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INTRODUCTION 
 

The “post-ovulatory aging” refers to the oocytes 

released from the ovary. Over time, the cytoplasm 

continues to age and eventually die, which is inevitable 

[1]. Post-ovulatory aging causes many defects, such as 

cortical granules partial exocytosis [2, 3], zona 

pellucida hardening [3, 4], a decline in MPF and MAPK 

levels [5], cytoskeleton abnormalities, and chromosome 

condensation [6]. Post-ovulatory aging induces 

oxidative stress which causes mitochondrial dys-

function, apoptosis due to the activation of caspases [7–

9], calcium ions homeostasis perturbation, oxidative 

damage to lipids, proteins, and DNA components of the 

cell [10], which finally induce epigenetic changes [11]. 

Moreover, post-ovulatory aging associates with 

decreased the fertilization rate, poor embryo quality and 

increased abnormalities in offspring. In additional, 

uncovering the mechanisms of post-ovulatory oocyte 

aging to develop strategies to prevent or delay post-

ovulatory oocyte aging and increase the time required to 

manipulate oocytes for in vitro fertilization (IVF) and 

human assisted reproductive technologies [12]. 

 

Epigallocatechin-3-gallate (EGCG), a major polyphenol in 
green tea, is responsible for the several health benefits such 

as antioxidation, induction of apoptosis, and inhibition of 

angiogenesis and metastasis [13]. EGCG mediates its 
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ABSTRACT 
 

Increased levels of oxidative stress are major factors that drive the process of post-ovulatory oocyte aging. 
Epigallocatechin-3-gallate (EGCG), which accounts for up to 50% of the catechins, possesses versatile biological 
functions, including preventing or treating diabetes, cancer, and heart diseases. The aim of this study was to 
explore whether EGCG can delay porcine oocyte aging by preventing oxidative stress. Metaphase II (MII) 
oocytes were cultured for 48 h with different concentrations of EGCG (0–100 μM) in vitro as a post-ovulatory 
aging model. An optimal concentration of 5 μM EGCG maintained oocyte morphology and developmental 
competence during aging. The oocytes were randomly divided into five groups: fresh, 24 h control, 24 h EGCG, 
48 h control, and 48 h EGCG. The results suggest that EGCG significantly prevents aging-induced oxidative 
stress, glutathione (GSH) reduction, apoptosis, and autophagy. Moreover, mitochondria DNA copy number was 
decreased, and the number of active mitochondria and adenosine triphosphate (ATP) levels significantly 
increased by supplementation with EGCG. Thus, EGCG has a preventive role against aging in porcine post-
ovulatory oocytes due to its ability to inhibit oxidative stress and promote mitochondrial biogenesis. 
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effects by altering cell membrane and intracellular protein, 

cell signaling molecule, and microRNA profiles. In 

addition, previous studies have demonstrated that rats 

treated with EGCG exhibit a significantly longer lifetime, 

accompanied by a reduction in oxidative stress and 

inflammation on account of activation of the proteins 

involved in the regulation of longevity, including forkhead 

box O3 (FOXO3a) and Sirtuin 1 (SIRT1) [14]. 

Furthermore, studies from both invertebrate and 

mammalian model organisms have suggested an increase 

in the lifespan of an organism upon EGCG treatment 

[15–17]. The study about the effect of natural compounds 

like EGCG on the post-ovulatory aging process in 

oocytes has not been reported. In the present study, we 

have evaluated the role and underlying mechanism of 

EGCG in delaying the post-ovulatory oocyte aging in 

pigs. After selecting oocytes with first polar body, the 

MII stage oocytes were cultured for aging with or 

without EGCG for 24 h or 48 h. The supplement of 5–10 

μM EGCG could prevent oocyte fragmentation and 

maintain the ability of embryo pre-implantation develop-

ment, and prevent mitochondrial dysfunction, apoptosis, 

and autophagy induced by post-ovulatory oocyte aging. 
 

MATERIALS AND METHODS 
 

All animal work was conducted according to the 

Institutional Animal Care and Use Committee 

guidelines under currently approved protocols at 

Chungbuk National University. All chemicals sodium 

pyruvate, epidermal growth factor (EGF), luteinizing 

hormone (LH), follicle-stimulating hormone (FSH), 

calcium chloride (CaCl2), magnesium sulfate (MgSO4), 

polyvinyl alcohol (PVA) and paraformaldehyde (PFA) 

were purchased from Sigma-Aldrich Corporation, Inc. 

