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ABSTRACT

Acute lymphoblasticleukemia (ALL)is a common and life-threatening hematologicmalignancy,its occurrenct
and progression are closely related to immune/stromal cell infiltration in the bone marrow (BM)
microenvironment. However, no studies have described an immune/stromal cell infiltration -related gene
(ISCIRGbhasedprognosticsignaturefor ALL.A total of 444 patientsinvolving 437 bulk and 7 singlecell RNAsec
datasetswere includedin this study. Eligibledatasetswere searchedand reviewed from the databaseof TCG#
TARGETproject and GEO.Then an integrated bioinformatics analysis was performed to select optimal
prognosisrelated genesfrom ISCIRGs;onstruct a nomogrammodel for predicting prognosis,and assesshe
predictive power. After LASS@nd multivariate Coxregressionanalyses,a sevenlSCIRGbasedsignaturewas
proved to be able to significantly stratify patients into high- and low-risk groupsin terms of OS.The sever
geneswere confirmed that directly related to the composition and status of immune/stromal cellsin BM
microenvironment by analyzingbulk and singlecell RNAseq datasets. The calibration plot showed that the
predicted results of the nomogramwere consistentwith the actual observationresults of training/validation
cohort. Thisstudy offers areferencefor future researchregardingthe role of ISCIRGi# ALLand the clinical care
of patients.

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is one of the most
frequent hematologic malignancies, especially in
children, accounting for approximately 25% of all
pediatric cancer§l]. The immunophenotypes of ALL
include T cell ALL (T-ALL), B cell ALL (B-ALL) and
mixed-phenotype acute leukemia (MPAL), where
MPAL is a rare immunophenotype with features of both
ALL and acute myeloid leukemia (AMLR]. Although
the application of immunotherapy led by chimeric
antigen receptor T (CAR T) cell therapy has greatly
improved the clinical remission rate of ALL patients

[3], a shorter overall survival (OS) rate caused by
adverse prognosis is still a crucial challenge for
clinicians and patients. For example, the OS rate of
adult ALL patients is less than 45%].

Accumulating evidence indicates that the crosstalk
between tumor and immune cells plays a crucial role in
cancer development by regulating tumor malignancy,
immune/stromal cell infiltration, and immune evasion in
the tumor microenvironmenf5i 8]. Similar to solid

tumas, the bone marrow (BMijnicroenvironmentof

ALL is a dynamic system of immune cells, endothelial
progenitor cells, stromal cells, extracellular matrix,
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growth factors and cytokines. Therefore, evaluating the
role of immune/stromal cell infiltration of th&M
microenvironment in survival and progression and
identifying novel accurate biomarkers for assessing the
immune/stromal cell infiltratiomelated risk in patients
with ALL is of utmost importance for improving the
prognosis.

Previous studies confirmetiat activated stromal cells
could rescue ALL cells from oxidative stress by
transferring mitochondrig9], and some immune cells
could predict outcomes in ALL patientd0]. For
example, the proportion of PD1+TIM3+ dowgesitive
CD4+ T cells could predict poor survival in adult B
ALL patients [10, 11] and increased frequencies of
activated cytokingoroducing natural killer (NK) cells
could independently predict poor clial outcome in
ALL patient [12]. In tumor microenvironment,
cytokines played a major role in the regulation of the
cellular responses between tumor cells and immune
cells, for eXampb eoulddar®Erd ,
the antitumor response of NK cellsybsuppressing
activity and promote subsequent tumor evasion and
progressionfl3, 14]

The Estimation of Stromal and Immune cells in
Malignant Tumors using Expression data (ESTIMATE)
algorithm is an analysis approach based on single sample
gene expressiosignatures to infer the fraction of stromal
and immune cells and to generate immune/stromal scores

[ Training cohorts ]

for predicting the infiltration of stromal and immune cells
in malignant tumors[15]. It has made outstanding
progress in a variety of solid malignancies amine
hematological malignancies, such as gliomk6],
prostate cancefl7], gastric cancefl8], colon cancer
[19] and AML [20]. At present, the prognosis prediction
models regarding ALL are still based on specific genes
or some clinicopathologic charadftics [21i 23].
Therefore, this study aims to investigate the infiltration of
immune/stromal cells in the BM microenvironment and
construct an accurate immune/stromal cell infiltration
related genes (ISCIRGbpsed model for prognosis
prediction of ALL ptients.

RESULTS

Data source and clinicopathologic characteristics of
patients

The datasets selection process is shown in Figure 1. By
flediewing the information of ALL related datasets from
The Cancer Genome Atlas (TCGA) andhe
Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) project database, 494
and 325 primary datasets were identified for training
group and validation group, respectively. After
eliminating 95 datasets that were not derived figlh
samples and 5 datasets without follapy time, survival
information and detailed clinical information, 394
datasets were included in training grolgeanwhile,

[Validation cohorts]
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Figure 1. Flondiagram of the datasets selection process.
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Table 1. Demographics and dliopathologic characteristics of patients with ALL.

