
www.aging-us.com 7718 AGING 

INTRODUCTION 
 

Aging is a natural time-dependent biological process 

occurring until death in most living organisms including 

humans, which is characterized by the progressive 
decline of overall fitness as well as several molecular, 

cellular and physiological functions, under the influence 

of genetic, environmental and stochastic factors [1–3]. 

Among molecular hallmarks of aging, epigenetic 

modifications, including notably histone modifications, 

DNA methylation and chromatin remodeling, have been 

widely studied and described in mammals and humans 

and proposed as potential factors accompanying and 

even causing the aging process [1, 4, 5].  

 

In this context, the study of DNA methylation in human 

aging has revealed the occurrence of two types of age-

related DNA methylation changes [6]. The first, known 
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ABSTRACT 
 

Aging is a progressive time-dependent biological process affecting differentially individuals, who can 
sometimes present exceptional longevity. Epigenetic alterations are one of the hallmarks of aging, which 
comprise the epigenetic drift and clock at DNA methylation level. In the present study, we estimated the 
DNA methylation-based age (DNAmage) using four epigenetic clocks based on a small number of CpGs in 
French centenarians and semi-supercentenarians (CSSC, n=214) as well as nonagenarians' and centenarians' 
offspring (NCO, n=143) compared to individuals from the French general population (CG, n=149). DNA 
methylation analysis of the nine CpGs included in the epigenetic clocks showed high correlation with 
chronological age (-0.66>R>0.54) and also the presence of an epigenetic drift for four CpGs that was only 
visible in CSSC. DNAmage analysis showed that CSSC and to a lesser extend NCO present a younger DNAmage 
than their chronological age (15-28.5 years for CSSC, 4.4-11.5 years for NCO and 4.2-8.2 years for CG), which 
were strongly significant in CSSC compared to CG (p-values<2.2e-16). These differences suggest that 
epigenetic aging and potentially biological aging are slowed in exceptionally long-lived individuals and that 
epigenetic clocks based on a small number of CpGs are sufficient to reveal alterations of the global epigenetic 
clock. 

 

mailto:alexandre.how-kit@fjd-ceph.org
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 7719 AGING 

as epigenetic drift, is characterized by the progressive 

divergence of the methylome of individuals acquired 

environmentally and stochastically across their lifespan 

[7, 8], which even affects monozygotic twins [9, 10]. 

The second type of DNA methylation changes is called 

the epigenetic clock and refers to all age-related DNA 

methylation variations that consistently increase or 

decrease in every individual, thereby correlating to their 

chronological age [6, 11].  

 

The latter type of epigenetic modifications has been 

widely used as biomarkers of aging in several age-

prediction models to estimate the chronological and 

biological age of individuals, mainly from blood DNA 

samples [6, 11, 12]. These models are based on multiple 

regression, machine learning and deep learning 

approaches using either a large number of CpGs 

requiring high-throughput technologies such as 

genome-wide epigenotyping array or a smaller number 

of CpGs requiring high resolution locus-specific 

methods such as pyrosequencing [7, 13–18]. DNA 

methylation-based age (DNAmage) prediction has 

proven to be of great interest in several bio-medical 

applications. It could notably give a better estimation of 

the biological age than chronological age [19, 20] and 

could also be a good indicator or predicator of different 

risks, health conditions and age-related diseases when 

compared to the chronological age [21–26]. 

 

Long-lived individuals (LLI) are defined as individuals 

over 90 years old greatly surpassing the human life 

expectancy and are also considered as an appropriate 

model for healthy aging studies due to their greater 

healthspan [27–29]. To date, only three studies have 

evaluated four epigenetic clocks based on epigenotyping 

arrays using a large number of CpG loci (Hanum 

clock=71 CpGs, Horvath clock=353 CpGs, Levine 

clock=513 GpGs and Lu clock=184 CpGs) in Italian, 

Australian and Israeli LLI, including nonagenarian, 

centenarians and/or semi-supercentenarians, as well as 

their offspring [30–32]. The results showed that these 

LLI and their offspring presented a younger DNAmage 

than their chronological age, suggesting slower aging 

rates in these groups of individuals [30–32]. 

