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INTRODUCTION 
 

Acute lymphoblastic leukemia (ALL) is one of the most 

frequent hematologic malignancies, especially in 

children, accounting for approximately 25% of all 

pediatric cancers [1]. The immunophenotypes of ALL 

include T cell ALL (T-ALL), B cell ALL (B-ALL) and 

mixed-phenotype acute leukemia (MPAL), where 

MPAL is a rare immunophenotype with features of both 

ALL and acute myeloid leukemia (AML) [2]. Although 

the application of immunotherapy led by chimeric 

antigen receptor T (CAR T) cell therapy has greatly 

improved the clinical remission rate of ALL patients 

[3], a shorter overall survival (OS) rate caused by 

adverse prognosis is still a crucial challenge for 

clinicians and patients. For example, the OS rate of 

adult ALL patients is less than 45% [4]. 

 

Accumulating evidence indicates that the crosstalk 

between tumor and immune cells plays a crucial role in 

cancer development by regulating tumor malignancy, 

immune/stromal cell infiltration, and immune evasion in 

the tumor microenvironment [5–8]. Similar to solid 

tumors, the bone marrow (BM) microenvironment of 

ALL is a dynamic system of immune cells, endothelial 

progenitor cells, stromal cells, extracellular matrix, 
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ABSTRACT 
 

Acute lymphoblastic leukemia (ALL) is a common and life-threatening hematologic malignancy, its occurrence 
and progression are closely related to immune/stromal cell infiltration in the bone marrow (BM) 
microenvironment. However, no studies have described an immune/stromal cell infiltration-related gene 
(ISCIRG)-based prognostic signature for ALL. A total of 444 patients involving 437 bulk and 7 single-cell RNA-seq 
datasets were included in this study. Eligible datasets were searched and reviewed from the database of TCGA, 
TARGET project and GEO. Then an integrated bioinformatics analysis was performed to select optimal 
prognosis-related genes from ISCIRGs, construct a nomogram model for predicting prognosis, and assess the 
predictive power. After LASSO and multivariate Cox regression analyses, a seven ISCIRGs-based signature was 
proved to be able to significantly stratify patients into high- and low-risk groups in terms of OS. The seven 
genes were confirmed that directly related to the composition and status of immune/stromal cells in BM 
microenvironment by analyzing bulk and single-cell RNA-seq datasets. The calibration plot showed that the 
predicted results of the nomogram were consistent with the actual observation results of training/validation 
cohort. This study offers a reference for future research regarding the role of ISCIRGs in ALL and the clinical care 
of patients. 

mailto:huazc@nju.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 7471 AGING 

growth factors and cytokines. Therefore, evaluating the 

role of immune/stromal cell infiltration of the BM 

microenvironment in survival and progression and 

identifying novel accurate biomarkers for assessing the 

immune/stromal cell infiltration-related risk in patients 

with ALL is of utmost importance for improving the 

prognosis. 

 

Previous studies confirmed that activated stromal cells 

could rescue ALL cells from oxidative stress by 

transferring mitochondria [9], and some immune cells 

could predict outcomes in ALL patients [10]. For 

example, the proportion of PD1+TIM3+ double-positive 

CD4+ T cells could predict poor survival in adult B-

ALL patients [10, 11], and increased frequencies of 

activated cytokine-producing natural killer (NK) cells 

could independently predict poor clinical outcome in 

ALL patient [12]. In tumor microenvironment, 

cytokines played a major role in the regulation of the 

cellular responses between tumor cells and immune 

cells, for example, TGFβ, IL-10 and IL-6 could dampen 

the anti-tumor response of NK cells by suppressing 

activity and promote subsequent tumor evasion and 

progression [13, 14]. 

 

The Estimation of Stromal and Immune cells in 

Malignant Tumors using Expression data (ESTIMATE) 

algorithm is an analysis approach based on single sample 

gene expression signatures to infer the fraction of stromal 

and immune cells and to generate immune/stromal scores 

for predicting the infiltration of stromal and immune cells 

in malignant tumors [15]. It has made outstanding 

progress in a variety of solid malignancies and some 

hematological malignancies, such as glioma [16], 

prostate cancer [17], gastric cancer [18], colon cancer 

[19] and AML [20]. At present, the prognosis prediction 

models regarding ALL are still based on specific genes  

or some clinicopathologic characteristics [21–23]. 

Therefore, this study aims to investigate the infiltration of 

immune/stromal cells in the BM microenvironment and 

construct an accurate immune/stromal cell infiltration-

related genes (ISCIRGs)-based model for prognosis 

prediction of ALL patients. 
 

RESULTS 
 

Data source and clinicopathologic characteristics of 

patients 
 

The datasets selection process is shown in Figure 1. By 

reviewing the information of ALL related datasets from 

The Cancer Genome Atlas (TCGA) and the 

Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET) project database, 494 

and 325 primary datasets were identified for training 

group and validation group, respectively. After 

eliminating 95 datasets that were not derived from BM 

samples and 5 datasets without follow-up time, survival 

information and detailed clinical information, 394 

datasets were included in training group. Meanwhile,

 

 
 

Figure 1. Flow-diagram of the datasets selection process. 



www.aging-us.com 7472 AGING 

Table 1. Demographics and clinicopathologic characteristics of patients with ALL. 

Demographic or characteristic 
Training cohort  

(n = 394) 
Validation cohort  

(n = 43) 
p* 

Total  
(n = 437) 

Gender, No. (%) 

Male 265 (67.3) 23 (53.5) 0.070 288 (65.9) 

Female 129 (32.7) 20 (46.5)  149 (34.1) 

Age (years), No. (%) 

<18 375 (95.2) 43 (100) 0.141 418 (95.7) 

≥18 19 (4.8) 0 (0)  19 (4.3) 

Immunophenotypes, No. (%) 

B-ALL 145 (36.8) 2 (4.7) − 147 (33.6) 

T-ALL 242 (61.4) −  242 (55.4) 

MPAL 7 (1.8) −  7 (1.6) 

Unknown 0 (0) 41 (95.3)  41 (9.4) 

Ethnicity, No. (%) 

Asian 19 (4.8) 2 (4.7) − 21 (4.8) 

Black or African American, No. (%) 43 (10.9) −  43 (9.8) 

Native Hawaiian or other Pacific Islander 3 (0.8) −  3 (0.7) 

White 287 (72.8) 7 (16.3)  294 (67.3) 

Unknown 42 (10.7) 34 (79)  76 (17.4) 

*p value was calculated by Pearson chi-square test. 

