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INTRODUCTION 
 

Premenstrual dysphoric disorder (PMDD) is a severe 

form of premenstrual syndrome (PMS), targeting a 

substantial portion of the female population [1, 2]. 
Clinically, PMDD is characterized by significant 

emotional, physical, and behavioral distress during the 

late luteal phase that resolves after the onset of menses 
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ABSTRACT 
 

Background: Premenstrual dysphoric disorder (PMDD) is a severe mood disorder with pathological changes 
rooted in GABRB2 copy number variation. Here, we aimed to elucidate the gene dose effect and allopregnanolone 
binding mechanism of Gabrb2 on possible PMDD-like and comorbid phenotypes in knockout mice. 
Methods: PMDD-like behaviors of Gabrb2-knockout mice were measured through various tests. Western Blot 
and ELISA were used to detect changes in the GABAAR subunits and related neurotransmitter changes in mice 
respectively for the internal mechanism. The response of mice to allopregnanolone (ALLO) was examined 
through an exogenous ALLO injection, then validated by the patch-clamp technique to elaborate the potential 
mechanism of ALLO-mediated GABAAR. 
Results: Gabrb2-knockout mice displayed changes in anxiety-like and depression-like emotions opposite to 
PMDD symptoms, changes in social, learning, and memory capacities similar to PMDD symptoms, and pain 
threshold changes opposite to PMDD symptoms. GABAAR δ subunit expression in the brains of the Gabrb2-
knockout mice was significantly higher than that of Wild-type mice (P<0.05). Gabrb2-knockout mice 
demonstrated neurotransmitter metabolism disturbance of GABA, Glu, acetylcholine, DA, norepinephrine, and 
epinephrine. Moreover, Gabrb2-knockout mice did not display the expected phenotypic effect after ALLO 
injection. Relative to WT mice, the knockout of the β2 subunit gene enhanced the agonistic effect of ALLO on 
GABAA receptors in cortical neuronal cells. 
Conclusions: GABAAR β 2 regulates PMDD-like behaviors. The ALLO binding site may not be located on β two 
subunits, abnormal δ and ε subunit expression in the mouse brain and the disturbance of neurotransmitters 
may result in ALLO sensitivity. 
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[3]. Premenstrual disorders are likely to start at a younger 

age, particularly in adolescence [4, 5]. Many risk factors 

contribute to the development of PMDD. For instance, 

traumatic events, pre-existing anxiety disorders [6] and 

depressive disorder history, or a family history of PMS 

represent high-risk groups for suicidality [7–9].  

 

Recent literature hypothesized that PMDD patho-

physiology is caused by an impaired GABAA receptors 

(GABAARs) response to dynamic ALLO fluctuations 

across the menstrual cycle [10], which primarily occur 

in the brain [11]. Moreover, neuroimaging has revealed 

greater cerebellar grey matter volume and metabolism 

in patients with PMDD, together with altered 

serotonergic and GABAergic neurotransmission [12], 

and other brain areas are also involved [12–14]. The 

role of GABAARs in the brain, particularly the subunit 

function, has attracted research interest [15, 16]. Among 

subunits of GABAAR, the copy-number-gains of 

GABRB2, genes encoding GABAARs β2 subunit have 

been enriched in both SCZ and PMDD patients with 

significant odds ratios (OR) [17]. And rat models of 

PMS showed abnormal expression of GABAARs β2 

subunit in the hippocampus [18]. Also, GABRB2 is 

associated with other neuropsychiatric disorders, 

including bipolar disorder, epilepsy, autism spectrum 

disorder, Alzheimer's disease, frontotemporal 

dementia, substance dependence, depression, and 

internet gaming disorder [19–21]. Since GABRB2 has 

an important role in the central nervous system and 

contributes to human diseases, a better understanding of 

its function may speed up the search for novel 

therapeutic strategies. 

