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INTRODUCTION 
 

DNA methylation is of the most extensively studied 

epigenetic modifications that plays a crucial role in the 

regulation of several biological processes; abnormal 

changes in DNA methylation are associated with 

several human diseases, including cancers [1–3]. DNA 

methylation profiling is an important analytical tool for 
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ABSTRACT 
 

Growing evidences indicate DNA methylation plays a crucial regulatory role in inflammation, innate immunity, 
and immunotherapy. However, the overall landscape of various DNA methylation regulatory genes and their 
relationship with the infiltration of immune cells into the tumor microenvironment (TME) as well as the 
response to immunotherapy in gliomas is still not clear. Therefore, we comprehensively analyzed the 
correlation between DNA methylation regulator patterns, infiltration of immune cell-types, and tumor immune 
response status in gather glioma cohorts. Furthermore, we calculated the DNA methylation score (DMS) for 
individual glioma samples, then evaluated the relationship between DMS, clinicopathological characteristics, 
and overall survival (OS) in patients with gliomas. Our results showed three distinct DNA methylation regulator 
patterns among the glioma patients which correlated with three distinct tumor immune response phenotypes, 
namely, immune-inflamed, immune-excluded, and immune desert. We then calculated DMS for individual 
glioma samples based on the expression of DNA methylation-related gene clusters. Furthermore, DMS, tumor 
mutation burden (TMB), programmed death 1 (PD-1) expression, immune cell infiltration status in the TME, and 
Tumor Immune Dysfunction and Exclusion (TIDE) scores were associated with survival outcomes and clinical 
responses to immune checkpoint blockade therapy. We also validated the predictive value of DMS in two 
independent immunotherapy cohorts. In conclusion, our results demonstrated that three DNA methylation 
regulator patterns that correlated with three tumor immune response phenotypes. Moreover, we 
demonstrated that DMS was an independent predictive biomarker that correlated with survival outcomes of 
glioma patients and their responses to immunotherapy therapeutic regimens. 
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classifying patients with brain tumors into various 

subgroups [4]. 
 

Glioblastoma (GBM) is the most common primary 

brain tumor in adults [5]. Despite availability of 

standard treatment strategies such as surgery, 

chemotherapy, and radiotherapy, the overall survival 

(OS) of GBM patients is less than 14 months [6–9]. 

Therefore, there is an urgent need to identify and 

characterize more effective therapeutic strategies for 

improving the survival outcomes of GBM patients. 

 

Immune checkpoint blockade (ICB) therapies have 

been approved for many malignant tumors, including 

GBM, but their efficacy is observed in less than 20% of 

the patients [10–15]. Tumor mutation burden (TMB) 

and programmed death 1 (PD-1) are potential 

biomarkers for identifying patients that could benefit 

from PD-L1 blockade-based immunotherapy [16]. 

Several studies have shown that DNA methylation 

regulatory proteins influence the effectiveness of 

immunotherapy in patients with malignant cancers [17–

19]. Wu et al. reported that TET1 expression positively 

correlated with the infiltration of immune cells in 

breast cancer [20]. Xu et al. reported that TET2 activity 

influenced the effectiveness of anti-PD-L1 therapy in 

solid cancers through the IFN-γ-JAK/STAT signaling 

pathway [21]. 

 

In this study, we comprehensively analyzed the 

correlations between DNA methylation regulator 

patterns, characteristics of infiltration of the immune 

cell types into the tumor microenvironment (TME), and 

response to ICB therapies using clinicopathological and 

transcriptome information from five independent 

glioma datasets. We also constructed a risk score 

system based on the DNA methylation status of the 

glioma samples and analyzed if the DNA methylation 

score (DMS) accurately predicted clinical responses to 

ICB therapy using two immunotherapy datasets. 

 

RESULTS 
 

Landscape of genetic variations in the DNA 

methylation regulatory genes in glioma 

 

We selected 20 DNA methylation regulators, containing 

3 writers, 3 erasers, and 14 readers after literature 

survey [22, 23]. The DNA methylation regulatory 

proteins that regulate the dynamic process of DNA 

methylation and demethylation and the underlying 

molecular mechanisms are shown in Figure 1A. The 

transcriptome and clinicopathological data of the 2228 

patients from the TCGA, CGGA1, CGGA2, GSE16011, 

and GSE108474 glioma datasets, is summarized in 

Supplementary Table 1. 

We then analyzed tumor somatic mutations and copy 

number variations (CNV) in these DNA methylation 

regulatory genes in the glioma samples. Somatic 

mutations in the DNA methylation regulatory genes 

were observed in only 32 patients; tumor mutation 

burden (TMB) rate of the 20 regulators was < 1% in 

the glioma patients (Figure 1B). We observed co-

occurrence of mutations in some DNA methylation 

regulatory genes (MBD4 and TET2; MBD4 and 

DNMT1; TET3 and DNMT3A; ZBTB33 and 

DNMT1), mutation-exclusive phenomenon was not 

observed in any of the 20 DNA methylation regulators 

(Supplementary Figure 1B). The somatic mutation 

frequency of glioma patients among DNA methylation 

regulators was low (<1%), which revealed the different 

functions of these regulators were not caused by 

genetic alterations. CNV analysis in the glioma 

samples demonstrated high frequency of 

amplifications in MBD3, TDG, UHRF1, DNMT1, and 

MECP2, and copy number deletions in UHRF2, 

SMUG1, ZBTB38, MBD4, MBD2, TET2, MBD1, and 

ZBTB4 (Figure 1C). Figure 1E shows the 

chromosomal locations of the CNV alternations in 

these DNA methylation regulatory genes. PPI network 

analysis showed co-expression of DNA methylation 

regulatory genes belonging to the same functional 

group as well as association between writers, erasers, 

and readers (Figure 1D, Supplementary Table 2). 

