correlation was detected 
between serum resveratrol levels and implantation and 
live offspring rates (Figure 3A). Using same animals, 
correlation between serum resveratrol and ovarian 
Sirtuin family transcript levels was further analyzed. As 
shown in Figure 3B, the serum resveratrol levels were 
positively correlated with the expression levels of Sirt1, 
Sirt3, Sirt4, Sirt5 and Sirt7, but not in Sirt 2 and Sirt6. 
 
Resveratrol improved mitochondrial functions in 
oocytes 
 
Due to presence of positive correlation with gene 
expression levels of mitochondria-related Sirtuin 
families, the effects of one week of resveratrol treatment 
on mitochondrial functions of oocytes were determined. 
The mitochondrial membrane potential in oocyte was 
determined as an intensity of florescence signal by 
MitoTracker™ dye staining. As shown in Figure 4A and 
4B, the intensity in oocytes derived from aging mice 
with the resveratrol treatment was significantly 
increased as compared with aging controls and 
recovered to the same levels of young counterparts. 
Furthermore, ATP content in oocytes was significantly 
increased by the resveratrol treatment (Figure 4C). The 
copy number of mitochondrial DNA in oocytes was 
declined by animal aging, but the resveratrol treatment 
did not improve those copy numbers (Figure 4D). 
 
DISCUSSION 
 
Based on the in vivo study using animal models, we 
demonstrated the restoration of oocyte quality in aging 
mice following short-term resveratrol treatment. In 
addition, we confirmed that the long-term resveratrol 
treatment prevented the quality decline of oocytes 
during animal aging by restoring implantation and live 
offspring rates. Furthermore, we showed positive 
correlations between serum resveratrol levels and 
pregnancy and live pup rates as well as ovarian 
expression levels of Sirt1, Sirt3, Sirt4, Sirt5, and Sirt7. 
We also demonstrated the restoration of mitochondrial 
activity in oocytes derived from aging mice with the 
short-term resveratrol treatment. 
 
Although one may consider clinical trials of resveratrol 
for the infertility treatment of aging women by 
extending earlier findings in aging mice [11]. These 
effects of resveratrol were evident if young mice at 6 
weeks of age were treated with resveratrol for 12 
months, but 6 months treatment did not exhibit such 
positive effects [11]. The design of this mouse study 
corresponded to resveratrol treatment from young girl 
(12.5–20 years-old) to menopause age in humans [12]. 
Such an early and long-term treatment from young age 
is not realistic for prevention of the aging-induced 
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Figure 2. Effects of resveratrol treatment on fertility in aging mice. Ovulation was induced at proestrous stage after 47 weeks of 
resveratrol (Res) treatment by using hCG injection. At 15 hours after hCG administration, cumulus-oocyte complexes (COCs) were obtained 
from oviduct ampulla. COCs were inseminated with sperm collected from fertile male mice. At 16 hours after culture, 2-cell stage embryos 
were collected and allowed to develop to the blastocyst stage by additional 72 hours of culture. After embryo culture, blastocysts from each 
animal were transfer to independent recipient mouse. At 19 days after oocyte retrieval, Caesarian section was performed to count the number 
of implantation sites and live offspring. For young controls, ICR mice at 6 weeks of age were used. (A) Number of ovulated oocytes. The number 
of ovulated oocytes was determined by removal of cumulus cells surrounding oocytes after insemination under the stereomicroscope (n = 8 
animals). (B) Fertilization rate (2-cell stage embryos/ovulated oocytes) (n = 6*–8 animals, 33–115.2-cell stage embryos per groups). *, two mice 
in control group and one mouse in Res 22 weeks group did not ovulate. (C) Blastocyst formation rate (blastocysts/2-cell stage embryos) (n = 4*–
8 animals, 28–105 blastocysts per groups). *, oocytes retrieved from two mice in each control and Res 12 and 22 weeks group did not fertilize. 
(D) Implantation rate (implanted blastocysts/transferred blastocysts) (n = 4–7* animals, 7–95 implanted blastocysts per groups). *, 2-cell stage 
embryos derived from one mouse in each Res 1 and 22 weeks group were arrested to develop prior blastocyst stage. (E) live offspring rate (live 
offspring/transferred blastocyst) (n = 4–7 animals, 3–61 live offspring per groups). (F) abortion rate (1- live offspring/transferred blastocyst). (G) 
representative images of live offspring and placentas from Res 22 weeks group. After Caesarian section, the offspring were nursed by foster 
mothers to evaluate their healthiness and mated at 8 weeks of age to confirm their fertility. (H) the offspring at 10 days after Caesarian section, 
(I) the offspring with pups. Bars represent means ± SE. a, b p < 0.05 vs. controls. 
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decline of fertility in women. Indeed, women likely start 
to consider future childbirth and fertility preservation at 
more advanced age and thus later and shorter treatment 
to improve fertility in aging women is important in 
infertility treatment. 