 

The present study aims to compare the Gabrb2-

knockout mice with wild-type mice regarding their 

associated PMDD-like phenotypes. Also, we evaluate 

the potential mechanisms of Gabrb2 targeting ALLO.  

 

MATERIALS AND METHODS 
 

Animals 
 

Gabrb2 heterozygous mutant (HT) transgenic mice on 

C57BL/6-129/SvEv hybrid background was provided 

by Professor Hong Xue’s team from the Department of 

Life Sciences at Hong Kong University of Science and 

Technology. The experiments used three genotypes 

based on the propagation of HT, wild-type (WT), and 

Gabrb2 knockout (KO) mice by genotyping according 

to the previous protocol (see Figure 1A) [22]. The 

mice were housed in the laboratory at a temperature  

of 23 ± 3° C, a humidity of 60 ± 5% RH, 12 h/12 h 

light/dark cycle (lights on at 7 am and lights-off at  

7 pm), with free access to water and food. The 

genotypes of each mouse were identified before 

experiments. The experimental procedures were 

approved by the ethics committee of Shandong 

University of Traditional Chinese Medicine (Permit 

Number: SDUTCM20190904013). 

 

Behavioral tests 

 

Male mice (8-10 weeks) were selected for behavioral tests 

according to previous research [22, 23]. In the experiment, 

the “open field test-elevated plus maze-light and dark 

box” were used for multi-aspect evaluation of the anxiety-

like emotional performance. The forced swimming-tail 

suspension-sucrose preference tests were adopted for 

multi-aspect assessment of depression-like dynamic 

performance. The Y-maze test was employed to examine 

mice's learning and memory capacities. The sociability of 

mice was assessed using the three-chamber sociability 

test. The resident intruder paradigm and the light-heat 

flick were used to evaluate mice’s irritable aggression 

behavior and pain sensitivity. Lastly, heart rate and blood 

pressure were measured to examine the activity of 

sympathetic nerves. Specific procedures are presented in 

the Supplementary Materials. 

 

Measurement of GABAAR subunits protein levels in 

Gabrb2-knockout mice 

 

Western blot assay was used to measure the expression 

patterns of GABAAR Subunits protein in brain tissues 

of mice. Radio-immunoprecipitation assay (RIPA) 

buffer for protein extraction. Brain tissues were 

comprehensively lysed and homogenized. The protein 

concentration was determined and modified to 

appropriate attention for protein expression detection. 

Subsequent procedures were performed as shown in 

the Supplementary Materials. The Image Lab 5.2.1 

software was employed for analysis. 

 

Neurotransmitter detection in Gabrb2-knockout 

mice 

 

A HILIC-MS/MS method was adopted to detect 

neurotransmitter levels in serum as well as the brain 

tissues of mice according to the procedures described in 

the Supplementary Materials. 

 

Electrophysiological recordings 

 

After anesthesia, the abdominal cavities of the 

animals were opened, and the chest opened upward to 

expose the heart. Using a syringe, pre-cooled artificial 

cerebrospinal fluid (ACSF) was injected into the aorta 

via the left ventricle; the auricular appendix was after 
that incised for perfusion. After cervical dislocation, 

the skin was marked, and the skull was opened using a 

scalpel to expose the whole brain tissues. A medicine 
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spoon was used to harvest the brain tissues and 

allowed to stand in pre-cooled ACSF (filled with 

mixed air to saturated condition) for 2 minutes. The 

brain tissues were placed in a petri dish paved with 

filter paper. Meanwhile, the ACSF and mixer were 

transferred onto the petri dish. The tissues containing 

the cortex were excised using a blade, then glued in 

the correct direction on the agar-coated plate of the 

brain-slicing machine. Subsequently, the tissues were 

immediately transferred to the slicing slot of the 

brain-slicing machine, fixed, then sectioned into slices 

of 250 μM thickness. For the cortical regions, specific 

hippocampal areas of the brain slices were cut off  

and digested with trypsin (formulated with HBSS) at 

33.3° C for 30 min, under high purity oxygen 

exposure. The trypsin was removed after digestion; 