Univariate Cox regression analysis showed that 

DNMT1, DNMT3A, DNMT3B, MBD2, MBD4, 

UHRF2, MECP2, UNG, and SMUG1 were potential 

risk genes, whereas TET1, TET2, TET3, ZBTB4, and 

MECP2 were potential protective genes in glioma 

(Supplementary Figure 1C). The expression of 11 

DNA methylation regulators (DNMT1, DNMT3A, 

DNMT3B, MBD2, MBD3, MBD4, UHRF1, UHRF2, 

UNG, TDG, and SMUG1) was significantly higher in 

the glioblastoma (GBM) compared to the low-grade 

glioma (LGG), whereas the expression of 7 DNA 

methylation regulators (TET1, TET2, TET3, ZBTB33, 

ZBTB38, ZBTB4, and MECPE) was significantly 

lower in the GBM (Figure 1F). We performed the 

immunohistochemistry assay to validate the bio-

informatics results, and the assay revealed that three 

selected DNA methylation regulators (DNMT3A, 

TET3, and UNG) were expressed to different extents 

in normal brain tissue (NBT) and LGG 

(Supplementary Figure 2A–2C), in accord with the 

bioinformatics results. 
 

Our results indicated most DNA methylation regulators 

(DNMT1, MBD3, UHRF1, and TDG) with amplificated 

CNV demonstrated markedly higher expression in 
GBM, which revealed that the alterations of CNV could 

be an important element resulting in perturbations on 

the DNA methylation regulators expression in glioma. 
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This suggested crucial roles for these 20 DNA 

methylation regulatory genes in glioma progression. 

 

The relationship between DNA methylation 

regulator expression, prognosis, and tumor immune 

characteristics in gliomas 

 

Next, we investigated the role of these DNA 

methylation regulators in the TME. Spearman’s 

correlation analysis showed that the expression of UNG, 

ZBTB33, MECP2, and DNMT3A genes was positively 

associated with the proportion of several immune cell 

types in the glioma (Supplementary Figure 3A). 

Because UNG expression was positively associated 

with naïve B cells, we systematically investigated the 

biological functions of UNG in the TME. Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analysis 

showed that the high UNG expression group was 

 

 
 

Figure 1. Multi-omics landscape of the DNA methylation regulators in glioma. (A) The summary of 20 DNA methylation regulators 
and their molecular functions in mediating the dynamic reversible process of DNA methylation. (B) Mutation frequency of the 20 DNA 
methylation regulators based on TCGA glioma dataset. Each column represents a single glioma samples. (C) The CNV frequency of DNA 
methylation regulators based on the TCGA glioma dataset. Note: gain, red; loss, blue. (D) PPI network of the 20 DNA methylation 
regulators. Size of the node denotes the number of proteins. (E) Circos plots illustrating the chromosomal locations of the CNV alternations 
in 20 DNA methylation regulatory genes. (F) Boxplot shows the expression levels of the 20 DNA methylation regulators in patients with LGG 
and GBM bases on the gather glioma cohort. Note: ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. 
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enriched in several tumor-related pathways, such as p53 

signaling pathway, TNF signaling pathway, DNA 

replication, focal adhesion, NF-kB signaling pathway, 

and Human T-cell leukemia virus 1 infection 

(Supplementary Figure 3B). Moreover, gliomas with 

high UNG expression showed significantly higher 

infiltration of immune cell types such as naïve B cells, 

delta gamma T cells, M0 macrophages, activated DCs, 

and activated mast cells compared to gliomas with low 

UNG expression (Supplementary Figure 3C). 

Furthermore, correlation between expression of UNG 

and clinical response to immunotherapy was evaluated 

in two immunotherapy cohorts, IMvigor210 and 

GSE78220. Glioma patients with high UNG high 

expression in the two immunotherapy cohorts showed 

better prognosis and clinical response (Supplementary 

Figure 3D–3G). 

 

These results demonstrated association between the 

expression of DNA methylation regulatory genes and 

the infiltration of immune cell types into the TME. Our 

analysis also suggested that UNG regulated the tumor 

immune microenvironment and is a potential marker for 

evaluating the efficacy of immunotherapy in glioma 

patients. 

 

Characterization of three DNA methylation 

regulator patterns in the gathered glioma datasets 

 

DNA methylation regulators might play a crucial role in 

the heterogeneity of gliomas and the tumor immune 

microenvironment status [24]. Therefore, to further 

determine the functions of the DNA methylation 

regulator, we used the package of ConsensusClusterPlus 

to identify distinct glioma patient subgroups based on 

the specific expression patterns of the 20 DNA 

methylation regulator in the gathered glioma cohort. We 

performed unsupervised clustering with a K value of 3 

and classified glioma samples into three subgroups or 

modification patterns, namely, pattern A (n = 1007), 

pattern B (n = 694), and pattern C (n = 527, Figure 2A, 

Supplementary Figure 4A–4E). The glioma samples 

with patterns A and C showed high expression of 

ZBTB4 and NTHL, respectively, whereas, glioma 

samples with pattern B showed high expression of most 

DNA methylation regulators (Figure 2B, Supplementary 

Figure 4F). PCA showed three distinct expression 

patterns of all 20 DNA methylation regulators, thereby 

confirming the unsupervised clustering results (Figure 

2C). Kaplan-Meier survival curve analysis showed that 

OS of glioma patients with pattern B were significantly 

lower compared to those with patterns A and C, 

probably because majority of the DNA methylation 
regulators were highly expressed in the pattern B (P < 

0.001; Figure 2D). Then, we investigated the biological 

behaviors of the gliomas with these three distinct 

patterns using GSVA. Patterns A and C demonstrated 

an immune activation phenotype with enrichment of 

immune pathways such as the chemokine signaling 

pathway, cytokine-cytokine receptor interaction, and 

arachidonic acid metabolism; glioma in pattern B were 

enriched in stromal activation-related pathways, such as 

p53 signaling pathway, RNA degradation, cell cycle, 

and DNA replication (Figure 2E, 2F; Supplementary 

Table 3). 