(St. Louis, MO, USA) unless otherwise indicated. All 

manipulations were performed on a heat plate at 38.5°C. 
 

Collection of porcine cumulus–oocyte complexes 

(COCs) and in vitro maturation (IVM) 
 

Ovaries from pigs were collected from a local 

slaughterhouse (Farm Story Dodarm B&F, Umsung, 

Chungbuk, Korea) and transported to the laboratory in 

pre-warmed NaCl solution with 75 mg/mL penicillin G 

and 50 mg/mL streptomycin sulfate. The porcine 

follicles with around 3–6 mm diameter were aspirated 

by using a 10-mL disposable syringe. COCs with more 

than two layers of compact cumulus cells (CCs) were 

selected and washed three times with an IVM medium 

[TCM-199 (11150–059; Gibco, Grand Island, NY, 

USA) supplemented with 100 mg/L sodium pyruvate, 

10 ng/mL EGF, 10% (v/v) porcine follicular fluid, 

10 IU/mL LH, and 10 IU/mL FSH]. Finally, 50–100 

COCs per well were cultured in 4-well dishes covered 

with mineral oil for 44–48 h until maturation to the MII 

phase at 38.5°C with 5% CO2 [18]. 

In vitro aging (IVA) and supplementation with 

EGCG 

 

The CCs were removed in 1 mg/mL hyaluronidase by 

pipetting for approximately 40 times. The MII stage 

oocytes were selected with first polar bodies for further 

studies. For analysis of oocyte post-ovulatory aging, the 

selected MII stage oocytes were continuous cultured in 

IVM medium with or without EGCG covered with mineral 

oil for an additional 24 or 48 h. The oocyte fragmentation 

rate was calculated at 24 and 48 h after IVA. 

 

Parthenogenetic activation and in vitro culture (IVC) 

 

According to previous study [19], two direct-current 

pulses (PDC) of 110 V for 60 μs were used for the 

parthenogenetic activation of the fresh and aged MII 

oocytes in 297 mM mannitol (pH 7.2) containing 0.1 mM 

CaCl2, 0.05 mM MgSO4, 0.01% PVA (w/v), and 0.5 mM 

HEPES. The activated oocytes were treated with 7.5 

μg/mL cytochalasin B in bicarbonate-buffered porcine 

zygote medium 5 (PZM-5) containing 4 mg/mL BSA for 

3 h to inhibit the pseudo-second polar body extrusion. The 

oocytes were then thoroughly washed and cultured in 4-

well plates with bicarbonate-buffered PZM-5 containing 

4 mg/mL BSA for 6 d at 38.5°C (5% CO2). The blastocyst 

rate was analyzed on day 7, and the quality of the 

blastocysts was evaluated as described by Gardner [20]. 

 

Glutathione (GSH) and reactive oxygen species 

(ROS) measurements  

 

For GSH level detection, ten oocytes from each group 

were stained with 10 μM 4-chloromethyl-6,8-difluoro-7-

hydroxycoumarin dye (CellTracker™ Blue CMF2HC; 

Thermo Fisher Scientific, Waltham, USA) at 38.5°C for 

30 min and then washed three times with PBS/PVA. For 

ROS level determination, ten oocytes from each group 

were incubated with 10 μM 2,7-dichlorodihydro-

fluorescein diacetate (H2DCF-DA, Cat #D399; 

Molecular Probes, Eugene, OR, USA) at 38.5°C for 30 

min. The fluorescence was detected using a digital 

camera (DP72; Olympus, Tokyo, Japan) connected to a 

fluorescence microscope (IX70; Olympus). The 

fluorescence intensity of oocytes was analyzed using 

ImageJ software version 1.44 g (National Institutes of 

Health, Bethesda, MD, USA) to quantify GSH and ROS 

levels [21]. 