 

In the present study, we investigated the DNAmage  

of French LLI including centenarians and semi-

supercentenarians (n=214), as well as nonagenarian’s 

and centenarian’s offspring (n=143) of the CEPH aging 

cohort [33, 34] using blood extracted DNA and four 

epigenetic clocks based on a small number of CpGs and 

locus-specific pyrosequencing [17]. These clocks, 

known as Bekaert, Thong, Garali MQR and Garali GBR 

clocks, were developed from 2 to 4 CpGs located in the 

promoters of 1 to 4 genes (ASPA, EDARADD, ELOVL2, 

KLF14, PDE4C and TRIM59) using multiple linear or 

quadratic regressions, and machine learning gradient 

boosting regressor (Figure 1) [17, 18, 35, 36]. The 

obtained DNAmage were compared to a control group 

composed of individuals (n=149) from the French 

general population from the SU.VI.MAX cohorts and 

EFS (French Blood Establishment) [33, 37]. Our study 

is the first to evaluate DNAmage in such a large cohort 

of centenarians using four epigenetic clocks based on a 

small number of CpGs. 

 

MATERIALS AND METHODS 
 

Study participants 

 

The CEPH aging cohort 

The CEPH Aging cohort was recruited during the years 

1990 to 2000 in order to identify genetic factors 

associated to longevity in the French population. The

 

 
 

Figure 1. Description of the four DNA methylation-based epigenetic clocks used in our study. The genomic location of the first 
and last CpGs analyzed by pyrosequencing are given for each gene. MQR: multiple quadratic regression model, GBR: machine-learning 
gradient boosting regressor model, MLR: multiple linear regression model. 
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cohort included 1561 French nonagenarians, 

centenarians, semi-supercentenarians and super-

centenarians born between 1875 and 1910, as well as 

468 of their offspring being part of 147 families [33, 34, 

38]. 214 unrelated French centenarians and semi-

supercentenarians and 143 nonagenarians’ and 

centenarians’ offspring were included in our study 

(Table 1).  

 

Individuals from the SU.VI.MAX cohort and EFS  

 

The control group was formed of French individuals 

from the SU.VI.MAX cohort and EFS (Table 1). The 

SU.VI.MAX study initially included 13 017 disease-

free participants from the French general population, 

who were recruited in the 1990s in order to measure the 

health effects of antioxidants vitamins and minerals 

[37]. 118 individuals from the SU.VI.MAX cohort were 

included in our study (Table 1). Moreover, 31 self-

reported healthy donors from the French blood bank 

were also included in our study (Table 1).  

 

DNA extraction and quantification 

 

All DNA samples were extracted from the buffy coats 

isolated from blood samples of the participants and 

were provided by the CEPH and CNRGH Biobanks. 

DNA samples from all collections were quantified using 

Quant-IT™ dsDNA Broad-Range assay kit on a 

Synergy HTX (BioTek) or Qubit™ dsDNA BR assay 

Kit on a Qubit 3 Fluorometer (Thermo Fischer 

Scientific), according to the manufacturer’s instructions.  

 

DNA methylation analysis  

 

To limit experimental bias that could arise during 

experiments, DNA samples from the different groups 

were included in each 96-well bisulfite-treated plate as 

well as a same commercial whole blood DNA sample 

(Promega). 500 ng of blood extracted DNA was 

bisulfite-treated using the EpiTect Bisulfite 96 Kit 

(Qiagen) according to the manufacturer’s instructions. 

20 ng of bisulfite-treated DNA was used as template for 

each PCR reaction using six bisulfite-specific PCR 

primer pairs (ASPA, EDARADD, ELOVL2, KLF14, 

PDE4C and TRIM59) according to the PCR reaction 

and cycling conditions described in previous studies 

[17, 18]. After PCR, 10 µl of amplified product was 

purified and prepared for pyrosequencing according to 

the detailed protocol described previously [39, 40]. 

DNA methylation analysis was performed on a 

PyroMark Q96 MD using the PyroMark Gold SQA Q96 

Kit (Qiagen) using the pyrosequencing primers and 
assays described in Daunay et al., [17] and the data 

were generated and analyzed with PyroMark CpG 

software (Qiagen). DNA methylation of the promega 

control DNA sample showed close values for each CpG 

sites between replicate experiments indicating no or 

very little technical variations due to batch effect 

(Supplementary Figure 1).  