 

after removing duplicates, 14 datasets that were not 

derived from BM samples and 10 datasets without 

clinical information (i.e., follow-up time, survival 

information, sex, age, and race), 43 datasets were 

included in validation group. Subsequently, the 

complete gene expression profiles and the correspond-

ing metadata and clinical profiles were downloaded and 

merged. 

 

A total of 437 ALL patients, including 288 (65.9%) 

males and 140 (34.1%) females, were finally included 

in this study (Figure 1). The age at initial pathological 

diagnosis ranged from 1 to 30 years, including 418 

(95.7%) children (<18 years old) and 19 (4.3%) adults 

(≥18 years old). The three primary diagnosis 

immunophenotypes were T-ALL (242, 55.4%), B-ALL 

(147, 33.6%) and MPAL (7, 1.6%). The ethnicity 

included Asian (21, 4.8%), black or African American 

(43, 9.6%), native Hawaiian or other Pacific Islander (3, 

0.7%) and White (294, 67.3%); 76 patients (17.4%) 

were unknown. There were no significant statistical 

differences between the two groups of characteristic 

variables (p > 0.05, Table 1, Supplementary Table 1). 

 

Identification of immune and stromal cell infiltration 

in training cohort 

 

The ESTIMATE algorithm was applied to calculate the 

immune/stromal score for all included samples, in 

training cohort, the former ranged from 524.82 to 

3304.62, and the latter ranged from −2316.13 to 

−362.69 (Supplementary Table 1). The immune score 

had a significant association with immunophenotype 

(p < 0.0001, Figure 2A) but not with race (p = 0.3753, 

Figure 2C), and the stromal scores were significantly 

associated with both the immunophenotype (p < 0.0001, 

Figure 2B) and race (p = 0.0465, Figure 2D). 

 

Subsequently, the included ALL patients were classified 

into high (n = 197) and low score (n = 197) groups to 

explore the potential relationships in OS vs. immune 

scores and OS vs. stromal scores. Kaplan–Meier (KM) 

survival analysis showed that the OS time of patients in 

both the high immune score group and the high stromal 

score group was significantly shorter than that of 

patients in the low immune score group (p = 0.015, 

Figure 2E) and the low stromal score group (p = 0.003) 

(p > 0.05, Figure 2F). The above findings suggest that 

the OS of ALL patients is significantly associated with 

both the immune score and stromal score. 

 

Identification of common differentially expressed 

genes (DEGs) based on immune/stromal scores 

 

A total of 440 and 692 DEGs between high/low 

immune and stromal scores were identified, respectively 

(Figure 3A). The heatmap is shown in Figure 3B. 

Moreover, 233 commonly downregulated genes and 

102 commonly upregulated genes were identified from 

the immune score/stromal score groups through 
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integrated bioinformatics analysis, and the Venn plot is 

shown in Figure 3C. These common DEGs are the raw 

data for subsequent studies. 

 

To investigate the biological functions of the common 

DEGs, we further performed Gene Ontology (GO) and 

Kyoto Encyclopedia of Gene and Genomes (KEGG) 

pathway enrichment analysis. GO enrichment analysis 

included three subontologies: biological process (BP), 

cellular component (CC) and molecular function (MF). 

For BP, the common DEGs mainly enriched in immune 

response-activating cell surface receptor signaling 

 

 
 

Figure 2. The association between immune conditions and the clinical features in training group. (A, B) Distribution of immune 

scores and stromal scores for immunophenotypes of ALL patients. (C, D) Distribution of immune score and stromal score for races of ALL 
patients. (E) KM survival curve for comparison between samples with high and low stromal scores. (F) KM survival curve for comparison 
between samples with high and low immune scores. 
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pathway; For CC, the common DEGs were chiefly 

enriched in MHC protein complex; For MF, DEGs were 

principally enriched in immune receptor activity 

Supplementary Figures 1–3). KEGG pathway 

enrichment analysis showed that the enrichment of the 

common DEGs was chiefly concentrated in cell 

adhesion molecules, systemic lupus erythematosus, and 

hematopoietic cell lineage (Supplementary Figure 4). 

 

Identification of a ISCIRGs-based signature 

 

To investigate the potential value of the common DEGs 

in predicting the OS of ALL patients, first, KM survival 

analysis was performed for all common DEGs. The 

results showed that 335 common DEGs were 

significantly associated with OS (p < 0.05, 

Supplementary Table 2). Second, univariate Cox 

analysis was performed, and 317 prognosis-associated 

ISCIRGs were identified. Least absolute shrinkage and 

selection operator (LASSO) followed by multivariate 

Cox analysis identified seven optimal prognosis-related 

ISCIRGs (i.e., LILRA1, NRGN, VPREB3, MT-ND6, 
EMP2, IGHM and FFAR1) as a risk signature (Figure 

4A, 4B, Supplementary Table 3). Based on the 

multivariate Cox proportional hazards regression model, 

the expression coefficient of each independent risk gene 

was obtained, and our prognostic model for predicting 

prognosis was formed using the following formula: 

Risk score = ExpLILRA1 × 0.001077 + ExpNRGN × 

0.000137 + ExpVPREB3 × 0.000019 + ExpMT-ND6 × 

0.000005 + ExpEMP2 × 0.000259 + ExpIGHM × 0.000003 

+ ExpFFAR1 × 0.000133. 