 

Immunofluorescence and confocal microscopy 

 

As previously reported [22], oocytes were fixed with 

3.7% PFA for 30 min at room temperature (20–25°C) 
after washing with PBS/PVA solution thrice, and then 

permeabilized with 1% Triton X-100 for 30 min and 

blocked in 3.0% BSA containing 0.1% Triton X-100 for 
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1 h at room temperature. These oocytes were incubated at 

4°C overnight with anti-TOM20 (1:50, F-10, Cat # SC-

17764; Santa Cruz Biotechnology, Santa Cruz, CA, 

USA), anti-Beclin 1 (1:50; 11306-1-AP; ProteinTech, Wu 

Han, China), anti-active-caspase 3 (1:50, C8487; Sigma), 

or anti-p53 (1:50; SC6243; Santa Cruz Biotechnology) 

diluted with 3.0% BSA with 0.1% Triton X-100. After 

washing with PBS/PVA thrice, the oocytes were 

incubated with Alexa Fluor 488™ donkey anti-mouse 

immunoglobulin G (IgG) (H+L) (1:200; Cat # A21202; 

Invitrogen, Carlsbad, CA, USA) or Alexa Fluor 546™ 

donkey anti-rabbit IgG (H+L) (1:200; Cat # A10040, 

Invitrogen) for 1 h at room temperature. The oocytes 

were mounted onto slides using Vectashield mounting 

medium with DAPI (Vector Laboratories, Burlingame, 

CA, USA) and examined under a confocal microscope 

(Zeiss LSM 710 META, Jena, Germany). Images were 

processed by Zen software (version 8.0, Zeiss). 

 

Western blot analysis 

 

As previously report [23], a total of approximately 100 

porcine oocytes per group were lysis with 10 μl RIPA 

buffer and 10 μl loading buffer, and then heated at 98 C 

for 10 min. Lysates were separated by 6–12% SDS-PAGE 

gel and transferred onto polyvinylidene fluoride 

membranes. Next, the membranes were blocked with 5% 

skim milk in TBST buffer for 1 h and then incubated with 

anti‐PINK1, DRP1, LC3 or -GAPDH antibody at 4°C 

overnight. Subsequently, the membranes were washed 

with TBST buffer thrice and incubated at room 

temperature for 1 h with horseradish peroxidase-

conjugated goat anti-mouse IgG or goat anti-rabbit IgG 

(1:20,000; Santa Cruz Biotechnology). Blots were 

visualized with SuperSignal™ West Femto Maximum 

Sensitivity Substrate (Thermo Fisher Scientific, Waltham, 

USA) using a charge-coupled device camera and UviSoft 

software (Uvitec, Cambridge, United Kingdom). 

 

Active mitochondrial staining 

 

Oocytes were stained in 500 nM MitoTracker Red 

CMXRos (Cat #M7512; Invitrogen) for 30 min at 

38.5°C. After washing with PBS/PVA thrice, TOM20 

was stained as described in the immunofluorescence 

and confocal microscopy subsection. 

 

Mitochondrial DNA (mtDNA) copy number 

measurements 

 

Three oocytes were sampled into a PCR tube with 8 μl 

of lysis buffer (20 mM Tris, 0.4 mg/mL proteinase K, 

0.9% Nonidet-40, and 0.9% Tween 20) and incubated at 
65°C for 30 min, 95°C for 5 min. After dilution with 

H2O for 1:25, real-time qPCR was performed with 

WizPure qPCR Master (W1731-8; Wizbio Solutions, 

Seongnam, South Korea) according to the 

manufacturer’s instructions, on a QuantStudio™ 6 Flex 

Real-Time PCR System (Applied Biosystems, Waltham, 

MA, USA). The target gene ND1 which primers were 

ND1-F (5′-CCT ACT GGC CGT AGC ATT CC-3′), 

ND1-R (5′-GAG GAT GTG CCT GGT CGT AG-3′) 

was amplified as follows: 95°C for 3 min, followed by 

40 cycles of 95°C for 15 s, 60°C for 25 s, 72°C for 15 s, 

and a final extension at 72°C for 5 min. The mRNA 

quantification data were analyzed using the 2−ΔΔCt 

method. CT values were relative to the fresh group. 

 

Adenosine triphosphate (ATP) measurements 

 

ATP level was detected by the luciferin–luciferase ATP 

assay system with a luminometer (CentroPRO LB 962; 

Berthold, ND, USA) according to the ATP 

determination kit (A22066; Molecular Probes) 

manufacturer’s instructions. Briefly, ten oocytes per 

group were sampled in a PCR tube containing 30 μl of 

lysis buffer (20 mM Tris, 0.9% Nonidet-40, and 0.9% 

Tween 20). The oocytes were homogenized by 

vortexing until lysis occurred. The standard reaction 

solution was prepared following the manufacturer’s 

instructions and kept on ice and avoided the light before 

detection. 5 μl of the lysates were added to 96-well 

plates and equilibrated for 10 s. Subsequently, 150 μl of 

the standard reaction solution was mixed with each 

sample, and the optical signal was integrated for 10 s 

after a delay of 2 s. The light intensity in the fresh group 

was arbitrarily assigned a value of 1, and the relative 

light intensity in the aging group was then measured. 