 

Epigenetic clocks and age predictions 

 

Four blood-based DNA methylation-based age 

predictions models were used including Bekaert clock 

[35], Thong clock [36], Garali MQR and Garali GBR 

clocks [18]. Bekaert’s clock is based on a multiple 

quadratic regression model (MQR) using 4 CpGs 

located in ASPA, EDARADD, ELOVL2 and PDE4C 

while Thong’s clock is based on a multiple linear 

regression (MLR) model using 3 CpGs located in 

ELOVL2, KLF14 and PDE4C (Figure 1). The two 

Garali’s clocks use 2 to 3 CpGs in ELOVL2 and are 

based on MQR or machine learning gradient boosting 

regressor (GBR, Figure 1). The description of the 

epigenetic clocks including the regression equations are 

given in Supplementary Table 1.  

 

Statistical analysis  
 

All statistical analyzes were performed using RStudio 

and GraphPad Prism. Correlation analyzes were 

performed by calculating Pearson’s R coefficient. 

Differences between DNAmage and chronological age 

(DNAmage - chronological age) were calculated for 

each subject, where a negative or positive value 

indicates an epigenecic age younger or older than the 

chronological age, respectively. The mean differences 

of DNAmages and chonological ages between each 

group and subgroup were assessed using two-tailed 

Mann-Whitney U tests and the significance threshold 

was fixed at 0.05.  

 

 

RESULTS 
 

Epigenetic clocks selection and correlation of DNA 

methylation to chronological ages  
 

In the present study we aimed to estimate the epigenetic 

age of long-lived individuals as well as their offspring 

using epigenetic clocks based a small number of CpG 

sites (Figure 1). We selected four clocks, known as 

Thong, Bekaert, Garali MQR and Garali GBR clocks, 

as they have shown a strong correlation and little age 

differences between DNAmage and chronological age 

when applied to DNA samples from individuals aged 

from 0 to 91 years in their original training and testing 

sets as well as in independent validation sets [17, 18, 
35, 36]. These models also presented no or very slight 

bias according to the sex and to the chronological age 

[17, 18, 35, 36]. 
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Table 1. Descriptive statistics of the DNA samples used in our study. 

Cohort characteristics 

Control groups of individuals from the French 

general population (n=149) 
CEPH aging cohort (n=357) 

SU.VI.MAX 

(n=118) 

EFS  

(n=31) 

All  

(n=149) 

NCO  

(n=143) 

CSSC  

(n=214) 

Age at collection (years),  

M ± SD (range)  
55.3 ± 4.8 (38-61) 58.8 ± 3.2 (52-65) 

56 ± 4.7  

(38-65) 

61.2 ± 6.1  

(38-68) 

101.3 ± 1.4  

(100-107) 

Age at death (years), M ± SD 

(range)  
- - - - 

103 ± 2  

(100-108) 

Age at death of the oldest 

parent (years), M ± SD (range)  
- - - 

96.8 ± 3.1  

(90-108) 
- 

Females, n (%) 52 (44.1%) 5 (16.1%) 57 (38.3%) 84 (58.7%) 181 (84.6%) 

 

Correlation analysis of DNA methylation from the nine 

CpGs included in the epigenetic clocks and the 

chronological age of all individuals included in our 

study showed strong significant correlations for all loci 

(1.06e-40 ≤ p-value ≤ 5.13e-138, Figure 2). ELOVL2 

CpG7, KLF14 CpG2 and PDE4C CpG1 showed 

moderate positive correlations (0.5463 ≤ R ≤ 0.6922), 

while ELOVL2 CpG4-6, and TRIM59 CpG5 presented 

strong positive correlations (0.7373 ≤ R ≤ 0.8433, 

Figure 2). Inversely, ASPA CpG1 and EDARADD CpG1 

showed a moderate (R=-0.6675) and strong (R=-0.7385) 

negative correlation, respectively (Figure 2). Of note, 

some dispersion of DNA methylation values was 

observed for centenarians at ASPA CpG1, KLF14 CpG2, 

PDE4C CpG1 and TRIM59 CpG5 but not at EDARRAD 

CpG1 and ELOVL2 CpG4-7, suggesting that some DNA 

methylation-based epigenetic clock biomarkers of aging 

are affected by the epigenetic drift while others are not 

(Figure 2). 