after that its effect was terminated by loading each 

tube with 3 mL oxygenated HBSS Na+ solution. This 

operation was repeated three times. Subsequently, 2 

mL of oxygenated Low Ca2+ HEPES was added, then 

the tissues were triturated using a Pasteur pipet in the 

large, medium, and small diameters. After trituration 

by a Pasteur pipet in large, medium diameters, the 

tissues were allowed to stand for 2 min. The 

supernatant was pipetted into a new 15 mL centrifuge 

tube, followed by 4-5 cycles of trituration with a 

Pasteur pipet in a small diameter. The mixture was 

allowed to stand for 2 min then the supernatant was 

obtained and mixed with the former supernatant 

harvested above. The mixed cell suspension was 

seeded into a 3.5 cm polylysine-coated petri dish,  

2 mL/dish. The cells were left to stand for 10 min to 

allow cell adherence to the wall. 

 

Statistical analysis 

 

All statistical analyses were performed using the IBM 

SPSS statistical 22 software. Data were expressed in 

mean ± standard deviation. Comparisons between two 

groups were performed using one sample unpaired  

t-test, whereas comparisons between multiple groups 

were conducted using a one-way analysis of variance 

(ANOVA). The GABAA receptor current in response 

to drug treatment and the control GABA assessment 

(20 µM) were adjusted for data obtained after  

an electrophysiological examination. Further, we 

calculated the enhancement drug ratio to the GABAA 

receptor current. The values of *p < 0.05, **p < 0.01, 

***p < 0.001 were considered statistically significant. 

The GraphPad Prism 8.4 software was used for image 

plotting. 

 

Data availability 

 

The data supporting the findings of this study are 

accessible by the corresponding author upon request. 

RESULTS 
 

Changes in the emotional state of Gabrb2 knock-out 

mice 

 

Assessment of anger-like emotions revealed that the 

aggressive behavioral scores of Gabrb2 KO mice were 

significantly lower than that of WT mice (p < 0.01, 

Figure 1B). The anxiety-like emotions were assessed by 

open field test (OFT), elevated plus maze (EPM), and 

light-dark box, which revealed significantly longer total 

distance and increased mean velocity of Gabrb2 KO 

mice compared to the WT mice (p < 0.05) and HT mice 

(p < 0.01) and prolonged movement time as compared 

to the WT mice (p < 0.05) and HT mice (p < 0.05) in 

the OFT. Substantial shortened total movement distance 

was measured in KO mice versus HT mice (p < 0.001) 

and WT mice (p < 0.01), whereas notable elevated 

OT% was found in Gabrb2 KO mice versus WT mice 

(p < 0.001) and WT mice (p < 0.001). In the light-dark 

box, the entrance times into the bright area were 

markedly increased in Gabrb2 KO mice than that in 

WT mice (p < 0.01) but similar to that in HT mice  

(p > 0.05). The depression-like emotions were evaluated 

by the tail suspension test (TST), FST, and a sucrose 

preference test; consequently, the immobility time in 

TST significantly decreased in Gabrb2 KO mice 

compared with that in WT mice (p < 0.001) and HT 

mice (p < 0.001). The immobility time in the FST of 

Gabrb2 KO mice was shortened compared to that of 

WT mice (p < 0.001) and HT mice (p < 0.05), whereas 

that of HT mice was noticeably shorter than that of WT 

mice (p < 0.001). The sucrose preference index of 

Gabrb2 KO mice was higher than that of WT mice  

(p < 0.001) and HT mice (p < 0.001), (Figure 1C–1H). 

 

Changes in the somatic state of Gabrb2 knock-out 

mice 

 

Further, we evaluated the activity of sympathetic nerves 

and pain thresholds of mice. Consequently, the KO 

mice showed a lower heart rate than WT mice  

(p < 0.001), whereas HT mice had a lower heart rate 

than WT mice (p < 0.01). No difference in the diastolic 

blood pressure was observed among the groups. 

