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INTRODUCTION  
 

Acute lymphoblastic leukemia (ALL) is one of the most 

frequent hematologic malignancies, especially in 

children, accounting for approximately 25% of all 

pediatric cancers [1]. The immunophenotypes of ALL 

include T cell ALL (T-ALL), B cell ALL (B -ALL) and 

mixed-phenotype acute leukemia (MPAL), where 

MPAL is a rare immunophenotype with features of both 

ALL and acute myeloid leukemia (AML) [2]. Although 

the application of immunotherapy led by chimeric 

antigen receptor T (CAR T) cell therapy has greatly 

improved the clinical remission rate of ALL patients 

[3], a shorter overall survival (OS) rate caused by 

adverse prognosis is still a crucial challenge for 

clinicians and patients. For example, the OS rate of 

adult ALL patients is less than 45% [4]. 

 

Accumulating evidence indicates that the crosstalk 

between tumor and immune cells plays a crucial role in 

cancer development by regulating tumor malignancy, 

immune/stromal cell infiltration, and immune evasion in 

the tumor microenvironment [5ï8]. Similar to solid 

tumors, the bone marrow (BM) microenvironment of 

ALL is a dynamic system of immune cells, endothelial 

progenitor cells, stromal cells, extracellular matrix, 

www.aging-us.com AGING 2022, Vol. 14, No. 18 

Research Paper 

Identification of immune and stromal cell infiltration -related gene 
signature for prognosis prediction in acute lymphoblastic leukemia 
 

Wen-Liang Yu1,2, Zi-Chun Hua1,2,3 
 
1School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China 
2Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., 
Changzhou 213164, China 
3School of Life Sciences, Nanjing University, Nanjing 210023, China 
 
Correspondence to: Zi-Chun Hua; email: huazc@nju.edu.cn  
Keywords: acute lymphoblastic leukemia, immune cell infiltration, overall survival, bone marrow microenvironment, 
bioinformatics 
Received: April 26, 2022 Accepted: August 31, 2022 Published: September 19, 2022 
 
Copyright: © 2022 Yu and Hua. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 

 

ABSTRACT 
 

Acute lymphoblastic leukemia (ALL) is a common and life-threatening hematologic malignancy, its occurrence 
and progression are closely related to immune/stromal cell infiltration  in the bone marrow (BM) 
microenvironment. However, no studies have described an immune/stromal cell infiltration -related gene 
(ISCIRG)-based prognostic signature for ALL. A total of 444 patients involving 437 bulk and 7 single-cell RNA-seq 
datasets were included in this study. Eligible datasets were searched and reviewed from the database of TCGA, 
TARGET project and GEO. Then an integrated bioinformatics analysis was performed to select optimal 
prognosis-related genes from ISCIRGs, construct a nomogram model for predicting prognosis, and assess the 
predictive power. After LASSO and multivariate Cox regression analyses, a seven ISCIRGs-based signature was 
proved to be able to significantly stratify patients into high- and low-risk groups in terms of OS. The seven 
genes were confirmed that directly related to the composition and status of immune/stromal cells in BM 
microenvironment by analyzing bulk and single-cell RNA-seq datasets. The calibration plot showed that the 
predicted results of the nomogram were consistent with the actual observation results of training/validation 
cohort. This study offers a reference for future research regarding the role of ISCIRGs in ALL and the clinical care 
of patients. 
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growth factors and cytokines. Therefore, evaluating the 

role of immune/stromal cell infiltration of the BM 

microenvironment in survival and progression and 

identifying novel accurate biomarkers for assessing the 

immune/stromal cell infiltration-related risk in patients 

with ALL is of utmost importance for improving the 

prognosis. 