 

Centenarians and their offspring present younger 

DNAmages than their chronological ages 

 

We estimated the DNAmage of three groups of 

individuals including a control group (CG) of 

individuals from SU.VI.MAX and EFS cohorts from the 

French general population aged from 38 to 65 years, a 

group of nonagenarians’ and centenarians’ offspring 

(NCO) aged from 38 to 68 years and a group of 

centenarians and semi-supercentenarians (CSSC) from 

100 to 107 years (Table 1, Figure 1). DNAmages 

obtained with the four epigenetic clocks showed quite 

close values to chronological ages from individuals 

from the control group (5.6 ≤ MAD ≤ 9.9) and NCO 

group (8.4 ≤ MAD ≤ 12.5), with greater differences in 

single-locus (Garali MQR and GBR) than multi-loci 

(Thong and Bekaert) epigenetic clocks (Figure 3A). 

Linear regression curves obtained for CG and NCO 

groups were slightly below but almost parallel to the 

x=y line, indicating a slight underestimation of 

DNAmage compared to chronological age as well as a 

low bias for the different age ranges with the four 

epigenetic clocks (Figure 3A, 3B). In contrast, CSSC 

presented DNAmages highly different from their 

chronological age (16.9 ≤ MAD ≤ 28.5), which were 

mainly younger than their chronological ages and under 

both the NCO and CG regression lines (Figure 3A, 3B).  

 

When comparing DNAmage and chronological age 

differences, a younger DNAmage was observed for CG 

individuals (6.2 years on average, mean of the four 

epigenetic clocks) as well as for NCO (8.5 years on 

average), respectively, while this difference was strongly 

accentuated in CSSC (22 years on average, Figure 3B, 

3C). Thus, compared to CG individuals, NCO presented 

slightly younger DNAmage (2.3 years on average, 

corresponding to “DNAmage – chronological age” value 

of NCO minus that of CG) and these age differences 

were statistically significant in three of four clocks 

(Bekaert, Garali MQR and GBR clocks, Figure 3C). 

Moreover, CSSC also presented strongly younger 

DNAmages compared to CG individuals (15.8 years on 

average) and NCO (13.5 years on average), where the 

differences between DNAmage and chronological age 

among CSSC were significantly different from the CG 

and NCO (p-values < 2.2e-16, Figure 3C). As the three 

groups presented different sex ratios, we further 

evaluated if the observed DNAmage differences between 

groups could be a consequence of this sex bias. Our 

results showed no statistically significant differences 

between male and female inside each group no matter 

which epigenetic clock was used, with one exception 

with Bekaert clock for CG subjects (p-value=0.0123, 

Supplementary Figure 2).  
 

Similarly, we also investigated whether some 

characteristics in the NCO and CSSC could also impact 
the differences observed between DNAmage and 

chronological age. In NCO, grouping individuals 

according to the age of the oldest parent i.e. 
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nonagenarian’s vs centenarians, or to the sex of the 

oldest parent (NC mother vs NC father) did not showed 

clear evidence of DNAmage differences, despite of a 

slightly significant p-value (0.0460) for the first 

comparison with Bekaert clock (Supplementary Figure 

3A, 3B). In CSSC, distinguishing centenarians from 

semi-supercentarians, or considering them according 

their time to death after collection of their blood 

samples did not reveal evidence of DNAmage 

difference, except for the last comparison presenting a 

slightly significant p-value (0.0396) with Garali MQR 

clock (Supplementary Figure 3C, 3D).  

Taken together, our results showed that French CSSC 

and NCO presented younger DNAmage than CG 

individuals, suggesting that epigenetic aging and 

potentially biological aging is slowed down in long-

lived individuals as well as their offspring.  
 

DISCUSSION 
 

The present study aimed to assess DNAmage in French 

long-lived individuals and their offspring and also 

aimed to evaluate whether this measure of epigenetic 

aging could be affected compared to individuals from

 

 
 

Figure 2. Correlation analysis between the chronological age and DNA methylation from the nine CpGs included in the four 
epigenetic clocks used in our study. For each CpGs, Pearson R coefficients and p-values are indicated on the graphs.  
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Figure 3. Comparison of DNAmage and chronological age obtained with the four epigenetic clocks for individuals from the 
control group (CG), nonagenarian’s and centenarians’ offspring (NCO) and centenarians (CSSC). (A) Scatterplots of the DNAmage 
and chronological age. The mean absolute deviation (MAD) of DNAmage from chronological age is given for each group. (B) Age differences 
between DNAmage and chronological age plotted against chronological age. Linear regression curves from CG and NCO samples are drawn in 
red and blue dotted lines (A, B), respectively. (C) Boxplots of DNAmage and chronological age differences according to each group. The mean 
age difference value is indicated at the bottom of each boxplot, while the p-values of the Mann-Whitney U tests are indicated at the top. 
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the French general population. Thus, four previously 