Nevertheless, the systolic blood pressure of HT mice 

was remarkably lower than that of WT mice (p < 0.01). 

The tail-flick test demonstrated that the pain threshold 

of KO mice was notably higher than that of WT mice  

(p < 0.01) and that of HT mice (p < 0.001) (Figure 1I, 1J). 

 

Changes in the social function of Gabrb2 knock-out 

mice 
 

Assessment of learning and memory capacities 

revealed that the KO mice had a reduced spontaneous 



www.aging-us.com 8440 AGING 

alternation rate in the Y-maze test than that of WT 

mice (p < 0.05) and HT mice (p < 0.05). At the same 

time, no difference was noted between WT and HT 

mice (p > 0.05). The open arm exploration test 

revealed that the KO mice (p < 0.05) and HT mice  

(p < 0.05) had significantly lower incidences of open arm 

exploration than WT mice. The sociability of mice was 

evaluated using the social preference-avoidance test. 

Unlike WT mice, KO mice revealed a significantly 

lower preference index for exploring unfamiliar mice 

(p < 0.05). In contrast with the WT mice, Gabrb2 KO 

mice (p < 0.01) and HT mice (p < 0.01) had fewer 

times exploring new and unfamiliar mice, but not 

familiar mice. No difference was observed between 

KO and HT mice (p > 0.05). The contact duration of 

KO mice with unfamiliar mice was shorter than that of 

WT mice (p < 0.05), (Figure 1K, 1L). 

 

GABAAR receptor pathway changes in the Gabrb2 

knock-out mice 

 

Western blot assay was used to measure the expression 

patterns of GABAA receptor α1-6 subunits (GABRA1, 

GABRA2, GABRA3, GABRA4, GABRA5, and GABRA6), 

β1-3 subunits (GABRB1, GABRB2, and GABRB3), γ1-3 

subunits (GABRG1, GABRG2, and GABRG3), δ subunit 

(GABRD), ε subunit (GABRE), π subunit (GABRP), and 

θ subunit (GABRQ). Protein levels of GABAA receptors 

δ and ε subunits were substantially increased in the 

cerebral regions. GABAA receptor δ subunit protein 

 

 
 

Figure 1. Genotyping, affective symptoms, and PMDD-like behaviors of mice. (A) Mouse genotyping using primers specific for the 
Gabrb2 and Neo genes. (B) Resident-intruder paradigm showing aggressive behavior scores of mice (WT male = 16, HT male= 16, KO 
male=16). (C) Open field test showing total distance, total distance in the central area, and total time in the central area (WT male =24, HT 
male=25, KO male=24). (D) Elevated plus maze showing percentile entries and time into open arms (WT male =24, HT male=25, KO male=24). 
(E) Light dark box (LDB) test showing entries and time into lightbox (WT male = 18, HT male= 18, KO male= 18). (F) Forced swimming test 
showing immobility time of mice suspended in the water (WT male =15, HT male=17, KO male=17). (G) Tail suspension test showing 
immobility time of mice suspended by the tail to a horizontal bar (WT male =17, HT male=17, KO male=17). (H) Sucrose preference test 
showing (WT male =15, HT male=16, KO male=15). (I) Tail flick latency test showing (WT male =18, HT male= 17, KO male=16). (J) Heart rate 
and blood pressure (WT male =18, HT male=18, KO male=18). (K) Y maze contains two parts: spontaneous alternation and novelty arm, 
showing percentile time spent in, or entries into, the novel arm was monitored to measure spatial-working memory (WT male =18, HT 
male=12, KO male= 17). (L) Three-Chambered Social Test contains two parts: social affiliation and social novelty, showing a preference for the 
container holding a stranger mouse relative to an empty container; and preference for social novelty: preference for the container holding a 
Stranger-2 mouse relative to the container holding Familiar-1 mouse (WT male =18, HT male=18, KO male= 18). Statistical analysis was 
performed using one-way ANOVA with Newman–Keuls post-hoc test. Average y values ± SEM in the different plots are represented by 
horizontal bars. *p < 0.05, **p < 0.01, ***p < 0.001. 
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expression significantly increased in the cerebellum of 

Gabrb2 KO mice compared to WT mice (p < 0.05), 

(Figure 2). 