Considering future clinical application, we designed 
new experiments to address restoration of oocyte 
quality in aging animals. Using the short-term 
resveratrol treatment, we succeeded to show the 
restoration of declined fertility in aging mice. 

 

 
 
Figure 3. Correlation between serum resveratrol levels and the rates of implantation and live offspring, and ovarian 
transcript levels of Sirtuin family. Serum resveratrol (Res) levels from all groups were measured using HPLC-MS/MS. (A) Correlation of 
serum resveratrol levels with implantation and live offspring rates (n = 16 animals). (B) Correlation of serum resveratrol levels with ovarian 
mRNA expression levels of Sirtuin family genes (n = 16 animals). The correlation coefficient (r) above 0.4 indicated a significant correlation. 
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Figure 4. Effects of resveratrol treatment on mitochondrial functions in oocytes derived from aging mice. MII oocytes derived 
from aging mice without (control) or with one week of resveratrol (Res) treatment and young animals without resveratrol treatment 
(young) were used for different mitochondrial assays. (A and B) Mitochondrial membrane potential. (A) Representative fluorescence 
images showing mitochondrial membrane potential visualized by MitoTracker™ dye (orange). Oocyte nuclei were counterstained with 
Hoechst 33342 (blue). Scale bars, 20 µm. (B) The fluorescence intensities of mitochondrial membrane potential. The intensity of 
mitochondrial fluorescence in ooplasm of MII oocyte was measured by excluding that in the first polar body (control: n = 25, Res: n = 15 and 
young: n = 26 oocytes). (C) The ATP levels in MII oocytes. The ATP level per MII oocyte was measured using the ATP-Glo™ Bioluminometric 
Cell Viability Assay Kit (control: n = 24, Res: n = 16 and young: n = 17 oocytes). (D) The mitochondrial DNA (mtDNA) copy numbers of MII 
oocytes (10 oocytes from each group). The copy number was measured by absolute real-time RT-PCR. (control: n = 11, Res: n = 13 and 
young: n = 18 groups). Bars represent means ± SE. A, Bp < 0.05 vs. controls. 
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Because the 1 and 12 weeks of treatment groups started 
resveratrol feeding from 46 and 35 weeks of age, 
respectively, the fertility of these animals was already 
declined at the initiation of resveratrol treatment and 
thus our data indicated the beneficial effects of 
resveratrol on recovering the declined quality of oocytes 
in aging mice. A recent study supports our data with 
demonstrating the improvement of survival rate of MII 
oocytes undergoing postovulatory aging by a short-term 
(15 days) intraperitoneal injection of resveratrol [13]. 
Because it takes around 3 weeks for follicle 
development from primordial to preovulatory stage in 
mice [14], the short-term resveratrol treatments likely 
targeted the developing secondary and antral follicles. 
 