published epigenetic clocks based on 2 to 4 CpGs in 1 

to 4 genes (Figure 1) were selected and applied to blood 

DNA samples from 506 individuals, including 149 

individuals of the general population aged from 38 to 65 

years, 143 nonagenarians’ and centenarians’ offspring 

aged from 38 to 68 years and 214 centenarians and 

semi-supercentenarians aged from 100 to 107 years 

(Table 1). To our knowledge, this is the first time that 

DNAmage was investigated in such a large cohort of 

centenarians and of long-lived individuals’ offspring 

using epigenetic clocks based on a small number of 

CpG sites [30–32].  

 

The DNA methylation analysis of the nine CpGs used 

in the four epigenetic clocks showed moderate to strong 

positive and negative correlations for all CpGs (R < -

0.66 or > 0.54, Figure 2), which was expected and 

consistent with the results obtained in the original or 

validation studies developing these epigenetic clocks 

[17, 18, 35, 36]. An interesting result was the increase 

in the dispersion of DNA methylation of 4 CpG sites 

(ASPA CpG1, KLF14 CpG2, PDE4C CpG1 and TRIM59 

CpG5) in CSSC compared to NCO and CG individuals 

that was not or less visible for the five others 

(EDARRAD CpG1 and ELOVL2 CpG4-7, Figure 2). This 

divergence could be considered as a result of the 

epigenetic drift, which is characterized by the 

progressive divergence of DNA methylation of CpG 

sites occurring during aging either stochastically or 

under the influence of environment [6, 7, 10]. Although 

epigenetic clocks and epigenetic drifts are frequently 

opposed and considered as two distinct mechanisms [6, 

7], our results showed that both phenomena could 

coexist inside a same CpG, including some of the best 

epigenetic clock biomarkers of aging (Figure 2). This 

epigenetic drift was not visible for these CpGs in other 

studies as it might only appear in long-lived individuals 

of extreme ages [13, 17, 35, 41]. In contrast, despite 

their extreme age, DNA methylation of the other CpGs 

sites analyzed remained tighten in CSSC, suggesting 

that some epigenetic clock biomarkers of aging might 

be completely resistant or insensitive to the epigenetic 

drift.  

 

DNAmage analysis of individuals from CG, NCO and 

CSSC using the four epigenetic clocks showed a global 

under-evaluation of DNAmage for all groups compared 

to their chronological age, less in the CG individuals 

(6.2 years) and NCO (8.5 years) and more in CSSC (22 

years, Figure 3). These results were surprising for the 

CG individuals, as no deviation of DNAmage from their 

chronological age was expected in individuals from the 
general population, as described in previous studies 

performed in our lab with the same epigenetic clocks 

[17, 18]. However, under- and over-estimation of the 

DNAmage relative to chronological age in individuals 

from the general population were common with several 

epigenetic clocks, both with those based on small 

number of CpGs using high resolution technologies [17, 

42] and those based on a large number of CpGs using 

epigenotyping microarrays [30, 43]. This was mainly 

attributed to technical variations for absolute 

quantification of DNA methylation for both type of 

epigenetic clocks as well as the bio-informatic 

algorithms used for data processing and normalization 

for the second types of epigenetic clocks [17, 30, 42, 

43]. In the CG, 21 EFS DNA samples were previously 

analyzed with the four epigenetics clocks in two former 

studies [17, 18], and the comparison of both DNAmage 

from the same samples showed a lower value in our 

current study with each clock (1.3, 3.1, 3.3 and 2 years 

for Thong, Bekaert, Garali MQR and GBR, 

respectively, data not shown). Thus, some technical 

variations might have led to the under-evaluation of 

DNAmage from CG individuals, whose inclusion in our 

study was absolutely necessary for DNAmage 

comparisons. 

 

Compared to their chronological age, DNAmage of 

CSSC was strongly underestimated (15 to 28.5 years in 

average), which was still strongly significantly 

underestimated when compared to CG DNAmage (10.8 

to 21 years in average, p-values < 2.2e-16, Figure 2). 