 

Stromal activation is associated with inhibition of 

immune cell infiltration and poor prognosis of cancer 

patients. Therefore, we analyzed the correlation between 

the three DNA infiltration and several immune cell 

infiltration and stromal activation signatures. Gliomas 

with pattern C were significantly rich in immune cell 

types such as activated DCs, activated NK cells, 

monocytes, DCs, activated mast cells, co-stimulation T 

cell, CD8+ T cells, and Tfh (Figure 3A, 3C). These 

results were in accordance with favorable prognosis of 

glioma patients with pattern C. Gliomas with patterns B 

showed significant stromal activation including 

upregulation of epithelial-mesenchymal transition 

(EMT)-related genes and pan-fibroblast-THF-β response 

signature (pan-F-TBRS; Figure 3B). Moreover, pattern B 

also showed positive correlation with TMB (Figure 3D). 
 

These results showed that all three DNA methylation 

regulator patterns were associated with significantly 

distinct immune cell infiltration phenotypes. Pattern A 

demonstrated immune-excluded tumor phenotype 

characterized by infiltration of innate immune cell types 

and stromal activation. Pattern B demonstrated 

immune-desert tumor phenotype characterized by low 

immune cell infiltration and immune repression status. 

Pattern C demonstrated inflamed immune phenotype 

characterized by high immune cell infiltration into the 

tumor microenvironment and activation of the adaptive 

immune response. 

 

Validation analysis of the three DNA methylation 

regulator patterns in the TCGA glioma dataset 
 

Next, we classified the patients in the TCGA glioma 

dataset (n = 649) into three clusters based on the 

expression of the 20 DNA methylation regulators using 

the package of ConsensusClusterPlus (Supplementary 

Figure 5A, 5B, 5D). The results for the TCGA dataset 

were similar to the entire glioma cohort in this study 

(Supplementary Figure 5C). PCA demonstrated that the 

20 DNA methylation regulators formed three distinct 

patterns (A, B, and C) in the TCGA dataset 

(Supplementary Figure 5E). Kaplan-Meier survival 

analysis showed that OS was significantly lower for 

glioma patients in pattern C compared to those with 

patterns A and B (P < 0.001; Supplementary Figure 
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5G), probably due to high expression of most DNA 

methylation regulator in pattern C (Supplementary 

Figure 5C). Furthermore, glioma in pattern B showed 

significantly higher proportions of various immune cells 

types such as activated DCs, CD8+ T cells, activated 

mast cells, monocytes, activated NK cells, and plasma 

cells, which was in accordance with significantly 

increased OS of glioma patients with pattern B 

 

 
 

Figure 2. Characterization of distinct DNA methylation modification patterns in the gathered glioma cohort. (A) Consensus 
clustering matrix of the gather glioma cohort for k = 3. (B) Unsupervised clustering of 20 DNA methylation regulators in the gather glioma 
cohort. The glioma samples were annotated according to the DNA methylation regulator patterns, glioma grades, 1p19q codeletion status, 
and IDH status. (C) PCA confirmed three distinct patterns based on the expression of the 20 DNA methylation regulator in 2228 glioma 
samples. (D) Kaplan-Meier survival curve analysis showed the OS of glioma samples belonging to the three DNA methylation regulator 
patterns based on gather glioma cohorts. (E, F) GSVA analysis shows relatively enriched hallmark gene sets among the three patterns. 
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(Supplementary Figure 5F). Moreover, higher stromal 

activity was observed in pattern C including activation 

of pan-F-TBRS and EMT-related markers 

(Supplementary Figure 5H). 

This integrated analysis demonstrated that glioma 

patients could be sorted into immune-inflamed, 

immune-excluded, and immune-desert phenotypes 

based on the expression levels of 20 DNA methylation 

 

 
 

Figure 3. Different clinical and transcriptome characteristics of the three DNA methylation regulator patterns in the gather 
glioma cohort. (A) Heatmap of several immune signatures for the three DNA methylation regulator patterns in the gather glioma cohort. 

(B) Box-plots show the expression levels of few stroma-activated related genes in the three DNA methylation regulator patterns based on 
the gather glioma cohort. (C) Box-plots show the proportions of several immune cells types in the three patterns based on the gather 
glioma cohort. (D) Box-plots show the TMB for the three patterns in the TCGA dataset. (E) Functional annotation of the DNA methylation 
related genes between three patterns in the gather glioma cohort. Note: ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. 
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regulators both in the gathered glioma cohort and the 

TCGA glioma dataset. 

 

Characterization of differences in the 

clinicopathological parameters and gene expression 

patterns in the three DNA methylation related gene 

clusters and estimation of DNA methylation score 

(DMS) 

 

We then analyzed the DEGs between the glioma 

belonging to the three distinct patterns of DNA 

methylation regulator patterns using the “limma” R 

package and identified 8291 pattern-related DEGs 

(Supplementary Figure 6D). GO analysis showed that 

these DEGs were enriched in some immune response 

and DNA methylation-related pathways such as 

asparagine N-linked glycosylation, cell cycle, DNA-

dependent DNA replication, and Class I MHC-mediated 

antigen processing and presentation (Figure 3E). 