 

Based on the BM sample of healthy persons and ALL 

patients from TCGA, we found that, compared to 

healthy BM, in ALL, the gene expression level of 

LILRA1, NRGN, MT-ND6, EMP2, and IGHM were 

significantly decreased (Figure 4C). Furthermore, based 

on four datasets of ALL patients (i.e., St Jude, Nat 

Genet 2013; St Jude, Nat Genet 2015; St Jude, Nat 

Genet 2016; and TARGET, 2018), the genetic 

alterations, including amplification and deep deletions, 

were identified in five genes (i.e., LILRA1, NRGN, 

VPREN3, EMP2, and FFAR1), with frequencies ranging 

from 0.4% to 1.8% (Figure 4D). Representative 

immunohistochemically pictures of VPREN3 protein 

expression was shown in Supplementary Figure 5. In 

addition, the STRING online database and Cytoscape 

software were used to construct a Protein–Protein 

Interaction (PPI) network to investigate the interplay 

among the seven ISCIRGs. The overall network 

contained 22 nodes and 376 edges (Supplementary 

 

 
 

Figure 3. Identification of DEGs based on immune score and stromal score. (A) Volcano plot of DEGs from the low/high immune 

and stromal score groups. Note: Genes with p < 0.05 are shown in red (FC > 2) and green (FC < −2). Black plots represent the remaining 
genes (those with no significant difference). (B) Heatmap of DEGs from the low/high immune and stromal score groups. (C) Venn plot for 
common up- and downregulated DEGs in the stromal and immune score groups. 
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Figure 6). Furthermore, GO enrichment analysis 

showed that the seven ISCIRGs were mainly enriched 

in mitochondrial electron transport and oxidative 

phosphorylation (BP), NADH dehydrogenase (ubi-

quinone) activity (MF), and respirasome (CC). KEGG 

pathway enrichment analysis demonstrated that these 

genes were also significantly associated with oxidative 

phosphorylation (Supplementary Table 4). 

 

 
 

Figure 4. Identification of an ISCIRG-based signature. (A) The coefficient profile plot was produced against the log(lambda) 

sequence. A vertical line was drawn at the value selected using ten-fold cross-validation, where an optimal lambda value resulted in ten 
features with nonzero coefficients. (B) Optimal parameter (lambda) selection in the LASSO model used ten-fold cross-validation via 
minimum criteria. The partial likelihood deviance (binomial deviance) curve was plotted versus the log(lambda) value. Dotted vertical lines 
were drawn at the optimal values by using the minimum criteria and the I standard error of the minimum criteria. (C) The mRNA expression 
profiles of the seven prognostic ISCIRGs between health and tumor tissues (bulk RNA-seq datasets). **p < 0.01, ***p < 0.001 and ****p < 
0.0001. (D) Genetic alterations of seven prognostic ISCIRGs in ALL calculated by cBioPortal database. *p < 0.05. 
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Prognostic value of the ISCIRG-based signature 

 

After calculating the risk scores of all patients, we used 

the median risk score as a cutoff value to classify 

patients of training cohort into high- and low-risk 

groups. KM survival analysis showed that the patients 

in high-risk group had significantly lower OS than those 

in low-risk group (log-rank text p < 0.0001, Figure 5A, 

5B). Time-dependent ROC analysis confirmed 

favorable values in predicting OS in this validation set 

(Figure 5C). We also performed univariate and 

multivariate Cox regression analysis. Univariate Cox 

regression analysis confirmed that risk score was a 

significant prognostic factor (hazard ratio (HR) 95% 

confidence interval (CI): 5.915 [3.208, 10.907], p < 

0.001, Figure 6A). Multivariate Cox regression analysis 

showed that after adjusting for clinicopathological 

features and tumor purity, the ISCIRG-based signature 

was still an independent prognostic factor and predictor 

for ALL patients (HR 95% CI: 2.527 [1.052, 6.070],  

p = 0.038, Figure 6B). In addition, tumor purity was not 

a factor (p = 0.271) influencing the significant 

association between the ISCIRG-based signature and 

prognosis in multivariate cox model, demonstrating that 

this model was not just reporting the level of tumor 

burden in patients. 

 

Subsequently, subgroup analysis was performed to 

further confirm the prognostic value of the gene 

signature in different clinicopathological factors. The 

results showed that the association between risk score 

and OS remained markedly significant after controlling 

for race and immunophenotype (Figure 7A–7D). 

 

Association between the ISCIRG-based signature 

and immune cell infiltration 

 

Four normal and seven B-ALL single-cell RNA-seq 

datasets from GSE134759 were included in this 

analysis. The included samples were collected at the 

 

 
 

Figure 5. Assessment of the prognostic value of the ISCIRG signature in training group. (A) KM survival curve for high-risk and 

low-risk patients. (B) Risk score analysis for the high-risk group and low-risk group. Upper panel: Patient survival status and time distributed 
by the risk score. Middle panel: Risk score curves of the ISCIRG signature. Bottom panel: Heatmaps of the expression levels of the seven 
ISCIRGs. The colors from green to red indicate the gene expression levels from low to high. (C) Time-dependent ROC curve for 1-, 3-, and 5-
year OS rates. 
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beginning of diagnosis of ALL patients. After quality 

control, the combined 11 diagnostic BM samples 

included 27810 cells with a mean and median of 2268 

and 2110 detected genes, respectively. The number of 

genes detected was significantly associated with the 

sequencing depth. The tSNE algorithm identified 23 

separate clusters (Supplementary Figure 7A–7G). Then, 

7478 B cells, 933 T cells, 438 dendritic cells (DCs), 77 

erythroblast cells, 1068 hematopoietic stem cells and 

progenitor cells (HSPCs), 1327 myeloid cells and 773 

NK cells were identified and annotated based on the 

marker genes (Figure 8A, 8B). The immune cell 

infiltration showed a large difference between healthy 

persons and ALL patients, for some severe patients, 

such as patient 1, there were almost no other immune 

cells in BM except tumor cells (i.e., B-cells) (Figure 

8C). LILRA1, NRGN, VPREB3, MT-ND6, EMP2, and 

IGHM genes were expressed in different degrees in 

different immune cells and stromal cells, among which 

IGHM and VPREB3 had significantly higher expression 

levels in B cells than in other cells, NRGN was 

expressed in DCs and myeloid cells, and MT-ND6 was 

expressed in all kinds of immune cells and myeloid 

cells of the BM microenvironment (Figure 8D). 

Moreover, the mRNA expression levels of LILRA1, 

VPREB3, EMP2, and IGHM were statistically 

 

 
 

Figure 6. Univariate and multivariate Cox analyses. (A) Forest plot of univariate Cox analyses. (B) Forest plot of multivariate Cox 

analyses. 
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increased, and the mRNA expression levels of NRGN 

and MT-ND6 were statistically decreased in ALL 

sample compared to normal sample (Supplementary 

Figure 8). 

 

Based on the annotated single-cell gene expression 

matrix in the above results, we built a custom signature 

matrix file by using Cell-type Identification by 

Estimating Relative Subsets of RNA Transcripts x 

(CIBERSORTx) (Supplementary Table 5). Subsequent-

ly, we used the custom signature matrix file to impute 

the BM cell fractions for patients of training cohort 

(Figure 9A). After removing B cells and T cells that 

may correspond to the immunophenotype of ALL, the 

results showed that the low-risk group exhibited higher 

levels of HSPCs. The high-risk group exhibited higher 

levels of myeloid cells, DCs, and NK cells (Figure 9B). 