 

Previous studies confirmed that activated stromal cells 

could rescue ALL cells from oxidative stress by 

transferring mitochondria [9], and some immune cells 

could predict outcomes in ALL patients [10]. For 

example, the proportion of PD1+TIM3+ double-positive 

CD4+ T cells could predict poor survival in adult B-

ALL patients [10, 11], and increased frequencies of 

activated cytokine-producing natural killer (NK) cells 

could independently predict poor clinical outcome in 

ALL patient [12]. In tumor microenvironment, 

cytokines played a major role in the regulation of the 

cellular responses between tumor cells and immune 

cells, for example, TGFɓ, IL-10 and IL-6 could dampen 

the anti-tumor response of NK cells by suppressing 

activity and promote subsequent tumor evasion and 

progression [13, 14]. 

 

The Estimation of Stromal and Immune cells in 

Malignant Tumors using Expression data (ESTIMATE) 

algorithm is an analysis approach based on single sample 

gene expression signatures to infer the fraction of stromal 

and immune cells and to generate immune/stromal scores 

for predicting the infiltration of stromal and immune cells 

in malignant tumors [15]. It has made outstanding 

progress in a variety of solid malignancies and some 

hematological malignancies, such as glioma [16], 

prostate cancer [17], gastric cancer [18], colon cancer 

[19] and AML [20]. At present, the prognosis prediction 

models regarding ALL are still based on specific genes  

or some clinicopathologic characteristics [21ï23]. 

Therefore, this study aims to investigate the infiltration of 

immune/stromal cells in the BM microenvironment and 

construct an accurate immune/stromal cell infiltration-

related genes (ISCIRGs)-based model for prognosis 

prediction of ALL patients. 
 

RESULTS 
 

Data source and clinicopathologic characteristics of 

patients 
 

The datasets selection process is shown in Figure 1. By 

reviewing the information of ALL related datasets from 

The Cancer Genome Atlas (TCGA) and the 

Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET) project database, 494 

and 325 primary datasets were identified for training 

group and validation group, respectively. After 

eliminating 95 datasets that were not derived from BM 

samples and 5 datasets without follow-up time, survival 

information and detailed clinical information, 394 

datasets were included in training group. Meanwhile,

 

 
 

Figure 1. Flow-diagram of the datasets selection process. 
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Table 1. Demographics and clinicopathologic characteristics of patients with ALL. 

Demographic or characteristic 
Training cohort   

(n = 394) 
Validation cohort  

(n = 43) 
p* 

Total  
(n = 437) 

Gender, No. (%) 

Male 265 (67.3) 23 (53.5) 0.070 288 (65.9) 

Female 129 (32.7) 20 (46.5)  149 (34.1) 

Age (years), No. (%) 

<18 375 (95.2) 43 (100) 0.141 418 (95.7) 

Ó18 19 (4.8) 0 (0)  19 (4.3) 

Immunophenotypes, No. (%) 

B-ALL  145 (36.8) 2 (4.7) ī 147 (33.6) 

T-ALL  242 (61.4) ī  242 (55.4) 

MPAL 7 (1.8) ī  7 (1.6) 

Unknown 0 (0) 41 (95.3)  41 (9.4) 

Ethnicity, No. (%)  

Asian 19 (4.8) 2 (4.7) ī 21 (4.8) 

Black or African American, No. (%) 43 (10.9) ī  43 (9.8) 

Native Hawaiian or other Pacific Islander 3 (0.8) ī  3 (0.7) 

White 287 (72.8) 7 (16.3)  294 (67.3) 

Unknown 42 (10.7) 34 (79)  76 (17.4) 

*p value was calculated by Pearson chi-square test. 

 

after removing duplicates, 14 datasets that were not 

derived from BM samples and 10 datasets without 

clinical information (i.e., follow-up time, survival 

information, sex, age, and race), 43 datasets were 

included in validation group. Subsequently, the 

complete gene expression profiles and the correspond-

ing metadata and clinical profiles were downloaded and 

merged. 