Moreover, univariate Cox regression analysis 

demonstrated that 5679 DEGs were associated with 

prognosis of the glioma patients. We then classified the 

glioma patients into different genomic phenotypes 

based on the expression levels of the 5679 prognosis-

related DEGs. Furthermore, we performed unsupervised 

cluster analysis of the glioma patients based on the 

expression patterns of 5679 prognosis-related DEGs and 

identified three distinct gene clusters, A, B, and C 

(Supplementary Figure 6A–6C). These results 

confirmed three distinct DNA methylation-related gene 

clusters in the gliomas. Patients in the DNA 

methylation-related gene cluster B were associated with 

WHO IV grade, old age, non-codeletion status of 

1p/19q, and wild-type IDH gene status (Figure 4A). 

Kaplan-Meier survival curves analysis showed that 

glioma patients in the DNA methylation-related gene 

cluster B were associated with poorer OS compared to 

patients in gene clusters A and C (P < 0.05; Figure 4B). 

Moreover, consistent with the clinicopathological 

features, glioma samples in gene cluster B showed 

higher proportions of resting CD4 memory T cells, 

resting NK cells, and resting mast cells in the TME and 

were significant positively correlated with the activation 

of EMT and pan-F-TBRS, thereby demonstrating the 

immune-desert phenotype (Figure 4C, 4D). Glioma in 

DNA methylation-related gene cluster C showed higher 

proportions of activated NK cells, activated DCs, and 

activated mast cells, and were significantly associated 

with activation of immune-response and immune-

checkpoint related genes, thereby demonstrating 

immune-inflamed phenotype and activated tumor 

immune microenvironment (Figure 4C; Supplementary 

Figure 6E). 
 

These results demonstrated that DNA methylation 

changes contributed to three distinct immune pheno-

types in the glioma. However, we could not correctly 

forecast the DNA methylation status of individual 

glioma samples using unsupervised cluster analysis. 

Therefore, we calculated the DNA methylation score 

(DMS) of each glioma, based on the expression of 5679 

prognosis-related DEGs. Our results showed significant 

difference in the DMS between the three DNA 

methylation modification patterns and DNA 

methylation-related gene clusters, with pattern B and 

gene cluster B showing the lowest median DMS (Figure 

4E, 4F). WHO grade II gliomas showed the highest 

median DMS and WHO grade IV glioma showed the 

lowest median DMS (Figure 4G). The association 

between the DNA methylation modification patterns, 

tumor grade, DNA methylation-related gene clusters, 

and DMS categories are presented in the Sankey 

diagram (Figure 5D, Supplementary Table 4). 

 

The glioma samples were classified into low- and 

high-DMS categories based on a cutoff value of 

7.705903. Kaplan-Meier survival analyses showed that 

OS was significantly shorter in glioma patients with 

low-DMS compared to those with high-DMS across all 

grades in the gathered glioma cohort (Figure 5A). 

Moreover, LGG and GBM patients with low DMS 

showed significantly shorted OS compared to those 

with high DMS (P < 0.001; Figure 5B, 5C). Further, 

we analyzed the correlation between DMS and 

clinicopathological characteristics of the glioma 

patients. We observed significant differences in the 

DMS between glioma patient groups stratified by 

WHO grade (P < 0.001), survival status (P < 0.001), 

age (P < 0.05), 1p/19q status (P < 0.001), and 

isocitrate dehydrogenase (IDH) status (P < 0.01; 

Supplementary Figure 7A). 

 

Univariate Cox regression analysis showed that WHO 

grade, age, gender, IDH status, 1p/19q status, and DMS 

were strongly associated with the OS of glioma patients 

in our study. Multivariate Cox regression analysis 

revealed that WHO grade, age, IDH status, 1p/19q 

status, and DMS were positively correlated with the OS 

of patients with gliomas (Supplementary Figure 7C). 

These results confirmed that DMS was an independent 

prognostic marker in glioma. 

 

Characterization of DMS in the TCGA dataset and 

its association with tumor somatic mutations in 

glioma samples 

 

Next, we further validated the prognostic value of DMS 

in the glioma samples using the TCGA dataset. 

Unsupervised cluster analysis showed 5312 DEGs 
between the three DNA methylation modification 

patterns and different DNA methylation-related gene 

clusters (Supplementary Figure 8A–8D). Furthermore, 
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Kaplan-Meier survival curves showed that OS was 

significantly lower in the glioma patients belonging to 

DNA methylation gene cluster C compared to those 

from DNA methylation-related gene clusters A and B 

(Supplementary Figure 8F); cluster C glioma samples 

showed high expression levels of most DNA 

methylation regulatory genes (Supplementary Figure 

8E) and positive correlation with activated EMT 1-3 

and  pan-F-TBRS (Supplementary Figure 8G), thereby 

representing the immune-desert phenotype. 