Demographic or characteristic Trakglr;gg%?ort Vahdgf '2”453’“0” p (nT:OT3I7)
Gender, No. (%)
Male 265 (67.3) 23 (53.5) 0.070 288 (65.9)
Female 129 (32.7) 20 (46.5) 149(34.1)
Age (years), No. (%)
<18 375 (95.2) 43 (100) 0.141 418 (95.7)
ais 19 (4.8) 0 (0) 19 (4.3)
Immunophenotypes No. (%)
B-ALL 145 (36.8) 2(4.7) T 147 (33.6)
T-ALL 242 (61.4) T 242 (55.4)
MPAL 7 (1.8) T 7(1.6)
Unknown 0 (0) 41 (95.3) 41(9.4)
Ethnicity, No. (%)
Asian 19 (4.8) 2(4.7) T 21 (4.8)
Black or African AmericanNo. (%) 43 (10.9) ) 43 (9.8)
Native Hawaiian or other Pacific Islander 3(0.8) T 3(0.7)
White 287 (72.8) 7 (16.3) 294 (67.3)
Unknown 42 (10.7) 34 (79) 76(17.4)

"p value was calculated by Pearson-shiare test

after removing duplicates, 14 datasets that were not
derived from BM samples and 10 datasets without
clinical information (i.e., followup time, survival
information, sex, age, and race), 43 datasets were
included in validation group. Subsequently, the
complete gene expression profiles and the correspond
ing metadata and clinical pré#s were downloaded and
merged.

A total of 437 ALL patients, including 88 (65.9%)
males and 140 (34.1%) females, were finally included
in this study (Figure 1)The age at initial pathological
diagnosis ranged from 1 to 30 yearsglinling 418
(95.7%) children (48 yeas old) and 19 (4.3%) adults

( B8 years old). Thethree primary diagnosis
immunophenotypes were-ALL (242, 55.4%), BALL
(147, 33.6%) and MPAL (7, 1.6%). The ethnicity
included Asian (21, 4.8%), black or African American
(43, 9.6%), native Hawaiian or other Pacific Islander (3,
0.7%) and White (294, 67@); 76 patients (17.4%)
were unknown. There were no significant statistical
differences between the two groups of characteristic
variables p > 0.05, Table 1Supplementary Tabl¥).

Identification of immune and stromal cell infiltration
in training cohort

The ESTIMATE algorithm was applied to calculate the
immune/stromal score for all included samples, in
training cohort, the former ranged from 524.82 to

3304.62, and the latter ranged fron2316.13 to
1362.69 Gupplementary Tablé). The immune score
had a significant association with immunophenotype
(p < 0.0001, Figure 2A) but not with racp £ 0.3753,
Figure 2C), and the stromal scores were significantly
associated with both the immunophenotype 0.0001,
Figure 2B) and race(= 0.0465, Figure 2P

Subsequently, the included ALL patients were classified
into high g = 197) and low scoren(= 197) groups to
explore the potential relationships in OS vs. immune
scores and OS vs. stromal scores. Kaigier (KM)
survival analysis showed that the OSdiwf patients in
both the high immune score group and the high stromal
score group was significantly shorter than that of
patients in the low immune score groyp £ 0.015,
Figure 2E) and the low stromal score gropp=(0.003)

(p > 0.05, Figure 2F). Thebave findings suggest that
the OS of ALL patients is significantly associated with
both theimmune score and stromal score.

Identification of common differentially expressed
geneg DEGs) based on immune/stromal scores

A total of 440 and 692 DEGs between high/low
immune and stromal scores were identified, respectively
(Figure 3A). The heatmap is shown in Figure 3B.
Moreover, 233 commonly downregulated genes and
102 commonly upregulated genes were identified from
the immue score/stromal score groups through
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integrated bioinformatics analysis, and the Venn plot is Kyoto Encyclopedia of Gene and Genomes (KEGG)
shown in Figure 3C. These common DEGs are dlne r pathway enrichment analysis. GO enrichment analysis
data for subsequent studies. included three subontologies: biological process (BP),
cellular component (CC) and molecular function (MF).
To investigate the biological functions of the common  For BP, the common DEGs mainly enriched in immune
DEGs, we further performed Gene Ontology (GO) and responseactivating cell surface receptor signaling
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pathway; For CC, the common DEGs were dhief
enriched in MHC protein complex; For MF, DEGs were
principally enriched in immune receptor activity
Supplementary  Figures 73). KEGG pathway
enrichment analysis showed that the enrichment of the
common DEGs was chiefly concentrated in cell
adhesion moleules, systemic lupus erythematosus, and
hematopoietic cell lineag&@pplementarfigure 4).

Identification of a ISCIRGs-basedsignature

To investigate the potential value of the common DEGs
in predicting the OS of ALL patients, first, KM survival
analysis was performed for all common DEGs. The
results showed that 335 common DEGs were
significantly associated with OS p( < 0.05,
Supplementary Table2). Second, univariate Cox
analysis was performed, and 317 prognasisociated
ISCIRGs were identified. La& absolute shrinkage and
selection operator (LASSO) followed by multivariate
Cox analysis identified seven optimal prognesisted
ISCIRGs (i.e., LILRAL1, NRGN, VPREB3, MNDS6,
EMP2, IGHM and FFARJLas a risk signature (Figure
4A, 4B, Supplementary Table3). Based on the
multivariate Cox proportional hazards regression model,
the expression coefficient of each independent risk gene
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was obtained, and our prognostic model for predicting
prognosis was formed using the following formula:
Ri sk S ¢ Qure % =0.00E0¥ 7 + EXfken X
0.000137 + Exgpress x 0.000019 + Exgrnpoe X
0.000005 + Exgvp2 x 0.000259 + Expnm % 0.000003

+ Exp:,:ARlx 0.000133.