 

A total of 437 ALL patients, including 288 (65.9%) 

males and 140 (34.1%) females, were finally included 

in this study (Figure 1). The age at initial pathological 

diagnosis ranged from 1 to 30 years, including 418 

(95.7%) children (<18 years old) and 19 (4.3%) adults 

(Ó18 years old). The three primary diagnosis 

immunophenotypes were T-ALL (242, 55.4%), B-ALL 

(147, 33.6%) and MPAL (7, 1.6%). The ethnicity 

included Asian (21, 4.8%), black or African American 

(43, 9.6%), native Hawaiian or other Pacific Islander (3, 

0.7%) and White (294, 67.3%); 76 patients (17.4%) 

were unknown. There were no significant statistical 

differences between the two groups of characteristic 

variables (p > 0.05, Table 1, Supplementary Table 1). 

 

Identification of immune and stromal cell infiltration 

in training cohor t 

 

The ESTIMATE algorithm was applied to calculate the 

immune/stromal score for all included samples, in 

training cohort, the former ranged from 524.82 to 

3304.62, and the latter ranged from ī2316.13 to 

ī362.69 (Supplementary Table 1). The immune score 

had a significant association with immunophenotype 

(p < 0.0001, Figure 2A) but not with race (p = 0.3753, 

Figure 2C), and the stromal scores were significantly 

associated with both the immunophenotype (p < 0.0001, 

Figure 2B) and race (p = 0.0465, Figure 2D). 

 

Subsequently, the included ALL patients were classified 

into high (n = 197) and low score (n = 197) groups to 

explore the potential relationships in OS vs. immune 

scores and OS vs. stromal scores. KaplanïMeier (KM) 

survival analysis showed that the OS time of patients in 

both the high immune score group and the high stromal 

score group was significantly shorter than that of 

patients in the low immune score group (p = 0.015, 

Figure 2E) and the low stromal score group (p = 0.003) 

(p > 0.05, Figure 2F). The above findings suggest that 

the OS of ALL patients is significantly associated with 

both the immune score and stromal score. 

 

Identification of common differentially expressed 

genes (DEGs) based on immune/stromal scores 

 

A total of 440 and 692 DEGs between high/low 

immune and stromal scores were identified, respectively 

(Figure 3A). The heatmap is shown in Figure 3B. 

Moreover, 233 commonly downregulated genes and 

102 commonly upregulated genes were identified from 

the immune score/stromal score groups through 
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integrated bioinformatics analysis, and the Venn plot is 

shown in Figure 3C. These common DEGs are the raw 

data for subsequent studies. 

 

To investigate the biological functions of the common 

DEGs, we further performed Gene Ontology (GO) and 

Kyoto Encyclopedia of Gene and Genomes (KEGG) 

pathway enrichment analysis. GO enrichment analysis 

included three subontologies: biological process (BP), 

cellular component (CC) and molecular function (MF). 

For BP, the common DEGs mainly enriched in immune 

response-activating cell surface receptor signaling 

 

 
 

Figure 2. The association between immune conditions and the clinical features in training group. (A, B) Distribution of immune 

scores and stromal scores for immunophenotypes of ALL patients. (C, D) Distribution of immune score and stromal score for races of ALL 
patients. (E) KM survival curve for comparison between samples with high and low stromal scores. (F) KM survival curve for comparison 
between samples with high and low immune scores. 
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pathway; For CC, the common DEGs were chiefly 

enriched in MHC protein complex; For MF, DEGs were 

principally enriched in immune receptor activity 

Supplementary Figures 1ï3). KEGG pathway 

enrichment analysis showed that the enrichment of the 

common DEGs was chiefly concentrated in cell 

adhesion molecules, systemic lupus erythematosus, and 

hematopoietic cell lineage (Supplementary Figure 4). 