 

 
 

Figure 4. Construction of DMS in the gather glioma cohort. (A) Unsupervised clustering of the overlapping DNA methylation-related 

genes in the gather glioma cohorts. (B) Survival analysis of glioma patients belonging to the three DNA methylation-related gene clusters; P 
< 0.001. (C) The proportion of immune cell types in the glioma and the transcriptome traits in the three DNA methylation-related gene 
clusters. (D) The differences in the expression of genes related to the activated stromal pathways including EMT1, EMT2, EMT3, and pan-F-
TBRS between three DNA methylation-related gene clusters. (E–G) Box-plots shows the DMS for DNA methylation regulator patterns (E), 
gene clusters (F), different glioma grades groups (G), P < 0.001. Note: ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. 
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We classified glioma samples in the TCGA dataset into 

low- and high-DMS categories using the cutoff value of 

−28.66371. Kaplan-Meier survival curve showed that 

OS was significantly shorter for glioma patients with 

low DMS compared to those with high DMS across 

different grades based on the TCGA dataset (P < 0.001; 

Supplementary Figure 9A–9C). This data was in 

agreement with the results for the entire glioma cohort. 

 

 
 

Figure 5. Survival characteristics of glioma patients based on DMS and the relationship between DMS and tumor somatic 
mutation. (A–C) Survival analyses with the OS rates for the low DMS and high DMS groups among all glioma (A), GBM (B) and LGG (C) 

samples patients based on gather glioma cohorts, P < 0.001. (D) Sankey diagram shows the association between DNA methylation regulator 
patterns, glioma grades, DNA methylation-related gene cluster, and DMS groups. (E) Differences in DMS between patients with high and 
low TMB, P < 0.001. (F) Scatter plot shows the relationship between DMS and TMB in the glioma samples (R = 0.56; P < 0.001). (G–H) 
Waterfall plot shows tumor somatic mutations in high (G) and low (H) DMS subgroups. Note: ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. 
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Our results also validated that DMS was an independent 

prognostic biomarker for predicting OS of glioma 

patients in the TCGA cohort (Supplementary Figure 

7D). Furthermore, the high DMS group showed 

significantly OS in glioma patients belonging to 

different grades (ALL, LGG, and GBM) in the CGGA1 

(P < 0.001; Supplementary Figure 9D–9F), CGGA2 (P 

< 0.001; Supplementary Figure 9G–9I), GSE180474 (P 

< 0.001; Supplementary Figure 9J–9L), and GSE16011 

(P < 0.001; Supplementary Figure 9M–9O) datasets. 

We also observed positive correlation between DMS 

and other clinicopathological characteristics of the 

glioma patients based on the TCGA dataset (P < 0.01; 

Supplementary Figure 7B). 

 

We then investigated differences in the TMB between 

the low DMS and high DMS subgroups of the TCGA 

glioma dataset. Low-DMS subgroup demonstrated more 

extensive TMB than the high DMS subgroup (Figure 

5G, 5H). TMB quantification analysis showed that 

gliomas with low DMS were positively associated with 

higher TMB (Figure 5E, 5F). Our results also showed 

that gliomas with high DMS positively correlated with 

high TMB. Previous studies have shown that TMB was 

negatively associated with OS of glioma patients and 

high TMB was associated with reduced infiltration of 

immune cells into the glioma [25, 26]. Therefore, our 

results would provide novel perspective for exploring 

the mechanisms of DNA methylation modification in 

TMB, and shaping of TME landing. 

 

Predictive value of DMS in immunotherapy 

 

CTLA-4 and PD-1 blockades therapies significantly 

improve survival rates in many cancer types [27, 28]. 

Tumor mutation load (TML), PD-L1 expression levels, 

microsatellite instability (MSI) status, Tumor Immune 

Dysfunction and Exclusion (TIDE) scores, and IPS, are 

used to determine the status of tumor immune response 

[29, 30]. Because our study demonstrated strong 

association between DMS and tumor immune response, 

we further investigated the correlation between TIDE 

scores and DMS. We observed significantly reduced 

TIDE scores in the high-DMS subgroup of the gather 

glioma cohort and five glioma datasets (Figure 6A–6F). 

These results demonstrated that the expression levels of 

DNA methylation regulator significantly influenced the 

tumor immune response in glioma. 

 

Therefore, we investigated whether DMS affected the 

clinical response to anti-PD-L1/PD-1 immunotherapy in 

the IMvigor210 and GSE78220 cohorts. The results 

showed that tumors with high DMS were associated 
with significantly increased OS in both immunotherapy 

cohorts (P < 0.05; Figure 6G, 6K). We further 

demonstrated significant differences in the clinical 

response of the high DMS subgroup patients to anti-PD-

1/PD-L1 immunotherapy compared to the low DMS 

subgroup (Figure 6H, 6I, 6L, 6M). Furthermore, 

patients in the high DMS subgroup were positively 

associated with significantly high expression of PD-L1 

in the two immunotherapy cohorts, thereby 

demonstrating the potential molecular mechanism 

underling the clinical response to immunotherapy (P < 

0.05; Figure 6J, 6N). 
 

In summary, our study showed that DNA methylation 

modification patterns were significantly associated with 

the immune response of the glioma. Moreover, the 

DNA methylation-related gene signature accurately 

predicted clinical responses to anti-PD-1/PD-L1 

immunotherapy. 

 

DISCUSSION 
 

Several studies have reported DNA methylation plays a 

crucial role in inflammation, innate immunity, and 

response to immunotherapy through the interplay 

between 20 DNA methylation regulatory proteins [31, 

32]. Most studies have explored the role of individual 

DNA methylation regulatory genes or the TME in 

cancer progression [33, 34]. However, systematic 

analysis of the overall landscape of DNA methylation 

regulatory genes and their influence on immune cell 

infiltration into the glioma has not been reported. Our 

study demonstrated three distinct patterns of DNA 

methylation regulatory gene expression that correlated 

with the infiltration and activation status of immune cell 

types in the glioma. Thus, our findings shed further 

light into regulatory mechanisms underlying tumor 

immune infiltration, which significantly affects 

response to immunotherapies. Therefore, our results 

may be relevant to future discovery of novel immune 

inhibitor immunotherapies. 
 