Figure 9C demonstrates correlations between the 

various immune cells. Furthermore, the survival 

analysis showed that patients with higher DCs and NK 

cells had a shorter OS time than those with lower DCs 

(p < 0.001) and NK cells (p = 0.01). While, patients 

with higher HSPCs had a longer OS time than those 

with lower HSPCs (p < 0.001, Figure 9D). 

 

 
 

Figure 7. Evaluation of the ISCIRGs-based signature via stratification of patients based on specific clinicopathological 
features. (A) B-ALL. (B) Mixed. (C) White. (D) Black or African American. 
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Construction and validation of clinically applicable 

prognostic nomogram 

 

Based on the four valuable factors (immunophenotype, 

race, age and gender) and the ISCIRG-based signature 

in the bulk RNA-seq data set of training group, a 

prognostic nomogram was developed to provide a 

clinically applicable quantitative approach for 

individual OS prediction (Figure 10A). The calibration 

test indicated the perfect prediction ability of this model 

(concordance index (C-index): 0.802 95% CI: 

0.7473−0.8572, S: p = 0.887, ROC = 0.840, Figure 

10B). The calibration plots suggested that the agreement 

between the predicted 1-, 3-, and 5-year OS rates and 

 

 
 

Figure 8. Cell composition and mRNA expression profiles of seven ISCIRGs in single-cell RNA-seq samples. (A) tSNE of the 

27810 cells profiled here, with each cell color-coded for (left to right): its sample group of origin (ALL or health BM), the corresponding case 
(health cases: H1 to H4, ALL patients: P1 to P7) and the associated cell type. (B) Expression of marker genes for the cell types defined above 
each panel. (C) Proportion of cell type in BM of each participant. (D) The mRNA expression profiles of the seven ISCIRGs in each type of cell. 
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actual observations was excellent (Figure 10C). These 

results suggest that the prognostic nomogram is reliable 

and can be applied for ALL patients. 

 

To validate the feasibility and robustness of our 

nomogram, we performed a similar analysis process for 

dataset of validation group. KM survival analysis 

showed that the population with higher risk score also 

had significantly lower OS than those with lower risk 

score (log-rank text p = 0.03, Supplementary Figure 9A, 

9C). Time-dependent ROC analysis confirmed 

favorable values in predicting OS in this validation set 

 

 
 

Figure 9. The landscape of immune cell infiltration between the high- and low-risk groups. (A) Proportion of cell type of the 

low- and high-risk groups in bulk RNA-seq samples. (B) Differential immune cell infiltrates between the high- and low-risk groups. (C) 
Correlation matrix of the relationship between the expression levels of the seven ISCIRGs and differential immune infiltration levels. (D) KM 
survival curves for patients with higher and lower proportions of specific cell. 
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(Supplementary Figure 9B). And the calibration test 

showed the good prediction ability as well (C-index: 

0.6861 95% CI: 0.5777−0.7946, S: p = 0.962, ROC = 

0.778, Supplementary Figure 10A). The calibration 

plots also suggested that the agreement between the 

predicted 1-, 3-, and 5-year OS rates and actual 

observations was good (Supplementary Figure 10B). 

Besides, we further validated the prognostic 

significance of this model by analyzing two external 

validation datasets, including GSE13576 (n = 197) and 

GSE50999 (n = 43). The results showed that patients 

(GSE13576) with pediatric B-ALL in higher risk score 

group had higher early and late relapse rates (19.4%) 

compared to those in lower risk score group (13.3%, 

Supplementary Figure 11, Supplementary Table 6), and 

patients (GSE50999) with T-ALL in higher risk score 

group also had a higher relapse rate (28.6%) than those 

in lower risk score group (13.6%, Supplementary Figure 

12, Supplementary Table 6). 

 

Furthermore, to visualize and facilitate the clinical use 

of the prognostic nomogram, we developed an easy-to- 

operate web-based model that predicted the OS of ALL 

based on the established nomogram (Figure 11A, 11B).

 

 
 

Figure 10. Prognostic nomogram to predict the 1-, 3-, and 5-year OS of ALL patients. (A) Nomogram model to predict the 
prognosis of ALL patients. (B) Calibration test for the prognostic nomogram. (C) Calibration plot of the prognostic nomogram for predicting 
OS at 1-, 3-, and 5-years. 
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The estimated probability of disease progression could 

be obtained by drawing a vertical line from the total 

point axis to the outcome axis. 

 

DISCUSSION 
 

ALL is a rapidly progressive hematologic malignancy 

whose maintenance and progression are highly 

dependent upon the interaction between immune/ 

stromal cells and the nonmalignant microenvironment 

[24]. Therefore, in the early stage of disease 

progression, adequate assessments of the infiltration of 

immune/stromal cells and accurate prediction tools are 

essential for treatment decision-making and prognostic 

evaluation in patients with ALL. This study investigated 

immune/stromal cell infiltration and assessed the 

involvement of ISCIRGs in prognosis in patients with 

ALL. First, the scores regarding immune/stromal cell 

infiltration were proved to be of prognostic value. 

Second, a ISCIRGs-based signature was constructed. 

Third, seven key ISCIRGs were confirmed that had 

prognostic value and were associated with the 

 

 
 

Figure 11. Web-based calculator for predicting OS in patients with ALL. (A) Web-based overall survival rate calculator. (B) The 95% 
CI of the web-based progression-free survival rate. 
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infiltration of specific types of immune cells based on 

the analysis results combined single-cell RNA-seq and 

bulk RNA-seq datasets. Finally, a prognostic nomogram 

composed of the ISCIRGs-based signature, age, gender, 

race and immunophenotype was successfully developed 

and validated for predicting the prognosis of ALL 

patients. 