 

Further, we evaluated the levels of 4-aminobutyric  

acid (GABA), glutamic acid, dopamine, serotonin, 

norepinephrine, and epinephrine in the peripheral blood 

of WT and Gabrb2 KO mice. As a result, the levels of 

4-aminobutyric acid (GABA), glutamic acid, serotonin, 

and norepinephrine in the peripheral blood of KO  

mice were similar to that in WT mice (p > 0.05). 

Nonetheless, the levels of dopamine and epinephrine in 

 

 
 

Figure 2. GABAAR receptor subunits changes. (A) The levels of protein expression for 16 different GABA A receptor subunits of WT and 
KO mouse in the cerebrum (WT male =8, KO male= 8). (B) The levels of protein expression for 16 different GABA A receptor subunits of WT 
and KO mouse in the cerebellum (WT male =8, KO male=8). Statistical analysis was performed using one-way ANOVA with Newman–Keuls 
post-hoc test. Average y values ± SEM in the different plots are represented by horizontal bars. *p < 0.05, **p < 0.01, ***p < 0.001. 
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the peripheral blood of Gabrb2 KO mice were strikingly 

higher than that of WT mice (p < 0.05). The contents of 

glutamic acid, norepinephrine, serotonin, and epinephrine 

revealed insignificant differences in the cerebrum  

tissues of Gabrb2 KO mice and WT mice (p > 0.05). 

The GABA, GABA/Glu, and dopamine levels were 

noticeably increased, whereas that of acetylcholine 

decreased in the cerebral tissues of Gabrb2 KO mice 

relative to WT mice (p < 0.05). The acetylcholine was 

not detected in the cerebellum of Gabrb2 KO mice, and 

the levels of dopamine and serotonin in the cerebellum of 

Gabrb2 KO mice were similar to that of WT mice  

(p > 0.05). The levels of 4-aminobutyric acid (GABA), 

glutamic acid, norepinephrine, and epinephrine were 

significantly higher in the Gabrb2 KO mice than that in 

the WT mice (p < 0.05). These data indicate that Gabrb2 

KO causes compensatory changes in GABA, dopamine, 

and acetylcholine. Also, GABA/Glu in the cerebral 

regions may be related to the behavioral phenotype of 

transgenic mice (Figure 3). 

 

Dose effect of ALLO on Gabrb2 KO mice 

 

The behavioral and cell level changes were observed 

in mice injected with ALLO. The overall distance of 

EPM was shortened in a dose-dependent manner after 

ALLO injection into mice with three genotypes. In 

response to treatment with 20 mg/kg ALLO, the WT 

mice significantly covered a shortened total distance. 

Also, ALLO treatment at doses of 17 mg/kg and  

20 mg/kg significantly shortened the total movement 

distance of HT mice (p < 0.01). ALLO treatment at a 

 

 
 

Figure 3. Neurotransmitters changes. (A) The level of key neurotransmitters in vivo of WT and KO mouse (WT male =8, KO  

male= 8). (B) The levels of WT and KO mouse in the cerebrum (WT male =8, KO male= 8). (C) The levels of neurotransmitters of WT and 
KO mouse in the cerebellum (WT male =8, KO male= 8). The levels of GABA, Glu Statistical analysis was performed using one -way 
ANOVA with Newman–Keuls post-hoc test. Average y values ± SEM in the different plots are represented by horizontal bars. *p < 0.05, 
**p < 0.01, ***p < 0.001. 
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dose of 20 mg/kg markedly shortened the total movement 