In our study, we identified three DNA methylation 

regulatory gene expression patterns (patterns A, B, and 

C) in the entire cohort of glioma patients and the TCGA 

glioma dataset based on the expression levels of the 20 

DNA methylation regulatory genes. Moreover, these 

three DNA methylation regulatory gene expression 

patterns correlated with three distinct tumor immune 

response phenotypes, namely, immune-excluded for 

pattern A, immune-desert for pattern B, immune-

inflamed phenotype for pattern C. Glioma patients 

belonging to the DNA methylation regulatory gene 

expression pattern C were significantly enriched with 

immune cell types such an activated DCs, CD8+ T 

cells, co-stimulatory T cells, activated mast cells, and 
activated NK cells. They were also significantly 

enriched in immune-related pathways, such as the 

chemokine signaling pathway and cytokine-cytokine 
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receptor interactions. This suggested that pattern C 

represented an active tumor immune microenvironment 

with activated adaptive immune system, which also 

correlated with better prognosis. In contrast to pattern 

C, pattern B was associated with poor prognosis and 

showed significantly higher stromal activity including 

activation of EMT and pan-F-TBRS, thereby suggesting 

presence of a cold or inactive tumor immune 

microenvironment. Although pattern A was markedly 

enriched in immune-related pathways, it was classified 

as immune-excluded phenotype because it was 

characterized by innate immune cell infiltration and 

stromal activation. 

 

We identified 8291 DEGs by comparing the three 

distinct DNA methylation regulatory gene expression 

patterns. The expression of these DEGs correlated with 

the status of DNA methylation and immune-related 

pathways. Furthermore, we identified the three DNA 

methylation-related gene clusters based on the 

expression of prognosis-related DEGs, which were 

associated with immune or stromal activation.

 

 
 

Figure 6. The relationship between DMS and response to anti-PD-1/L1 immunotherapy. (A–F) Distribution of TIDE scores 

between high and low DMS subgroups in the gather glioma cohorts, as well as CGGA1, CGGA2, GSE180474, GSE16011 and TCGA datasets, 
respectively. (G–I) Survival analyses with the OS (G), clinical response to anti PD-1 immunotherapy (H), proportion of patients responding to 
PD-1 blockade immunotherapy (I), differences in PD-L1 expression (J) based on the low and high DMS subgroups in the IMvigor210 cohort. 
(K–N) Survival analyses with the OS (K), clinical response to anti PD-1 immunotherapy (L), proportion of patients responding to PD-1 
blockade immunotherapy (M), differences in PD-L1 expression (N) based on the low and high DMS subgroups in the GSE78220 cohort. 
Note: ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. 
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This confirmed three distinct immune subtypes in the 

gliomas. 

 

We then developed a risk score system (DMS) to 

identify and quantify heterogeneity in the DNA 

methylation modifications between various glioma 

samples. The immune-inflamed subtype and WHO II 

subgroup showed the highest median DMS. In addition, 

DMS was associated with several clinicopathological 

characteristics of glioma samples such as WHO grade, 

age, 1p/19q co-deletion status, survival status, and IDH 

status. Multivariate Cox regression analysis confirmed 

that DMS was an independent prognostic biomarker for 

evaluating OS of glioma patients. 
 

Our data also showed that glioma patients with low 

DMS were associated with higher TMB, and positively 

correlated with expression of EMT and pan-F-TBRS. 

Previous studies have shown that stromal activation 

correlates with resistance to immunotherapy [35, 36]. 

This suggested that in addition to antigen processing 

and improved cytolytic activity, efficacy of 

immunotherapy was associated with suppression of 

angiogenesis and activation of EMT related pathway, 

which contributed to reduce infiltration of T cells into 

the tumors and effective killing of cancer cells. Several 

studies showed that TME played a significant role in 

immunotherapeutic efficacy [37–39]. Moreover, the 

levels of activated T cells, activated macrophages, 

activated DCs, and activated NK cells were associated 

with efficacy of immune responses [40–42]. 
 

Distinct stromal activation and immune infiltration 

landscape of the three patterns suggested DMS 

correlated with clinical responses to immune checkpoint 

blockade therapy. Furthermore, our study showed that 

DMS was an independent predictive biomarker for 

immunotherapy outcomes, in addition to other well-

established biomarkers such as TME, neoantigen load, 

PD-L1 expression, stromal and immune status, and 

TIDE. This implied that integration of DMS with other 

predictive biomarker may provide more effective 

strategy for immunotherapy. DMS also showed good 

predictive value in the two independent cohorts of 

cancer patients that underwent anti-PD-1/PD-L1 

immunotherapy. Thus, our study suggested that the 

DNA methylation regulator patterns regulated tumor 

immune response phenotypes and might guide 

therapeutic strategies. 
 

In conclusion, we systematically analyzed the 

expression levels of 20 DNA methylation regulatory 

genes in 2228 glioma patients and identified three DNA 

methylation modification patterns. We demonstrated 

significant association between the three DNA 

methylation modification patterns with the immune cell 

infiltration status TME of the glioma tissues. 

Furthermore, we estimated DMS of individual glioma 

samples based on the expression levels of DNA 

methylation-related DEGs and identified three distinct 

immune phenotypes that could guide therapeutic 

strategies and immunotherapeutic responses. We also 

demonstrated that DMS was an independent biomarker 

for predicting prognosis of glioma patients. 