This might indicate that the epigenetic clock and 

potentially aging were decelerated in exceptionally 

long-lived individuals, who presented younger 

DNAmage and potentially also younger biological age. 

This idea is reinforced as DNAmage and epigenetic 

clocks were considered as a better molecular predicator 

of biological age than chronological age, which could 

sometimes also predict lifespan and healthspan [11, 19, 

20, 44]. Our results were consistent with three other 

studies that also investigated DNAmage in long-lived 

individuals, including nonagenarians, centenarians 

and/or semi-supercentenarians from Italian, Israeli and 

Australian populations, in which long-lived individuals 

presented younger DNAmage than chronological age 

[30–32]. Similarly, younger DNAmage (from 0.2 to 3.3 

years in average) were also highlighted in NCO 

compared to CG individuals with the four epigenetic 

clocks, three of which showed significant differences 

(Figure 3C). This observation was also found in two of 

the three previously mentioned studies that investigated 

DNAmage in LLI offspring [31, 32], suggesting that 

epigenetic and biological aging could also be 

decelerated in these individuals. It should be noted that 

the differences observed between each group when 

comparing DNAmage and chronological age could also 
have been influenced by specific exposures of each 

cohort and/or mortality selection, notably as the three 

groups presented different mean chronological ages, 
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even between individuals from CG and NCO (56 vs 

61.2 years, Table 1). Compared to our study, the three 

aforementioned studies were performed on a lower 

number of participants in the three groups of LLI (23, 

24 and 75 subjects) and the two groups of NCO (18 and 

63 subjects) and relied on epigenetic clocks based on a 

large number of CpG sites (71 to 513 CpGs) using 

epigenotyping microarrays technologies [30–32]. Thus, 

our results showed that the use of epigenetic clocks 

based on a very small number of loci (from 1 to 4) and 

of CpG sites (from 2 to 4) could be sufficient to reveal 

an alteration of the global epigenetic clock of 

individuals due to a particular health condition, i.e. 

extreme longevity in our study. This could potentially 

be explained by the loci used in our study, which were 

selected among the very best DNA methylation-based 

epigenetic clock biomarkers of aging [7, 13, 17, 35, 41, 

45] and which could also potentially be among the most 

sensitive to alteration of the global epigenetic clock due 

to health conditions and/or environment. Other studies 

investigating DNAmage using epigenetic clocks based 

on few CpG sites in individuals with particular health 

conditions, including elite athletes [24], chronic 

lymphocytic leukemia [46], Alzheimer and Graves’ 

disease [47] also revealed significant differences when 

compared to a control groups. Thus, these results and 

ours indicate that epigenetic clocks based on a small 

number of CpGs could be highly informative and used 

in place of more complex epigenetic clocks based on a 

large number of CpGs for a rapid and high-throughput 

analysis of DNAmage at lower costs. However, these 

epigenetic clocks would not allow more sophisticated 

analyses that are included in some epigenotyping 

microarray-based epigenetic clocks [16, 20, 26]. 

 

Regarding the sex of all subjects analyzed in our study, 

we did not have the possibility to balance the sex ratio 

between each group due to sample availability 

constraints. However, comparisons between men and 

women subjects did not show any significant 

differences between them, except for one comparison 

among the twelve performed (Supplementary Figure 2). 

While some studies using epigenetic clocks based on a 

large number of CpGs (Horvath and Hannum clocks) 

showed that women had slightly younger DNAmage 

than men, which could be expected due to their different 

life expectancy [48, 49], others using epigenetic clocks 

based on a small number of CpGs, including some of 

ours, did not show such a difference [17, 35]. This 

indicates that the epigenetic clocks used in our study 

cannot detect sex-related DNAmage differences, which 

could potentially be due to an insufficient number of 

CpGs and/or the absence of certain specific CpGs in 
these clocks. However, they should be suitable for 

comparing groups of individuals with different sex 

ratios without generating any sex bias. Finally, when we 

compared the DNAmage in CSSC according to their 

age or their time to death and NCO according to the sex 

or the age of the oldest parents, we found no consistent 

differences among the four epigenetic clocks, 

suggesting that these parameters might not differentially 

affect – or only slightly – DNAmage. However, some 

studies relying on Horvath and Hannum clocks have 

showed that DNAmage could predict all-cause mortality 

[23] and time to death [50] in cohorts of individuals 

with an average age of 57 to 77.1 years. In our study, 

the epigenetic clocks used were unable to detect 

differences in DNAmage of centenarians with variable 

time to death after collection. Although these results 

could be due to the small differences in time to death of 

the two groups of CSSC – most CSSC (86%) died 

within 4 years after collection –, it should also be kept 

in mind that these epigenetic clocks could potentially be 

less sensitive for detecting slight differences in 

epigenetic and biological aging of individuals than 

those based on a large number of CpGs and should be 

used accordingly. 
 