To assess the prevention of the aging-induced decline of 
fertility, animals at 25 weeks of age which 
corresponded to around 30 years-old women [12] was 
treated with resveratrol for 22 weeks as same duration 
in previous study [11], In contrast to the lack of 
significant improvement of live offspring rate in the 
group with 6 months resveratrol treatment in the 
previous study [11], we showed the improvement of 
implantation, live offspring and abortion rates in mice 
treated with resveratrol for 6 months. These conflict 
results might be caused by the difference of mouse age 
at the assessment of resveratrol treatment. Although we 
assessed the effects of resveratrol at about 48 weeks of 
age after 6 months treatment, the previous study 
designed to evaluate at 28 weeks of age in the group of 
6 months treatment [11]. Because mice at 28 weeks of 
age unlikely exhibit the aging-induced decline of 
fertility, the previous study might fail to show the 
evident difference. From the above results, it is 
considered that resveratrol has both the effect of 
restoration of oocyte quality and prevention of quality 
deterioration on oocyte. Implantation rate and live birth 
rate are significantly higher depending on the treatment 
period of resveratrol. Therefore, the prevention effect is 
weak with short-term treatment, and long-term 
treatment may be necessary to obtain the effect. 
 
In terms of the daily dose of resveratrol, we used the 
same resveratrol content of the diet according to a 
previous study showing the resveratrol-mediated 
suppression of age-dependent oxidative stress by 
inhibiting the generation of superoxide in other murine 
organs [15]. Although the study demonstrating the anti-
aging activity of resveratrol to prevent the decline of 
oocyte quality during aging [11] allowed the mice to 
access freely to water including 30 mg/l resveratrol, the 
amount of resveratrol consumed by individual mice was 
unknown and the serum levels of resveratrol in mice 
were not determined. Here, we found a positive 
correlation between serum resveratrol levels and the 
pregnancy and live offspring rates, and Sirt1, Sirt3, 

Sirt4, Sirt5, and Sirt7 transcript levels in the ovaries. 
These data suggested the improvement of fertility 
competence of aging mice through induction of ovarian 
Sirtuin expression by resveratrol treatment and could 
contribute the determination of optimal dose for future 
clinical application. 
 
Among different Sirtuin genes, we showed the increase 
in Sirt1, Sirt3, Sirt4, Sirt5, and Sirt7 expressions. 
Because Sirt3, Sirt4, and Sirt5 are expressed in 
mitochondria maintaining energy homeostasis and 
regulating gene expression in response to cellular stress 
such as oxidative stress [16–18], we focused on the 
mitochondrial functions in oocytes for further insight 
into molecular mechanism underlying resveratrol 
actions. Herein, we found the improvement of 
mitochondrial activity and ATP production in oocytes 
obtained from aging mice with short-term resveratrol 
treatment as one of the factors for restoration of fertility. 
Sirt1 shows anti-aging activity by maintaining 
intracellular metabolism and DNA repair [19, 20], 
whereas Sirt7 reduces apoptosis and improves 
resistance to oxidative and genotoxic stress [21]. Thus, 
increases in Sirt1 and 7 levels might also associate with 
resveratrol actions on restoring oocyte quality in aging 
mice. 
 
Similar to the previous study [11], we found that the 
number of ovulated oocytes was markedly reduced by 
aging but was not changed by resveratrol treatment in 
aging mice. We found the beneficial effects of 
resveratrol treatment on the restoration of implantation, 
live offspring, and abortion rates. Due to the absence of 
age-associated decline in the rates of fertilization and 
blastocyst formation in aging ICR strain mice, the 
positive effects of resveratrol on these rates were not 
evident in this study. Although the earlier study did not 
evaluate the effects of resveratrol on fertilization, 
embryo development and implantation, the effect of 
resveratrol treatment on fertility was examined using a 
mating test by comparing the litter size per plugs after 
mating and per pregnancies determined by the presence 
of apparent large abdomen at embryonic day between 
16 and 17 [11]. In both 6 and 12 months of treatment 
groups, the litter sizes per pregnancy were larger than 
those per plug, suggesting some oocytes did not achieve 
pregnancies even if the mating were successful. This 
pregnancy failure could be caused by unsuccessful 
fertilization, embryo growth and implantation as well as 
miscarriage at early stage. Recent reports suggest that 
resveratrol may suppress decidualization of human 
endometrial stromal cell lines and potentially induce 
implantation failure [22]. However, in this study, since 
the foster mother is used for the analysis of implantation 
rate and live birth rate, there is no effect of resveratrol 
on the endometrium. On the other hand, maintaining 
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high ATP levels in human embryos has also been 
reported to correlate with good development and 
implantation rates [23]. Therefore, it is considered that 
the improvement of implantation rate and live birth rate 
is the result of the positive effect of resveratrol 
treatment on the quality of oocyte. 
 