 

MATERIALS AND METHODS 
 

Pre-processing of patient data from multiple glioma 

datasets and two immune-checkpoint blockade 

cohorts 

 

The flow chart of our research strategy is shown in 

Supplementary Figure 1A. We evaluated mRNA 

expression data and clinicopathological information of 

glioma patients in The Cancer Genome Atlas (TCGA), 

GEO, and Chinese Glioma Genome Atlas (CGGA) 

databases. We excluded samples with missing 

prognostic information. Finally, five glioma datasets 

including 2228 glioma samples ((TCGA (n = 648), 

CGGA1 (n = 309), CGGA2 (n = 593), and GEO: 

GSE16011 (n = 263), GSE108474 (n = 415)) were 

included for further analysis. The mRNA expression 

and clinicopathological information for the TCGA 

glioma datasets were downloaded from the University 

of California Santa Cruz (UCSC) Xena browser. The 

mRNA expression and clinicopathological information 

for the glioma samples in the GSE16011 and 

GSE108474 datasets were downloaded from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/query/ 

acc.cgi?) and those from the CGGA1 and CGGA2 

datasets were downloaded from CGGA database 

(http://www.cgga.org.cn/). We also downloaded mRNA 

expression and clinicopathological data of patients in 

the two independent anti-PD-L1 immunotherapy 

cohorts, namely, IMvigor210, which included 298 

urothelial cancer patients that underwent atezolizumab 

treatment (n = 298; http://research-pub.gene.com/ 

IMvigor210CoreBiologies/); and GSE78220, included 

26 metastatic melanoma patients that underwent 

treatment with pembrolizumab (n = 26; 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?) [11, 

43]. Then the gene expression data of glioma samples 

was transformed into transcripts per kilobase million 

(TPM) values, and we merged and removed batch effect 

from non-biological technical biases by the “ComBat” 

algorithm of sva package. The information of the five 

gathered glioma databases was shown in Supplementary 

Table 1. The genomic mutation data was obtained from 

the UCSC Xena browse. The RNA-seq data of all 

samples was normalized with the following formula: 

log2 (N+1). 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
http://www.cgga.org.cn/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
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Use of immunohistochemistry assay to validate 

bioinformatics results 

 

We collected 10 NBTs and 10 LGG tissues from the 

Second Affiliated Hospital of Nanchang University 

from June 2020 to April 2022. Our study was approved 

by the Ethics Committee of this hospital. We performed 

the immunohistochemistry assay on human tissues by 

methods described preciously. 

 

Protein-protein interaction network between 20 

DNA methylation regulators 

 

We retrieved the literatures databases and identified 20 

DNA methylation regulatory genes for analysis in this 

study, containing 3 writers, 3 erasers, and 14 readers. The 

STRING and Cytoscape databases were used to construct 

the protein-protein interaction (PPI) network between 

these 20 DNA methylation regulatory proteins [44, 45]. 

 

Unsupervised clustering of DNA methylation 

regulatory genes 

 

The samples in the five integrated glioma datasets were 

classified according to distinct DNA methylation 

modification patterns based on the expression levels of 

various DNA methylation regulatory genes using the R 

package “ConsensusClusterPlus” [46]. The Euclidean 

distance was used to calculate similarity distance between 

the glioma patients. The k-means algorithm was used for 

validation with 50 iterations and 1000 times repetitions. 

Principal component analysis (PCA) was performed to 

verify the classification into multiple patterns based on 

DNA methylation regulatory genes expression. 

 

Gene set variation analysis and annotation of gene 

ontology terms 

 

The gene set variation analysis (GSVA) R package was 

used to identify molecular functions related to different 

patterns of DNA methylation modifications. The gene 

signatures were obtained from the Molecular Signature 

Database (MSigDB) using the gene set “c2.cp.kegg.v6.2 

symbols” [47]. The differentially expressed genes 

(DEGs) between the different patterns of DNA 

methylation modifications were obtained using the R 

package of “limma” [48]. Geno Ontology (GO) analysis 

was performed to determine the biological functions 

related to the DNA methylation regulatory related genes 

using P < 0.05 as the cut-off value [49]. 

 

Estimation of the relative abundance of immune cell 

types in the TME of gliomas 

 

The single-sample gene-set enrichment analysis 

(ssGSEA) formula was performed using the “GSVA” R 

package to determine the relative abundance of the 

immune cell types in the glioma TME. A list of 

representative marker genes that represent different 

immune cells types were acquired from Charoentong’s 

study (Supplementary Table 5) that summarized 366 

microarrays of several immune cell types containing 

activated mast cells, plasma cells, activated dendritic 

cells (DCs), activated NK cells, natural killer T cells, 

activated CD8+ T cells, eosinophils, activated CD4+ T 

cells, macrophages, and others [50, 51]. The enrichment 

scores were computed using the ssGSEA algorithm to 

determine the relative abundance of tumor-infiltrating 

immune cells in the glioma patients. 

 

Generation of the DNA methylation score (DMS) 

 

We developed a risk score system based on the DNA 

methylation modification in the glioma samples. The 

DNA methylation score (DMS) was calculated by: first 

identifying survival-associated DEGs using the 

“survival” R package, PCA was used to evaluate DMS 

by selecting PC1 and PC2, DMS was based on the 

largest block of highly correlated survival-associated 

DEGs and was calculated as follows: DMS = ∑ (PC1i + 

PC2i), where i, represents the expression of survival-

associated DEGs expression in the cohort of glioma 

patients [52, 53]. 