CONCLUSIONS 
 

We investigated for the first time the DNAmage of 

three groups of French subjects including CSSC, NCO 

and a control group from the general population using 

four epigenetic clocks based on a small number of CpG 

sites. DNA methylation analysis of the nine CpG 

included in the epigenetic clocks showed that epigenetic 

drift was sometimes only visible in extremely old 

individuals. Epigenetic clock analysis showed that NCO 

and CSSC presented DNAmages slightly and strongly 

younger than their chronological ages compared with 

CG individuals, respectively. This suggests a 

decelerated epigenetic and biological aging in these two 

groups of individuals, confirming the results of three 

other studies performed on Italian, Australian and 

Israeli long-lived individuals. In addition, our study also 

demonstrated the possibility of using epigenetic clocks 

based on a small number of CpG sites to reveal 

DNAmage and chronological age differences between 

individuals with different life expectancy. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. DNA methylation of the nine CpGs used in our study obtained from a replicate commercial whole 
blood DNA sample (Promega) present on every bisulfite-treated PCR plate. A total of six 96-well PCR plates was used for bisulfite 

conversion in our study. 
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Supplementary Figure 2. Boxplots of DNAmage and chronological age differences according to sex (clear box plots, F = 
women; hatched box plots, M = men) in control group of disease-free individuals (CG), nonagenarians and centenarians’ 
offspring (NCO) and centenarians and semi-supercentenarians (CSSC). The mean age difference value is indicated at the bottom of 
each boxplot, while the p-values of the Mann-Whitney U tests are indicated at the top. 
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Supplementary Figure 3. Comparison of DNAmage and chronological age differences obtained for sub-groups inside CSSC and 
NCO of the CEPH aging cohort. (A) DNAmage and chronological age differences between nonagenarians’ offspring (NO, 90 years < age at 

death of the oldest parent < 99 years, n = 90) and centenarians’ offspring (CO, age at death of the oldest parent ≥ 99 years, n = 53). (B) 
DNAmage and chronological age differences between offspring from a nonagenarians’/centenarians’ mother (Mother, n = 60) and offspring 
from a nonagenarians’/centenarians’ father (Father, n = 83). (C) DNAmage and chronological age differences between centenarians (C, n = 170) 
and semi-supercentenarians (SSC, n = 44). (D) DNAmage and chronological age differences between CSSC with and age at death below 2 years 
after collection (AAD < 2 YAC, n = 119) and CSSC with and age at death of at least 2 years after collection (AAD ≥ 2 YAC, n = 95). The mean age 
difference value is indicated at the bottom of each boxplot, while the p-values of the Mann-Whitney U tests are indicated at the top. 
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Supplementary Table 
 

Supplementary Table 1. Description of the four epigenetic clocks used. 

Epigenetic clock  Mathematical approach  Formula  

Bekaert [1]  
Multiple Quadratic Regression 

(MQR)  

26.444119 - 0.201902 x ASPA (CpG1) - 0.239205 x EDARADD (CpG1) 

+ 0.0063745 x ELOVL2 (CpG6)² + 0.6352654 x PDE4C (CpG1)  

Thong [2]  
Multiple Linear Regression 

(MLR)  

-20.372 + 0.830 × ELOVL2 (CpG5) + 1.723 × KLF14 (CpG2) + 0.715 × 

TRIM59 (CpG5)  

Garali [3]  
Multiple Quadratic Regression 

(MQR)  

13.4944951 - 0.8224263 x ELOVL2 (CpG6) - 0.0001978 x ELOVL2 

(CpG4)² + 0.0143482 x ELOVL2 (CpG6)² + 0.004438 x ELOVL2 (CpG7)  

Garali [3]  

Gradient Boosting Regressor 

(GBR)  

DNA methylation of ELOVL2 (CpG6 and CpG7) was used as an input 

testing set in the provided GBR R code using a training set of 1028 

samples [3]  
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