In terms of the safety of resveratrol treatment, no 
adverse event was reported in other studies working on 
humans [24, 25], mice [11, 26, 27], and rats [28] even if 
the similar amount of ingestion [15, 29]. In this study, 
resveratrol treatment did not alter animal body weights 
and no prominent abnormality was detected during 
breeding. Furthermore, we confirmed the normality of 
offspring up to the third generation after resveratrol 
treatment using the IVF-ET analyses. These data 
indicated the safety of resveratrol treatment for anti-
aging of oocytes. 
 
Since resveratrol treatment restored the quality of 
oocyte in aging mice, it is expected to contribute to the 
recovery of fertility in infertile patients with advanced 
age. Moreover, our and previous studies revealed a 
potential of resveratrol treatment for the prevention of 
quality decline of human oocytes during aging in young 
women who wish future pregnancy. Based on these 
successful outcomes in animal studies, future 
randomized controlled trials comparing placebo diet 
could conclusively demonstrate the efficacy of 
resveratrol treatment in patients. 
 
MATERIALS AND METHODS 
 
Animals 
 
Male and female ICR mice were purchased from CLEA 
Japan, Inc. (Tokyo, Japan). The mice were housed at a 
temperature of 22°C and humidity of 55% with a 12-
hour light/12-hour dark cycle, and were allowed free 
access to food and water. In addition, estrous cycles 
were checked by smear of vaginal epithelial cell on 
every two days. Animals were handled and housed in 
accordance with the procedures specified by the 
Department of Animal Experiments at International 
University of Health and Welfare School of Medicine 
(Narita, Japan). All animal experiments were approved 
by the Animal Care and Use Committee at International 
University of Health and Welfare School of Medicine 
(19002NA). 
 
Protocol for resveratrol treatment 
 
Forty female ICR mice at 25 weeks of age were 
randomly divided into four groups (each n = 10), and 
housed in five mice per cage. These mice were fed with 
diet (6 g per day) containing 0.04% (w/w) resveratrol 

(Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) 
(resveratrol diet: RD), as described previously [15, 29], 
or not (control diet: CD). These four groups were 
classified based on the duration of resveratrol feeding 
(0, 1, 12 and 22 weeks): 1) controls fed with CD during 
whole breeding period, 2) fed with CD until 46 weeks 
of age and then fed with RD for one week, 3) fed with 
CD until 35 weeks of age and then fed with RD from 12 
weeks and 4) 22 weeks of resveratrol treatment group 
fed with RD (Figure 1A). Because most ICR mice 
stopped ovulation at about 50 weeks of age in the 
preliminary survey (data not shown), these mice were 
too old for this assay. Thus, we used mice at 47 weeks 
of age with ovulations to analyze the anti-aging effects 
of resveratrol on reproduction. Some animals died 
during long breeding time and did not reach 47 weeks 
of age (control; n = 2, 1 week of resveratrol treatment; n 
= 2, 12 weeks of resveratrol treatment; n = 2). 
Resveratrol treatment was started from 25 weeks of age 
and continued for 22 weeks with same duration of 
treatment as described in the previous study [11]. Some 
animals had shorter treatment period for 12 weeks 
(about the half duration of 22 weeks) and one week to 
assess the prevention of quality decline in oocytes 
during aging. 
 