 

Statistical analysis 

 

The Shapiro-Wilk normality test was used to analyze 

normality of the variables [54]. The expression levels of 

DNA methylation regulators between two normally 

distributed groups were analyzed using unpaired t tests, 

whereas, the Wilcoxon rank-sum test was used to 

analyze non-normally distributed variables. Kruskal-

Wallis or one-way ANOVA tests were used to compare 

differential gene expression between the three 

subgroups [55]. Spearman and distance correlation 

analyses were performed to determine the relationships 

between different subgroups. We computed the best 

cutoff point for the overall survival (OS) rates using R 

package of “survminer”. Then prognostic analysis was 

performed using the Kaplan-Meier survival curves [56]. 

Log-rank tests were used to estimate the differences 

between pairs of glioma subtypes. Univariate and 

multivariate Cox regression analysis was performed to 

determine the hazard ratios (HRs) for the 20 DNA 

methylation regulators and to determine if DMS was an 

independent prognostic biomarker. The mutation 

landscape of the DNA methylation regulatory genes in 

the TCGA dataset was determined using “maftools” R 

package, the landscape of copy number variation 
(CNVs) in the DNA methylation regulatory genes was 

determined using the “RCircos” R package [57]. 

Statistical analysis was performed using the R 
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programming language v3.6.3, P < 0.05 was considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Overview of study design and prognostic analysis of 20 DNA methylation regulator. (A) Overview of 

this work. (B) The mutation co-occurrence and exclusion analyses for 20 DNA methylation regulator. (C) The prognostic analyses for 20 DNA 
methylation regulator in the five gather glioma cohorts. 
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Supplementary Figure 2. Validation of the bioinformatics results using immunohistochemistry assay. Comparison of the 

protein expression of DNMT3A (A), TET3 (B), and UNG (C) in NBT and LGG by immunohistochemistry assay. 
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Supplementary Figure 3. Immune characteristics of 20 DNA methylation regulators and the roles of UNG in anti-PD-1/L1 
immunotherapy. (A) The correlation between each TME infiltration cell type and each DAN methylation regulator. (B) KEGG analyses 
showed some tumor-related pathways in the UNG high-expression subgroup. (C) Difference in each TME infiltration cell between high and 
low UNG expression subgroups. (D, E) Survival analyses for patients belonging to low and high UNG expression subgroup (D) and 
differences in UNG expression among distinct anti-PD-1 clinical response groups (E) in the IMvigor210 cohort. (F, G) Survival analyses for 
patients belonging to low and high UNG expression subgroup (F) and differences in UNG expression among distinct anti-PD-1 clinical 
response groups (G) in the GSE78220 cohorts. 
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Supplementary Figure 4. Unsupervised clustering of 20 DNA methylation regulators in the gather glioma cohort. (A–C) 

Consensus matrices for k =2-5. (D) Consensus clustering CDF for k = 2–9. (E) Relative change in area under CDF curve for k = 2–9. (F) The 
expression of 20 regulators in the three patterns. 

 



www.aging-us.com 7845 AGING 

 
 

Supplementary Figure 5. Unsupervised clustering of 20 DNA methylation regulators in the TCGA datasets. (A) Consensus 

matrices of the gather glioma cohort for k =3. (B) Consensus clustering CDF for k = 2–9. (C) The expression of 20 DNA methylation 
regulators in the three patterns. (D) Relative change in area under CDF curve for k = 2-9. (E) PCA analysis for 20 regulators expression to the 
three patterns. (F) Difference in the expression of each TME infiltrating cell between the three patterns. (G) Survival analyses for patients 
between the three patterns. (H) Difference in pan-F-TBRS and the activation of EMT related genes expression between the three patterns. 
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Supplementary Figure 6. Unsupervised clustering of DNA methylation related genes in the five gather glioma cohort. (A–C) 

Consensus matrices of the five gather glioma cohort for k =2–4. (D) 8291 DNA methylation related genes shown in Venn diagram. (E) 
Difference in the expression of immune activation and immune checkpoint related genes between the three gene clusters. 
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Supplementary Figure 7. Correlations between DMS and clinical characteristics in the gather glioma cohort and TCGA 
dataset. (A, B) Distributions of DMS stratified by fustat status, age, 1p19q status, IDH status, and gender. (C, D) Relationships between the 
clinical characteristics and OS of glioma patients were determined by univariate and multivariate Cox regression analyses. 
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Supplementary Figure 8. Unsupervised clustering of DNA methylation related genes in the TCGA dataset. (A–C) Consensus 

matrices of the TCGA dataset for k =2–4. (D) 5312 DNA methylation related genes shown in Venn diagram. (E) The expression of 20 DNA 
methylation regulators between three gene clusters. (F) Survival analyses for patients between the three gene clusters. (G) Difference in 
the expression of immune activation and immune checkpoint related genes between the three gene clusters. 
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Supplementary Figure 9. Multi-cohorts survival analysis validation of DMS. Overall survival analysis of the high and low DMS 
groups in the CGGA1 (A–C), CGGA2 (D–F), GSE180474 (G–I), GSE16011, (J–L), and TCGA (M–O) datasets. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 5. 

 

Supplementary Table 1. Basic information of datasets included in this study for identifying distinct DNA methylation 
modification patterns. 

 

Supplementary Table 2. Spearman correlation analysis of the 20 DNA methylation modification regulators. 

 

Supplementary Table 3. Estimating relative abundance of tumor microenvironment cells in 2228 glioma patients by 
the Single-Sample Gene-Set Enrichment Analysis (ssGSEA). 

 

Supplementary Table 4. The changes of patterns, glioma grade, gene clusters and DMS. 

 

Supplementary Table 5. The gene sets used in this work for marking each TME infiltration cell type. 

 

 