 

Identification of a ISCIRGs-based signature 

 

To investigate the potential value of the common DEGs 

in predicting the OS of ALL patients, first, KM survival 

analysis was performed for all common DEGs. The 

results showed that 335 common DEGs were 

significantly associated with OS (p < 0.05, 

Supplementary Table 2). Second, univariate Cox 

analysis was performed, and 317 prognosis-associated 

ISCIRGs were identified. Least absolute shrinkage and 

selection operator (LASSO) followed by multivariate 

Cox analysis identified seven optimal prognosis-related 

ISCIRGs (i.e., LILRA1, NRGN, VPREB3, MT-ND6, 
EMP2, IGHM and FFAR1) as a risk signature (Figure 

4A, 4B, Supplementary Table 3). Based on the 

multivariate Cox proportional hazards regression model, 

the expression coefficient of each independent risk gene 

was obtained, and our prognostic model for predicting 

prognosis was formed using the following formula: 

Risk score = ExpLILRA1 × 0.001077 + ExpNRGN × 

0.000137 + ExpVPREB3 × 0.000019 + ExpMT-ND6 × 

0.000005 + ExpEMP2 × 0.000259 + ExpIGHM × 0.000003 

+ ExpFFAR1 × 0.000133. 

 

Based on the BM sample of healthy persons and ALL 

patients from TCGA, we found that, compared to 

healthy BM, in ALL, the gene expression level of 

LILRA1, NRGN, MT-ND6, EMP2, and IGHM were 

significantly decreased (Figure 4C). Furthermore, based 

on four datasets of ALL patients (i.e., St Jude, Nat 

Genet 2013; St Jude, Nat Genet 2015; St Jude, Nat 

Genet 2016; and TARGET, 2018), the genetic 

alterations, including amplification and deep deletions, 

were identified in five genes (i.e., LILRA1, NRGN, 

VPREN3, EMP2, and FFAR1), with frequencies ranging 

from 0.4% to 1.8% (Figure 4D). Representative 

immunohistochemically pictures of VPREN3 protein 

expression was shown in Supplementary Figure 5. In 

addition, the STRING online database and Cytoscape 

software were used to construct a ProteinïProtein 

Interaction (PPI) network to investigate the interplay 

among the seven ISCIRGs. The overall network 

contained 22 nodes and 376 edges (Supplementary 

 

 
 

Figure 3. Identification of DEGs based on immune score and stromal score. (A) Volcano plot of DEGs from the low/high immune 

and stromal score groups. Note: Genes with p ғ лΦлр ŀǊŜ ǎƘƻǿƴ ƛƴ ǊŜŘ όC/ Ҕ нύ ŀƴŘ ƎǊŜŜƴ όC/ ғ ҍнύΦ .ƭŀŎƪ Ǉƭƻǘǎ ǊŜǇǊŜǎŜƴǘ ǘƘŜ ǊŜƳŀƛƴƛƴƎ 
genes (those with no significant difference). (B) Heatmap of DEGs from the low/high immune and stromal score groups. (C) Venn plot for 
common up- and downregulated DEGs in the stromal and immune score groups. 
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Figure 6). Furthermore, GO enrichment analysis 

showed that the seven ISCIRGs were mainly enriched 

in mitochondrial electron transport and oxidative 

phosphorylation (BP), NADH dehydrogenase (ubi-

quinone) activity (MF), and respirasome (CC). KEGG 

pathway enrichment analysis demonstrated that these 

genes were also significantly associated with oxidative 

phosphorylation (Supplementary Table 4). 

 

 
 

Figure 4. Identification of an ISCIRG-based signature. (A) The coefficient profile plot was produced against the log(lambda) 

sequence. A vertical line was drawn at the value selected using ten-fold cross-validation, where an optimal lambda value resulted in ten 
features with nonzero coefficients. (B) Optimal parameter (lambda) selection in the LASSO model used ten-fold cross-validation via 
minimum criteria. The partial likelihood deviance (binomial deviance) curve was plotted versus the log(lambda) value. Dotted vertical lines 
were drawn at the optimal values by using the minimum criteria and the I standard error of the minimum criteria. (C) The mRNA expression 
profiles of the seven prognostic ISCIRGs between health and tumor tissues (bulk RNA-seq datasets). ** p < 0.01, *** p < 0.001 and **** p < 
0.0001. (D) Genetic alterations of seven prognostic ISCIRGs in ALL calculated by cBioPortal database. *p < 0.05. 
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Prognostic value of the ISCIRG-based signature 