Mouse physical examinations 
 
To evaluate estrous cycles, all mice were checked by 
smear of vaginal epithelial cell every two days. Body 
weights were measured at the start (25 weeks of age) 
and the end (47 weeks of age) of experiments. At the 
end, the animal number in groups of control, 1 and 12 
weeks of resveratrol treatment decreased to eight. 
 
IVF-ET 
 
The estrous cycle was checked every day in all mice 
when they reached 47 weeks of age. Then, the mice at 
proestrous stage received an intraperitoneal injection of 
gonadotropin (10 IU; ASKA Pharmaceutical, Tokyo, 
Japan). Because two mice remained at diestrous stage 
(constant diestrous) in the group of 22-weeks 
resveratrol treatment, these animals could not be used 
for ovulation induction. At 15 hours later, mice were 
euthanized, and cumulus oocyte complexes (COCs) 
were collected from the oviductal ampulla. COCs were 
then placed in 100 µl of TYH medium (LSI Medience 
Corporation, Tokyo, Japan) with sperm (3 × 105 /ml). 
The sperms were collected from male ICR mice at 10 to 
12 weeks of age and incubated in TYH medium for 10 
minutes at 37°C under 5% CO2/95% air to complete 
their capacitation. 
 
After 5 to 6 hours culture for fertilization, the 
inseminated oocytes were collected and transferred in a 
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Table 1. List of primers for real-time RT-PCR. 

Gene Forward primer Reverse primer 
Sirtuin1 CCTTGGAGACTGCGATGTTA GTGTTGGTGGCAACTCTGAT 
Sirtuin2 GCAGTGTCAGAGCGTGGTAA CTAGTGGTGCCTTGCTGATG 
Sirtuin3 CTGACTTCGCTTTGGCAGAT GTCCACCAGCCTTTCCACAC 
Sirtuin4 GCTTGCCTGAAGCTGGATT GATCTTGAGCAGCGGAACTC 
Sirtuin5 AGCCAGAGACTCAAGACGCCA AGGGCGAGCTCTCTGTCCACC 
Sirtuin6 TCGGGCCTGTAGAGGGGAGC CGGCGCTTAGTGGCAAGGGG 
Sirtuin7 GGCACTTGGTTGTCTACACG GTGATGCTCATGTGGGTGAG 
Histon-H2a ACGAGGAGCTCAACAAGCTG TATGGTGGCTCTCCGTCTTC 

 
30 µl drop of KSOM medium (Merck Millipore 
Corporation, Tokyo, Japan) under mineral oil (Irvine 
Scientific Sales Company Inc., Saitama, Japan), and 
incubated at 37°C for 24 hours. Then, fertilized 
embryos at two-cell stage were selected and cultured for 
additional 72 hours to form blastocyst. The fertilization 
rate was determined based on 2-cell stage 
embryos/ovulated oocytes, whereas blastocyst 
formation rate was measured as blastocysts/2-cell stage 
embryos. 
 
After culture, the blastocysts derived from each 
animal were transferred to the uterus of pseudo-
pregnant recipient ICR mice at 6 to 10 weeks of age. 
Caesarean section was performed at 16 days after 
embryo transfer, and the number of implantation sites 
and live fetuses were counted. The implantation rate 
was determined as implanted blastocysts/transferred 
blastocysts, whereas live offspring and abortion rates 
were calculated as live fetuses/transferred blastocysts 
and 1- live offspring/transferred blastocysts. To 
ensure the safety of resveratrol treatment, we checked 
gross morphology of placentas and fetuses during 
Caesarean section. The offspring were nursed by 
foster mothers and mated at 8 weeks of age to check 
for their fertility. 
 