Based on the BM sample of healthy persons and ALL
patients from TCGA, we found that, compared to
healthy BM, in ALL, the gene expression level of
LILRA1, NRGN, MIND6, EMP2, and IGHM were
significantly decreased (Figure 4C). Furthermbiased

on four dataets of ALL patients (i.e., St Jude, Nat
Genet 2013; St Jude, Nat Genet 2015; St Jude, Nat
Genet 2016; and TARGET, 2018), the genetic
alterations, including amplification and deep deletions,
were identified in five genes (i.eLILRALl, NRGN,
VPRENS3, EMP2andFFARY), with frequencies ranging
from 0.4% to 1.8% (Figure 4D). Representative
immunohistochemically pictures of VPREN3 protein
expression was shown in Supplementary Figure 5. In
addition, the STRING online database and Cytoscape
software were used teonstruct a ProteifProtein
Interaction (PPI) network to investigate the interplay
among the seven ISCIRGs. The overall network
contained 22 nodes and 376 edd&upplementary
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Figure 6). Furthermore, GO enrichment analysis quinong activity (MF), and respirasome (CC). KEGG

showed that the seven ISCIRGs were mainly eadch pathway enrichment analysis demonstrated that these
in mitochondrial electron transport and oxidative  genes were also significantly associated witidative
phosphorylation (BP), NADH dehydrogenagebi- phosphorylationQupplementaryfable4).
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Prognosticvalue of the ISCIRG-basedsignature

After calculating the risk scores of all patients, we used
the median risk score as a cutoff value to classify
patients of training cohort into highand lowrisk
groups. KM survivalanalysis showed that the patients
in high-risk group had significantly lower OS than those
in low-risk group (logrank textp < 0.0001, Figure 5A,
5B). Timedependent ROC analysis confirmed
favorable values in predicting OS in this validation set
(Figure 5C). We also performed univariate and
multivariate Cox regression analysis. Univariate Cox
regression analysis confirmed that risk score was a
significant prognostic factor (hazard ratio (HR) 95%
confidence interval (Cl): 5.915 [3.208, 10.907],<
0.001, Figure 6A). Multivariate Cox regression analysis
showed that after adjusting for clinicopathological
features and tumor purity, the ISCIRfased sigature
was still an independent prognostic factor and predictor
for ALL patients (HR 95% CI: 2.527 [1.052, 6.070],

p = 0.038, Figure 6B). In addition, tumor purity was not
a factor p 0.271) influencing the significant
association between the ISCIRfasel signature and
prognosis in multivariate cox model, demonstrating that
this model was not just reporting the level of tumor
burden in patients.

Subsequently, subgroup analysis was performed to
further confirm the prognostic value of the gene
signature indifferent clinicopathological factors. The
results showed that the association between risk score
and OS remained markedly significant after controlling
for race and immunophenotyfieigure 7A 7D).

Association between the ISCIRGbased signature
and immune cell infiltration

Four normal and seven-BLL single-cell RNA-seq
datasets from GSE134759 were included in this
analysis. The included samples were collected at the

Survival curve (p=3.957e-13)
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beginning of diagnosis of ALL patients. After quality
control, the combined 11 diagnostic BM samples
included 27810 cells with a mean and median of 2268
and 2110 detected genes, respectively. The number of
genes detected was significantly associated with the
sequencing depth. The tSNE algorithm identified 23
separate clusterSypplementary FiguréAi 7G). Then,
7478 B cells, 933 T cells, 438 dendritic cells (DCs), 77
erythroblast cells, 1068 hematopoietiermst cells and
progenitor cells (HSPCs), 1327 myeloid cells and 773
NK cells were identified and annotated based on the
marker genes (Figure 8A8B). The immune cell
infiltration showed a large difference between healthy

persons and ALL patients, for somever patients,
such as patient 1, there were almost no other immune
cells in BM except tumor cells (i.e.,-&lls) (Figure
8C). LILRA1, NRGN, VPREB3, MNID6, EMP2,and
IGHM genes were expressed in different degrees in
different immune cells and stromal lselamong which
IGHM andVPREB3had significantly higher expression
levels in B cells than in other cells, NRGN was
expressed in DCs and myeloid cells, aM@-ND6 was
expressed in all kinds of immune cells and myeloid
cells of the BM microenvironment (Figa 8D).
Moreover, the mRNA expression levels bfLRAL,
VPREB3, EMP2, and IGHM were statistically

Figure 6.Univariate and multivariate Cox analyseg¢A) Forest plot of univariate Cox analyseB) Forest plot of multivariate Cox

analyses.
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