 

After calculating the risk scores of all patients, we used 

the median risk score as a cutoff value to classify 

patients of training cohort into high- and low-risk 

groups. KM survival analysis showed that the patients 

in high-risk group had significantly lower OS than those 

in low-risk group (log-rank text p < 0.0001, Figure 5A, 

5B). Time-dependent ROC analysis confirmed 

favorable values in predicting OS in this validation set 

(Figure 5C). We also performed univariate and 

multivariate Cox regression analysis. Univariate Cox 

regression analysis confirmed that risk score was a 

significant prognostic factor (hazard ratio (HR) 95% 

confidence interval (CI): 5.915 [3.208, 10.907], p < 

0.001, Figure 6A). Multivariate Cox regression analysis 

showed that after adjusting for clinicopathological 

features and tumor purity, the ISCIRG-based signature 

was still an independent prognostic factor and predictor 

for ALL patients (HR 95% CI: 2.527 [1.052, 6.070],  

p = 0.038, Figure 6B). In addition, tumor purity was not 

a factor (p = 0.271) influencing the significant 

association between the ISCIRG-based signature and 

prognosis in multivariate cox model, demonstrating that 

this model was not just reporting the level of tumor 

burden in patients. 

 

Subsequently, subgroup analysis was performed to 

further confirm the prognostic value of the gene 

signature in different clinicopathological factors. The 

results showed that the association between risk score 

and OS remained markedly significant after controlling 

for race and immunophenotype (Figure 7Aï7D). 

 

Association between the ISCIRG-based signature 

and immune cell infiltration  

 

Four normal and seven B-ALL single-cell RNA-seq 

datasets from GSE134759 were included in this 

analysis. The included samples were collected at the 

 

 
 

Figure 5. Assessment of the prognostic value of the ISCIRG signature in training group. (A) KM survival curve for high-risk and 

low-risk patients. (B) Risk score analysis for the high-risk group and low-risk group. Upper panel: Patient survival status and time distributed 
by the risk score. Middle panel: Risk score curves of the ISCIRG signature. Bottom panel: Heatmaps of the expression levels of the seven 
ISCIRGs. The colors from green to red indicate the gene expression levels from low to high. (C) Time-dependent ROC curve for 1-, 3-, and 5-
year OS rates. 
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beginning of diagnosis of ALL patients. After quality 

control, the combined 11 diagnostic BM samples 

included 27810 cells with a mean and median of 2268 

and 2110 detected genes, respectively. The number of 

genes detected was significantly associated with the 

sequencing depth. The tSNE algorithm identified 23 

separate clusters (Supplementary Figure 7Aï7G). Then, 

7478 B cells, 933 T cells, 438 dendritic cells (DCs), 77 

erythroblast cells, 1068 hematopoietic stem cells and 

progenitor cells (HSPCs), 1327 myeloid cells and 773 

NK cells were identified and annotated based on the 

marker genes (Figure 8A, 8B). The immune cell 

infiltration showed a large difference between healthy 

persons and ALL patients, for some severe patients, 

such as patient 1, there were almost no other immune 

cells in BM except tumor cells (i.e., B-cells) (Figure 

8C). LILRA1, NRGN, VPREB3, MT-ND6, EMP2, and 

IGHM genes were expressed in different degrees in 

different immune cells and stromal cells, among which 

IGHM and VPREB3 had significantly higher expression 

levels in B cells than in other cells, NRGN was 

expressed in DCs and myeloid cells, and MT-ND6 was 

expressed in all kinds of immune cells and myeloid 

cells of the BM microenvironment (Figure 8D). 

Moreover, the mRNA expression levels of LILRA1, 

VPREB3, EMP2, and IGHM were statistically 

 

 
 

Figure 6. Univariate and multivariate Cox analyses. (A) Forest plot of univariate Cox analyses. (B) Forest plot of multivariate Cox 

analyses. 