 

Some previous studies have showed that there are 

differences in the prognosis of ALL patients with 

various immunophenotypes. For example, for T-ALL, 

50% of adult patients have poor prognosis after 

chemotherapy [25], while, for B-ALL, some patients 

still have more than 60% relapse rate even after 

treatment with CAR T therapy [26]. Since three 

immunophenotypes (i.e., T-ALL, B-ALL and MPAL) 

were included in this study, we first calculated the 

immune/stromal scores for patient groups with three 

immunophenotypes, respectively, and found that the 

scores were significantly different between three patient 

groups. This suggested that the immune/stromal cells of 

patients with various immunophenotypes were in 

different states, and this difference might be a 

nonnegligible factor leading to poor prognosis of 

various immunophenotypes. Subsequently, we found 

that patients with different race also had different 

stromal scores. It is known that racial and ethnic 

disparities persist in the outcome and prognosis of ALL 

[27]. Therefore, the proportion and states of stromal 

cells might be two important factors leading to the 

different prognosis of various races. Then, the KM 

curve showed that the immune and stromal scores were 

significantly associated with OS, respectively. Thus, 

both the immune and stromal cell infiltration were 

meaningful in predicting OS, and it is necessary to 

identify prognostic genes based on immune scores, 

stromal scores or both. 

 

After obtaining the common DEGs from the low vs. 

high immune score/stromal score groups, we performed 

a functional enrichment analysis for these genes, and 

found that these genes mainly enriched in immune 

system. This result not only verified the reliability of the 

ESTIMATE algorithm, but also indicated that ISCIRGs 

mainly regulated the immune system. Previous studies 

have found that some individual genes regulated 

immune system are crucial factors for ALL with poor 

prognosis, such as IKZF1 [28]. While, in this study, the 

prognostic signature was constructed based on seven 

ISCIRGs (i.e., LILRA1, NRGN, VPREB3, MT-ND6, 

EMP2, IGHM and FFAR1). The OS association of this 

prognostic signature (p = 3.957e−13) was significantly 

higher than ESTIMATE immune scores-based signature 

(p = 0.015) or stromal scores-based signature (p = 

0.003), suggesting the great potential of prognostic 

prediction. 

Among the seven ISCIRGs, VPREB3 and IGHM have 

been confirmed that are associated with the prognosis of 

ALL [29], and MT-ND6 are found mutation in ALL 

patients [30]. In terms of each gene, the higher 

expression of all seven ISCIRGs was positively 

associated with shorter OS time. The major function of 

the seven genes included: LILRA1 is to regulate immune 

responses by interacting with MHC class I ligands [31]; 

NRGN is a postsynaptic protein kinase substrate that 

binds calmodulin in the absence of calcium [32]; 

VPREB3 and IGHM is thought to be involved in B cell 

maturation [33], mutation or absence can cause either 

an arrest or a severe impairment at the pro-B cell stage 

[34, 35]; MT-ND6 involved in mitochondrial electron 

transport, NADH to ubiquinone and mitochondrial 

respiratory chain complex I assembly [36]; EMP2 

regulates cell membrane composition, and up-regulation 

of this gene has been linked to cancer progression in 

multiple different tissues [37, 38]; and FFAR1 involved 

in the metabolic regulation of insulin secretion [39]. In 

terms of the synergies of these genes, the results of PPI 

network analysis and functional enrichment analysis for 

the seven DEGs showed that these genes were mainly 

enriched in mitochondrial electron transport and 

oxidative phosphorylation. Jaramillo et al. [40] found 

that Rho (0) malignant T cells with impaired 

mitochondrial electron transport chain function had 

lower sensitivity to the combination treatment than 

wild-type cells, and Chen et al. [41] confirmed that 

oxidative phosphorylation can enhance resistance to 

chemotherapy in B-ALL. And all patients included in 

the survival analysis were treated with conventional 

combined chemotherapy. Therefore, the high feasibility 

of the prognostic signature may also be related to the 

reduction of combined chemotherapy sensitivity caused 

by the differential expression of the seven genes. These 

genes may also be the key hints for overcoming 

resistance to immunotherapy. 

 

Subsequently, we investigated the expression of the 

seven genes in various cell types by analyzing  

the single-cell RNA-datasets, and further performed the 

difference in the proportion of immune cells in high- 

and low-risk groups by integrating single-cell and bulk 

RNA-seq datasets. In the single-cell RNA-seq datasets, 

we found that due to the accumulation of a large 

number of immature lymphocytes, the immune cells in 

the BM of ALL patients were significantly reduced 

compared to the healthy BM, and the types of other 

immune cells (except for immature lymphocytes) 

showed differences in each patients. And this difference 

was related to the ISCIRGs-based signature and the 

prognosis of patients of bulk RNA-seq datasets. 
Previous studies have suggested that some immune cells 

could predict the prognosis of all patients, for example, 

Hohtari et al. [10] and Zhou et al. [11] found that the 
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proportion of PD1+TIM3+ double-positive CD4+ T 

cells could differentiate the poor survival group of B-

ALL, and Duault et al. [12] revealed that increased 

frequencies of activated cytokine-producing NK cells 

could independently predict poor clinical outcome in 

ALL patient. Our results showed that the patients in 

high-risk group had significant higher proportions of 

DCs and NK cells compared to those in low-risk group, 

and higher proportions of DCs and NK cells had 

significant shorter OS time compared to lower 

proportions. The results regarding association between 

NK cells and poor prognosis were consistent with 

previous study [12], while the results of DCs were 

contrary to previous cognition. DCs were thought to be 

able to present tumor antigens, stimulating immune 

system to play an anti-tumor role in ALL [42]. 

However, our results showed that higher proportions of 

DCs was no benefit for good prognosis for the first 

time. Given that the seven ISCIRGs-based signature are 

directly related to the proportion and even the status of 

immune cells, future studies are required to elucidate 

the mechanisms associated with prognosis of these 

genes in specific immune cells (e.g., DCs). 

 

Nomogram is a multivariable regression model that 

widely used in studies to predict clinical outcomes with 

intuitive visual presentations [43]. In this study, we 

constructed a prognostic nomogram based on the 

ISCIRGs-based signature and clinicopathological 

factors of training group to predict ALL patient 

outcome. The results of validation group and long-term 

follow-up examinations indicated the high reliability of 

this nomogram. To our knowledge, this nomogram is 

the first to predict ALL patient survival based on 

ISCIRGs. And compared with the prediction models 

published in previous studies [21–23], our prediction 

model has higher accuracy and wider application range. 