Real-time RT-PCR for measurement of Sirtuin gene 
expression in ovary 
 
Ovaries were obtained from mice after oocyte retrieval 
and five to six ovaries were randomly selected from 
each group for real-time RT-PCR analysis. Total RNA 
was extracted using a RNeasy Mini kit (QIAGEN 
Sciences, Valencia, CA, USA), and then cDNA was 
synthesized using a PrimeScript™ RT Master Mix 
(Takara, Tokyo, Japan) according to the 
manufacturer’s protocol. Quantitative real-time RT-
PCR was performed using a Power SYBR® Green 
Master Mix (Thermo Fisher Scientific, Waltham, US) 
by a SmartCycler (Takara) as described previously 
[30, 31]. The protocol for real-time PCR was as 

follows: 15 minutes at 95°C and then 45 cycles of 15 
seconds at 95°C and 60 seconds at 60°C. The primers 
used are shown in Table 1. To determine the absolute 
copy number of target transcripts, cloned plasmid 
cDNAs for individual gene were used to generate a 
calibration curve. Purified plasmid cDNA templates 
were measured, and copy numbers were calculated 
based on absorbance at 260 nm. A calibration curve 
was created by plotting the threshold cycle against the 
known copy number for each plasmid template diluted 
in log steps from 105 to 101 copies. Each run included 
standards of diluted plasmids to generate a calibration 
curve, a negative control without a template, and 
samples with unknown mRNA concentrations. Data 
were normalized based on histone H2a transcript 
levels. Triplicate measurements were performed in one 
sample and the mean values were used for data 
analyses. 
 
Analysis of membrane potential of oocyte 
mitochondria 
 
Additional animals at 25 weeks of age were treated 
with or without resveratrol for 1 week for 
mitochondrial analysis (each n = 20). Oocytes were 
collected from ovulated COCs by removing cumulus 
cells under mechanical pipetting after 1–2 min of 300 
μg/ml hyaluronidase (Merck, Darmstadt, Germany) 
treatment. For young control, oocytes were obtained 
from ICR mice at 6 weeks of age using same 
procedure (n = 5). 
 
The oocytes were incubated with a MitoTracker™ 
Orange (Thermo Fisher Scientific) followed by nuclear 
staining using a Hoechst 33342 dye (Thermo Fisher 
Scientific) according to the manufacturer’s protocol 
(control: n = 25, resveratrol treatment: n = 15, and 
young control: n = 26). After incubation, the membrane 
potential of mitochondria was visualized by a confocal 
laser microscope (ZEISS, Oberkochen, Germany), and 
the fluorescence intensity was measured using the Zen 
imaging software (ZEISS). 



www.aging-us.com 5637 AGING 

Analysis of oocyte ATP content 
 
The ATP content in MII oocyte was determined by a 
ATP-Glo™ Bioluminometric Cell Viability Assay Kit 
(Biotium, San Francisco, USA) according to the 
manufacturer’s protocol (control: n = 24, resveratrol 
treatment: n = 16, and young control: n = 17). 
Individual oocyte was lysed, and its luminescence was 
measured immediately using a luminometer (Roche, 
Basel, Switzerland). 
 
Analysis of mitochondrial DNA copy number 
 
Mitochondrial DNA copy number was also 
determined by real-time PCR according to the 
previously published method with modification [32] 
(control: n = 11, resveratrol treatment: n = 13, and 
young control: n = 18). Briefly, a MII oocyte was 
placed in Tyrode solution (Merck, Darmstadt, 
Germany) to remove the zona pellucida and first polar 
body. Each oocyte was loaded in a PCR tube with 6 μl 
lysis buffer (20 mM Tris, 0.4 mg/ml proteinase K, 
0.9% Nonidet-40 and 0.9% Tween 20) and incubated 
for 2 hours at 55°C. Proteinase K was then inactivated 
by heating the samples for 10 minutes at 95°C, and 
subjected to the PCR analysis directly. Quantitative 
real-time PCR was performed using a Power SYBR® 
Green Master Mix with previously established probe 
(B6) and primers (B6-forward and reverse) designed 
for specific amplification of mouse mtDNA [32]. To 
generate the standard curve for quantification, PCR 
products amplified with B6 forward and reverse 
primers were ligated into T-vector. Twenty five-, 50- 
and 100-fold serial dilutions of purified plasmid 
standard DNA were used to generate the standard 
curve. Triplicate measurements were performed in 
one sample and the mean values were used for data 
analyses. 
 