distance of Gabrb2 KO mice (p < 0.01). Additionally, 

ALLO treatment at a dose of 17 mg/kg considerably 

increased the OT% of WT mice and HT mice  

(p < 0.01), and a dose of 20 mg/kg noticeably increased 

the OT% of KO mice (p < 0.01). Furthermore, 17 mg/kg 

ALLO augmented the OE% of WT mice (p < 0.05), 

whereas 10 mg/kg and 20 mg/kg ALLO significantly 

augmented the OE% of WT mice (p < 0.01). In the  

TST test, the mice of three genotypes were injected  

with different doses of ALLO. The immobility time  

of HT mice was unaffected (p > 0.05), whereas that of 

WT mice was prolonged following treatment with 

different doses of ALLO, among which 20 mg/kg had  

a significant effect (p < 0.01). ALLO treatment at 

different doses prolonged the immobility time of 

Gabrb2 KO mice; unlike 10 mg/kg dose (p > 0.05),  

17 mg/kg and 20 mg/kg doses exerted a significant 

effect (p < 0.01), (Figure 4A, 4B). 

The patch-clamp technique was used to assess the 

allosteric regulation of ALLO on GABAA receptor 

currents in the cortical neurons of WT and Gabrb2 KO 

mice. No difference in receptor currents was noted in 

the mouse cerebral cortex in response to treatment with  

20 µM GABA. Nevertheless, 1 µM ALLO induced a 

more significant change in cerebral cortex current in 

Gabrb2 KO mice than that in WT mice. ALLO 

enhanced the agonistic effect of the GABAARs in 

cortical neurons in the context of β2 subunit deletion. 

Therefore, GABAARβ2 subunit deletion did not affect 

the binding to ALLO. We could not ascertain whether 

the ALLO binding site was located in the β2 subunit. 

However, abnormal expression of the GABAARβ2 

subunit certainly caused changes in other subunits, 

thereby affecting the binding to ALLO. This results in 

abnormal changes in cerebral receptor currents, 

manifesting as abnormal behavioral changes in mice 

(Figure 4C). 

 

 
 

Figure 4. Changes of KO behavioral phenotypes by ALLO. The behaviors of WT, HT, or KO mice administered with 10 mg/kg, 17 mg/kg, 

20 mg/kg ALLO i.p was compared with that of control mice administered with saline. (A) Tail suspension test showing immobility time of mice 
suspended by the tail to a horizontal bar (WT male: saline=12, 10 mg/kg=12, 17 mg/kg=12, 20 mg/kg=12; HT male: saline= 12,10 mg/kg=11, 
17 mg/kg=12, 20 mg/kg=12; KO male: saline=11,10 mg/kg=12, 17 mg/kg=11 20 mg/kg=10). (B) Elevated plus maze showing percentile entries 
and time into open arms (WT male: saline=12, 10 mg/kg=12, 17 mg/kg=12, 20 mg/kg=10; HT male: saline= 12,10 mg/kg=11, 17 mg/kg=12, 20 
mg/kg=11; KO male: saline=12,10 mg/kg=12, 17 mg/kg=12, 20 mg/kg=12). (C) Patch clamp showing changes of GABAA receptor current in 
mouse cortical neurons under ALLO intervention between WT male mice and KO male mice (WT male =6, HT male=6, KO male=6). Statistical 
analysis was performed using one-way ANOVA with Newman–Keuls post-hoc test. Average y values ± SEM in the different plots is 
represented by horizontal bars. *p < 0.05, **p < 0.01, ***p < 0.001. 
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DISCUSSION 
 

According to the published relevant research, the open-

field test (OFT) is used to test for behavioral symptoms 

of PMDD rat models; elevated plus maze (EPM) and 

light dark box (LDB) tests for anxiety [24]; resident-

intruder paradigm for irritability [25]; forced swimming 

test for depression [26]; saccharin preference test for 

anhedonia; social preference-avoidance test for social 

withdrawal [27], heart rate (HR) and blood pressure (BP) 