In addition, considering the imbalance of the prognostic 

model, we included two more independent studies 

related to the prognosis of ALL patients (external 

validation cohorts) to further validate the prognostic 

value of the ISCIRGs-based signature. The results 

showed that the higher risk groups of the both external 

validation cohorts had higher relapse rates compared to 

the lower risk groups. A large number of clinical data 

have confirmed that relapse is the major reason for poor 

prognosis of ALL patients, once relapse, the completed 

cure rate will be less than 40% [44, 45]. And the major 

factor leading to relapse is the resistance of patients to 

combined chemotherapy. Therefore, the results of two 

external validation cohorts not only further verified the 

great prognostic prediction ability of the ISCIRGs-

based signature, but also further suggested the potential 
correlation between seven prognostic genes and 

resistance of combined chemotherapy. Furthermore, we 

established the corresponding web-based calculator. 

The scoring system and web-based calculator may help 

clinicians make survival predictions based on 

clinicopathological factors and cellular differentiation 

information of the BM microenvironment and further 

suggest better treatment options. 

 

This study still has some limitations. First, the results of 

this study were obtained only through an integrated 

bioinformatics analysis. Although we verified the 

results through one validation cohort and two external 

validation cohorts, and included some immuno-

histochemical pictures of crucial ISCIRGs in both 

health and ALL BM, this is still inadequate. Before the 

results are used in clinical prediction, clinical 

experimental validation is needed to confirm them, and 

the underlying mechanisms associated with the 

prognostic significance of the identified ISCIRGs in 

ALL need to be further investigated. Second, although 

we have tried our best to search the RNA-seq datasets 

of ALL patients with prognostic information through 

various databases, literatures and search engines, the 

datasets containing survival information are still 

limited. Third, due to the lack of clinicopathologic 

information in the included datasets, other potential risk 

factors influenced prognosis (e.g., chemotherapy, 

molecular drugs, SNP and CNV) were not considered. 

 

In summary, we highlight the immune/stromal cell 

infiltration differences in the BM environment and their 

essential roles in predicting the clinical outcome of ALL 

patients, constructing a prognostic model based on the 

ISCIRG signature and clinicopathologic factors. This 

model could serve as a reliable tool for predicting 

outcomes and determining treatment strategies in 

patients with ALL. 

 

MATERIALS AND METHODS 
 

Raw data retrieval and calculation of immune/stromal 

cell infiltration 

 

The gene expression file datasets of training group as 

well as corresponding metadata and clinical profiles 

were obtained from TCGA database after restricting 

“Disease Type” to “lymphoid leukemia”, “Experimental 

Strategy” to “RNA-Seq”, “Data Category” to 

“transcriptome profiling” and “Data Type” to “Gene 

Expression Quantification”. The format of the 

downloaded data is “HTSeq-Counts”. All patients 

included in this study suffered from ALL. We excluded 

the following datasets: 1) not BM sample; 2) without 

follow-up time; 3) unknown death or not; and 4) 

without detail clinical characteristics. The gene 

expression file dataset and clinical profile of validation 

group were selected from TARGET project database. 

We merged the data of ALL patients in Phases I, II and 
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III, and then excluded the following datasets: 1) 

duplicate patients with training cohort; 2) not BM 

sample; 3) without follow-up time; 4) unknown death or 

not; and 5) without detail clinical characteristic. The 

calculation of immune score, stromal score and tumor 

purity by employing the ESTIMATE algorithm for all 

downloaded dataset was performed by a custom script 

of Python 3.9.5 (Python Software Foundation, 

Delaware, USA) and “estimate” R package of R 

software 4.0.5 (R Foundation for Statistical Computing, 

Vienna, Austria) [46]. The stromal and immune scores 

were calculated by perform single-sample gene set-

enrichment analysis (ssGSEA) [47, 48], and the tumor 

purity was calculated by using the following formula:  

 

cos(0.6049872018 0.0001467884

ESTIMATE score)

Tumor purity = + 
 

 

ESTIMATE score represents the sum of stromal score 

and immune score [15]. 
 

Common DEGs identification 

 

Based on the immune/stromal score, the included 

patients were classified into high- and low-score groups. 

The DEGs of training group were analyzed and 

identified through the “limma” R package, and the 

cutoff values were set as | fold change (FC)| > 2 and p < 

0.05 [49]. The heatmap and volcano plots were 

generated by the “ggplot2” and “pheatmap” R packages, 

respectively [50]. The identification of the common 

DEGs from the immune score and stromal score groups 

was processed by Python script [46]. 

 

Construction and validation of the prognostic genes 

signature 

 

First, KM survival analysis was used to illuminate 

correlations between immune/stromal scores and OS as 

well as each common DEG and OS, and the log-rank 

test was utilized to assess the statistical significance of 

the correlation [51]. Second, univariate Cox regression 

analysis was performed to evaluate the association 

between the expression levels of common DEGs and 

OS. Third, the identified prognosis-related genes (p < 

0.05) were screened by LASSO and multivariate Cox 

regression analyses [52]. An ISCIRG-based signature 

was constructed by using the following formula: 

 
N

i

(ExpGENEi i)Riskscore
=

= 
1

 

 

ExpGENEi represents the expression level of the 

identified ISCIRGs, and βi  represents the regression 

coefficient calculated by multivariate Cox analysis [53]. 

Fourth, based on the risk score model, patients were 

stratified into either the low score (low-risk) group or 

the high score (high-risk) group. KM survival analysis 

was used to estimate the OS of these two groups. The 

predictive accuracy of this model was assessed by 

Harrell’s C-index and time-dependent ROC curve 

analysis within 1-, 3- and 5-years [54]. Univariate and 

multivariate Cox regression analyses were performed to 

assess whether the predictive performance of this model 

could be independent of tumor purity or other 

clinicopathologic factors. 

 

Construction of prognostic nomogram and 

validation of model 

 

Based on the results of univariate and multivariate Cox 

regression analyses, the identified independent 

prognostic factors were used to develop a prognostic 

nomogram for predicting the 1-, 3-, and 5-year survival 

outcomes by the “rms” R package. Subsequently, the C-

index, U test, ROC and calibration plot were used to 

assess the discrimination performance of this prognostic 

nomogram in training and validation cohorts [54]. 

Furthermore, two external validation datasets (i.e., 

GSE13576 and GSE28703) from Gene Expression 

Omnibus (GEO) database were used to verify the 

significance of the prognostic model. The risk scores 

were first calculated. Then, we verified the clinical 

significance of our model by comparing the prognostic 

information of patients. Moreover, to facilitate clinical 

application, we constructed a visualization tool with a 

web-based calculator [55]. 