Measurement of serum resveratrol levels 
 
Blood was obtained from the heart using 1 ml syringe 
with 25 G needle immediately after euthanasia for 
oocyte retrieval. Then, serum sample was collected as a 
supernatant after centrifugation of blood at 900 g for 10 
minutes at room temperature. Because more than 500 
ml of serum was required to measure resveratrol levels 
using HPLC (Nexera X2 system controlled by CBM-
20A, Shimadzu corporation, Kyoto, Japan)- MS/MS 
(triple quadrupole AB-Sciex model API 5000 mass 
spectrometer, AB-Sciex, Ontario, Canada), some 
animals without sufficient serum samples were 
excluded from the study. 
 
To prepare the sample for HPLC-MS/MS, 10 μl of the 
internal standard solution (25 ng/ml Trazamide, 

Fujifilm Wako pure chemical corporation, Osaka, 
Japan) and 10 μl borate buffer (pH 9.18) were added to 
50 μl of each serum sample and the mixture was stirred 
for 10 seconds. Then, 800 μl of ethyl acetate was added 
to the mixture. After 3 minutes stirring, the mixture was 
centrifuged at 4°C for 2 minutes by 5,000 × g. The 
organic layer was separated into a glass tube and 
evaporated to dryness under a nitrogen stream at 40°C. 
Fifty μl of methanol was added to the residue and the 
mixture was stirred for 30 seconds followed by 
sonication for 1 minute to dissolve. One hundred fifty μl 
of water was added to the mixture and stirred for 30 
seconds. After a centrifuge at 4°C, for 3 minutes by 
2,000 × g, the supernatant was transferred into the 
HPLC-MS/MS system. 
 
The identification and quantification of resveratrol and 
its metabolites in serum was performed by HPLC-
MS/MS according to the manufacture’s protocol. 
Serum samples were analyzed by HPLC separation 
using a CAPCELL PAK C18 MG II column (Shiseido, 
Tokyo, Japan) on HPLC. A 10 mM ammonium acetate 
solution was used for mobile phase A, and methanol 
was used for mobile phase B. These samples were 
transferred into the column maintained at 40°C. 
Mobile phases A and B were eluted at a flow rate of 
0.3 ml/minute with a linear gradient in which the 
volume ratio was changed from 80:20 to 0:100. The 
gradient elution was performed as follows: 20% B (0–
0.5 minutes), 80% B (0.5–6.5 minutes), 100% B 
(6.51–7.5 minutes), and then 20% B (7.5–10.5 
minutes). The system equipped with an electrospray 
ionization source and operated in the negative ion 
mode with multiple reaction monitoring mode. 
Samples were analyzed in negative ion mode with the 
tune method set as follows: collision gas (nitrogen) 
flow rate of 6 arb, curtain gas (nitrogen) flow rate of 
10 arb, nebulizer gas (air) flow rate of 60 arb, 
desolvation gas (air) flow rate of 60 arb, Ion spray 
voltage of 4.5 kV, entrance potential of 10 V, and 
collision cell exit potential of 10 V. The monitor ion 
ranges were m/z 227–143 (Res) and m/z 310–170 
(trazamide). 
 
Statistical analysis 
 
The results were expressed as the mean ± standard 
error. One-way ANOVA test was used as an intergroup 
comparison and Dunnett’s test used for multiple 
comparisons. The level of significance was set at p < 
0.05. The serum resveratrol level was expressed as 
correlation with either Sirtuin mRNA expression level, 
implantation rate or live offspring rate. The correlation 
was analyzed using Pearson’s correlation coefficient. 
The correlation coefficient (r) above 0.4 indicated the 
significant correlation. 
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Abbreviations 
 
IVF-ET: In vitro fertilization and embryo transfer; 
HPLC: high performance liquid chromatography; 
MS/MS: tandem mass spectrometry; RD: resveratrol 
diet; CD: control diet; COCs: cumulus oocyte 
complexes; Res: resveratrol; wks: weeks. 
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