[28]. As expected, Gabrb2 KO mice displayed changes 

in anxiety-like and depression-like emotions in contrast 

with PMDD symptoms; changes in the social, learning, 

and memory abilities similar to PMDD symptoms; 

changes in pain threshold opposite to PMDD symptoms, 

hence reducing pain sensitivity. The results above 

corroborate with the previous studies, which focused on 

schizophrenia-like phenotypes [22]. Our study 

concentrated on PMDD-like phenotypes and added new 

tests for assessing pain sensitivity and heart rate/blood 

pressure related to PMDD [28–30]. These findings 

confirm that protein function mediated by Gabrb2 is 

closely associated with the pathogenesis of PMDD. 

 

Meanwhile, we adopted molecular biotechnology to 

analyze the compensatory changes of Gabrb2 KO mice. 

Recent research shows that anxiety may result in 

abnormal expression of α4β2δ GABAAR [31]. Among 

GABAAR subunits, GABAAR δ and GABAAR ε subunit 

proteins were expressed at higher abundance in the 

brain region of the Gabrb2 KO mice. In contrast, 

GABAA receptor δ subunit proteins were significantly 

expressed in the cerebellar areas. Previous research 

indicates that corticotropin-releasing hormone (CRH) 

neurons are modulated by neurosteroid tetrahydro-

deoxycorticosterone (THDOC) and act on GABAAR-

containing δ subunits which share close associations 

with anxiety-like behaviors [32]. The δ-Subunit is 

necessary for Protein Kinase C-dependent effects of 

neurosteroids on synaptic GABA A receptor inhibition 

[33]. Besides, GABAA(δ)R may promote fear extinction 

via a route relying on non-synaptic plasticity [34]. 

Therefore, GABAA(δ)R has high research potential. 

Moreover, we found a compensatory increase in 

dopamine and epinephrine levels in the peripheral  

blood of transgenic mice; compensatory changes in 

GABA, dopamine, acetylcholine, and GABA/Glu levels 

in the brain regions; compensatory changes in GABA, 

glutamic acid, norepinephrine, epinephrine, and 

GABA/Glu in the cerebellar area of the mice. Therefore, 

we speculate that most of the above-stated changes may 

correlate with the behavioral phenotype of transgenic 

mice. Besides GABA and Glu indicated above, 5-HT, a 

monoamine neurotransmitter regulates emotions and 

cognitive functions in the CNS [35]. NE, DA, etc., are 

important indicators for assessing depression severity 

[36]. Also, research has demonstrated a strong correlation 

between dopamine, 5-HT, norepinephrine, and serotonin 

in the brain with depression-like emotions [37], which is 

in agreement with our findings [38]. 
 

The neuroactive steroid allopregnanolone (ALLO) is an 

endogenous positive allosteric modulator of GABA type 

A receptor (GABAAR), which causes the development 

of mood disorders, including depression, anxiety, and 

PMDD [39–41]. Nonetheless, it remains unclear 

whether ALLO mediates Gabrb2 as a significant 

subunit [42]. When ALLO was injected into animal 

experiments, Gabrb2 KO did not yield the expected 

effect on the mouse phenotype. Unlike in the WT mice, 

ALLO treatment improved the agonistic effect on the 

GABAA receptor in cortical neurons of KO mice, 

supporting the hypothesis that the ALLO binding site 

may not be located on the β2 subunit. Changes in mice 

caused by abnormal expression of β2 subunit may be 

related to ALLO sensitivity. However, there is an urgent 

need for additional comprehensive studies. 

 

CONCLUSIONS 
 

GABAAR β 2 has a regulatory effect on PMDD-like 

behaviors with disturbance of neurotransmitters, hence 

directly or indirectly affecting its mediated ALLO binding 

in vital brain areas. This causes abnormal nerve synaptic 

currents, and manifestation of PMDD-related clinical 

symptoms, which should be validated in future research. 
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