 

Single-cell RNA-seq data processing 

 

Single-cell RNA-seq datasets of ALL (GSE134759) 

were downloaded from GEO database. First, we 

merged patient and healthy sample datasets by the 

“Seurat” R package [56]. Then, we removed the low-

quality cells based on the following standards: 1) genes 

detected in fewer than three cells; 2) cells with fewer 

than fifty total detected genes; 3) cells with more than 

10% mitochondrion-expressed genes; and 4) cells with 

fewer than 1500 or more than 4000 expressed genes. 

The 2000 most variable genes were generated and used 

to perform principal component analysis (PCA). The t-

distributed stochastic neighbor embedding (t-SNE) 

algorithm was used to compute 20 initial PCs and 

perform cluster classification analysis. Subsequently, 

we used the Wilcoxon rank sum test with Bonferroni 

multiple-comparison correction to determine cluster 

marker genes, and p < 0.05 and | log2(FC) | > 0.25 

were set as cutoffs. Finally, each cell cluster was 
annotated by the “singleR” R package and then verified 

with broad cell type markers (Supplementary Table 7) 

[57, 58]. 
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Immune cell infiltration analysis in high and low risk 

populations 

 

We calculated the fractions of immune cell subsets in 

ALL samples (bulk RNA-seq) with the CIBERSORTx 

algorithm. First, based on the annotated single-cell gene 

expression matrix in the above results (single-cell RNA-

seq), a custom signature matrix file was constructed by 

using CIBERSORTx Create Signature Matrix module. 

Then, the proportion of each types of cell in bulk RNA-

seq datasets were calculated by using CIBERSORTx 

Impute Cell Fractions module [59]. Correlation relation 

matrix was performed by the “corrgram” and “corrplot” 

R packages. KM survival analysis was used to assess 

correlations between the proportion of each types of cell 

and OS [60]. 

 

Functional analysis 

 

GO and KEGG pathway enrichment analysis as well as 

the interrelation analysis were calculated and plotted by 

using the ClueGO plug-in in Cytoscape software 3.6.1 

(National Resource for Network Biology, California, 

USA), and p < 0.05 was set as the cutoff [61]. The cBio 

Cancer Genomics Portal (cBioPortal) database was used 

to evaluate the mutations and copy number variations in 

tumor patients [60]. STRING database was used to 

assess the gene-encoded proteins and PPI information 

[62]. The downloaded PPI information file was 

subsequently established as a PPI network using 

Cytoscape software. The modular analysis for the PPI 

network was performed by the MCODE plug-in in 

Cytoscape based on score and node number, and the 

most significant module was identified [63]. 

 
The complete method design of this study is shown in 

Supplementary Figure 13. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Interrelation analysis was performed by assessing the biological process of the common DEGs. 
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Supplementary Figure 2. Interrelation analysis was performed by assessing the cellular components of the common DEGs. 
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Supplementary Figure 3. Interrelation analysis was performed by assessing the molecular functions of the common DEGs. 
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Supplementary Figure 4. Interrelation analysis was performed by assessing the KEGG pathway enrichment of the 
common DEGs. 
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Supplementary Figure 5. Representative immunohistochemical pictures of ISCIRGs protein expression in BM of healthy and ALL 
patients, which was obtained from the Human Protein Atlas database and a research study (Rodig et al. The pre-B-cell receptor 
associated protein VpreB3 is a useful diagnostic marker for identifying c-MYC translocated lymphomas. 
https://doi.org/10.3324/haematol.2010.025767.) (only VPREN3 has been found in present literatures and database). 

 

 
 

Supplementary Figure 6. PPI network for prognostic prediction DEGs. Note: The size of the node represents the degree, and the 

color of the node represents the p-value for prognosis. The warmer the color, the smaller the p-value, and the cooler the color, the greater 
the p-value. 

 

https://doi.org/10.3324/haematol.2010.025767
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Supplementary Figure 7. Identification of 23 cell clusters with diverse annotations revealing high cellular heterogeneity in 
ALL based on single-cell RNA-seq data. (A) After quality control from the cores of 7 ALL and 4 non-malignant BM samples, 27,810 cells 

were included in the analysis. (B) The numbers of detected genes were significantly related to the sequencing depth, with a Pearson’s 
correlation coefficient of 0.73. (C) The variance diagram shows 25,810 corresponding genes throughout all cells from GBMs. The red dots 
represent highly variable genes, and the black dots represent nonvariable genes. The top 10 most variable genes are marked in the plot. (D) 
PCA did not demonstrate clear separations of cells in GBMs. (E) PCA identified the 20 PCs with an estimated p-value <0.05. (F) The tSNE 
algorithm was applied for dimensionality reduction with the 20 PCs, and 23 cell clusters were successfully classified. (G) The differential 
analysis identified marker genes. The top 5 marker genes of each cell cluster are displayed in the heatmap. The colors from purple to yellow 
indicate the gene expression levels from low to high. 
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Supplementary Figure 8. The gene expression difference of the seven ISCIRGs between ALL and healthy BM based scRNA-
seq datasets. 
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Supplementary Figure 9. Assessment of the prognostic value of the ISCIRG signature in validation group. (A) KM survival 

curve for high-risk and low-risk patients. (B) Time-dependent ROC curve for 1-, 3-, and 5-year OS rates. (C) Risk score analysis for the high-
risk group and low-risk group. Upper panel: Patient survival status and time distributed by the risk score. Middle panel: Risk score curves of 
the ISCIRG signature. Bottom panel: Heatmaps of the expression levels of the seven ISCIRGs. The colors from green to red indicate the gene 
expression levels from low to high. 

 

 
 

Supplementary Figure 10. Prognostic nomogram to predict the 1-, 3-, and 5-year OS in validation group. (A) Calibration test 

for the prognostic nomogram. (B) Calibration plot of the prognostic nomogram for predicting OS at 1, 3, and 5 years. 
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Supplementary Figure 11. Prognostic significance of risk score in external validation datasets (GSE13576). 
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Supplementary Figure 12. Prognostic significance of risk score in external validation datasets (GSE50999). 
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Supplementary Figure 13. The complete method design of our study. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 5 and 6. 

 

Supplementary Table 1. Patients′ ID and clinical characteristics. 

 

Supplementary Table 2. KM survival analysis for all common DEGs. 

 

Supplementary Table 3. Significant OS-predicting ISCIRGs. 

Gene coef HR HR.95L HR.95H P-value 

LILRA1 0.001077 1.001078 1.000569 1.001587 3.29E-05 

NRGN 0.000137 1.000137 0.999987 1.000287 0.073113 

VPREB3 0.000019 1.000019 1.000001 1.000036 0.036097 

MT-ND6 0.000005 1.000005 1.000002 1.000009 0.001497 

EMP2 0.000259 1.000259 0.999991 1.000528 0.05815 

IGHM 0.000003 1.000003 1 1.000007 0.061815 

FFAR1 0.000133 1.000133 1.000057 1.000209 0.000649 

 

Supplementary Table 4. GO and KEGG pathway enrichment for the seven OS-predicting ISCIRGs. 

Term ID Term description 
Observed 
gene count 

Background 
gene count 

Strength 

BP 

GO:0006120 Mitochondrial electron transport, nadh to ubiquinone 18 49 2.44 

GO:0006119 Oxidative phosphorylation 20 118 2.11 

GO:0042775 Mitochondrial atp synthesis coupled electron transport 19 87 2.22 

GO:0032981 Mitochondrial respiratory chain complex i assembly 17 66 2.29 

GO:0007005 Mitochondrion organization 18 452 1.48 

GO:0022607 Cellular component assembly 18 2359 0.76 

GO:0015990 Electron transport coupled proton transport 4 5 2.78 

GO:0006996 Organelle organization 19 3450 0.62 

GO:1902600 Proton transmembrane transport 5 150 1.4 

MF 

GO:0008137 NADH dehydrogenase (ubiquinone) activity 18 46 2.47 

GO:0016491 Oxidoreductase activity 19 726 1.29 

GO:0051536 Iron-sulfur cluster binding 5 66 1.76 

GO:0009055 Electron transfer activity 5 103 1.56 

GO:0003824 Catalytic activity 20 5486 0.44 

GO:0051539 4 iron, 4 sulfur cluster binding 4 42 1.86 

GO:0048038 Quinone binding 3 18 2.1 

CC 

GO:0070469 Respirasome 19 95 2.18 

GO:0005747 Mitochondrial respiratory chain complex i 17 48 2.43 

GO:0098803 Respiratory chain complex 18 80 2.23 

GO:0005746 Mitochondrial respirasome 18 84 2.21 
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GO:0098800 Inner mitochondrial membrane protein complex 19 131 2.04 

GO:1990204 Oxidoreductase complex 18 107 2.1 

GO:0005743 Mitochondrial inner membrane 20 480 1.5 

GO:0031966 Mitochondrial membrane 21 722 1.34 

GO:0031967 Organelle envelope 22 1213 1.14 

GO:0098796 Membrane protein complex 20 1141 1.12 

GO:1902494 Catalytic complex 19 1328 1.03 

GO:0031090 Organelle membrane 23 3548 0.69 

GO:0016020 Membrane 25 9072 0.32 

GO:0043231 Intracellular membrane-bounded organelle 24 10761 0.22 

GO:0005737 Cytoplasm 24 11428 0.2 

GO:0005759 Mitochondrial matrix 5 479 0.9 

KEGG 

hsa00190 Oxidative phosphorylation 20 130 2.06 

hsa04723 Retrograde endocannabinoid signaling 19 145 1.99 

hsa05016 Huntington disease 21 298 1.72 

hsa04714 Thermogenesis 20 229 1.82 

hsa05012 Parkinson disease 20 240 1.8 

hsa05020 Prion disease 20 265 1.75 

hsa05010 Alzheimer disease 21 355 1.65 

hsa05014 Amyotrophic lateral sclerosis 20 352 1.63 

hsa04932 Non-alcoholic fatty liver disease 12 148 1.79 

hsa01100 Metabolic pathways 19 1447 0.99 

 

Supplementary Table 5. Signature matrix file. 

 

Supplementary Table 6. Patients′ ID and clinicopathologic characteristics of external validation datasets. 

 

Supplementary Table 7. Broad cell type markers. 

Cell type Genes 

B cells BLK, BLNK, CD19, CD72, CD79A, IGHA1, IGHG1, IGKC, IGL, PAX5  

Erythrocytic ALAS2, HBA1, HBA2, HBQ1, RHCE 

HSPCs 
ATP8B4, CLEC3B, CRHBP, CRYGD, ELN, EXD2, FAM124B, FLT3, HLF, HOXA3, HOXB6, 
KCNJ13, KLF1, LAPTM4B, MEIS1, MMRN1, MPL, SPINK2, THY1, VWF 

Myeloid cells 

ATG7, BST1, CCL7, CD14, CD163, CD1C, CD68, CD83, CD93, CEACAM3, CEBPA, CHI3L1, 
CHIT1, CLEC5A, COL8A2, CREB5, CRISPLD2, CSF1R, CSF3R, CTSK, CXCL5, CYBB, DNASE2B, 
DYSF, EMP1, FCAR, FCGR3A, FCGR3B, FLT3, FPR1, FPR2, FUT4, G0S2, GM2A, HLA-DRA, 
ITGAM, LILRB2, MARCO, ME1, MS4A4A, MSR1, PCOLCE2, PDE4B, PTGDS, S100A12, SCARB2, 
SIGLEC3, SIGLEC5, SPI1, SULT1C2, TNFRSF10C, VNN3 

NK cells 
CASP5, GSG1, IL18RAP, KLRB1, KLRD1, L1TD1, NCAM1, NCR1, NMUR1, PTGDR, TBX21, 
TP53TG5, XCL1 

T cells BCL11B, CD2, CD27, CD28, CD3D, CD3G, LAT 

DCs 

CD1a, CD40, CD80, CD86, MHC class II, CD11c, CD1a, CD1c, CD206, CD209, S100A8, S100A9, 
SIRPA, BDCA1, BTLA, CADM1, CD141, CD226, CD26, CLEC9A, DNAM-1, XCR1, CD11b, CD2, 
CLEC10A, CLEC4A, DCIR, Fc-epsilon RI-alpha, ILT1, SIRPA, BDCA2, BDCA-4, CD123, CD303, 
CD304, CLEC4C, DR6, Fc-epsilon RI-alpha, ILT3, ILT7, NRP1, CLEC10A, CLEC4A 

 