 

Statistical analysis 

 

All of experiments were repeated at least three times, 

and immunofluorescence representative images are 

shown in the figures. In statistics, one-way analysis of 

variance (ANOVA) or Student’s t-test was used for data 

analysis. All percentage data were presented as the 

mean ± standard error of the mean (SEM). Statistical 

significance was set at p < 0.05. 

 

Data availability statement 

 

The original contributions presented in the study are 

included in the article, further inquiries can be directed 

to the corresponding author. 

 

RESULTS 
 

EGCG prevents fragmentation of porcine oocytes 

induced by aging 

 

After an IVM step for 44 h, the CCs were removed by 

pipetting, and MII stage oocytes were selected as fresh 
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oocytes. As a post-ovulatory aging model, MII stage 

oocytes were continuous cultured in IVM for 24 h or 

48 h. The morphology of the oocytes was investigated 

at 0, 24, and 48 h after IVA (Figure 1A). We found that 

oocyte fragmentation rate (37.27 ± 3.18%) was much 

higher at 48 h after IVA (Figure 1B). The ability of 

EGCG to maintain oocyte morphology during post-

ovulatory aging was investigated by treating the oocytes 

with EGCG at different concentrations (0, 0.5, 1, 2, 5, 

10, 50, and 100 μM). The fragmentation rate of the 

aging oocytes was significantly reduced in the 5 μM 

EGCG treatment group (15.3 ± 4.80%), compared with 

those in the 48-h aging control group (37.27 ± 3.18%) 

(p < 0.01, Figure 1B). Both pronuclear like nuclear and 

highly condensed nuclear were observed as abnormal 

chromosome after aging. However, the ratio of oocytes 

with those abnormal chromosomes were lower in 

EGCG treatment after 24 h aging (Figure 1C). 

Moreover, the blastocyst formation was partially 

rescued by supplementation with 10 μM EGCG (22.64 

± 1.05%) compared with the 24 h aging control group 

(14.96 ± 2.05%) (p < 0.01, Figure 1D and 1E). The 

diameter of blastocysts were significantly reduced in 

24 h aged blastocysts compared with those in the fresh 

group, which was rescued by supplementation with 

EGCG (122.40 ± 5.147 vs. 162.20 ± 8.52 μm, P < 

0.005; 122.40 ± 5.147 vs. 148.00 ± 5.57 μm, P < 0.05, 

Figure 1F). Therefore, 5 μM EGCG was selected for 

further studies. 

 

EGCG rescues aging-induced oxidative stress 

 

The antioxidant protective effect of EGCG on aging 

oocytes was determined in vitro by detecting the GSH 

and ROS levels. As shown in Figure 2A and 2B, the 

GSH levels were gradually decreased during IVA (p < 

0.001). However, GSH levels were higher in the 48 h 

EGCG group compared with those in the 48 h control 

group (p < 0.05). ROS production substantially increased 

during oocyte IVA (p < 0.001). However, ROS levels in 

the 48 h EGCG group were significantly lower than those 

in the 48 h control group (p < 0.001, Figure 2C and 2D). 

These data indicate that EGCG can prevent GSH 

reduction and ROS production induced by oocyte IVA. 

 

 
 

Figure 1. Epigallocatechin-3-gallate (EGCG) rescues aging-induced fragmentation of porcine oocytes. (A) Oocyte morphology after 

48 h of aging with/without EGCG. The white dotted circle indicates fragmented oocytes. Scale bars represent 100 μm. (B) Fragmentation rate 
upon treatment with different concentrations of EGCG following aging for 48 h. **p < 0.01 indicates significant differences. (C) Quantitative 
analysis revealed chromosome misalignment after aging for 24 h and 48 h. (D) The D7 embryo morphologies in the fresh, 24 h control, and 24 h 
EGCG groups. (E) The blastocyst rate upon treatment with different concentrations of EGCG after aging for 24 h. Scale bars represent 100 μm. 
(F) Diameters of blastocyst in the fresh, 24 h control, and 24 h EGCG groups. Values are expressed as the mean ± SEM. 
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EGCG rescues mitochondrial dysfunction induced 

by aging 

 

To detect mitochondrial activity, the oocytes were 

stained with MitoTracker Red CMXRos. As shown in 

Figure 3A and 3B, mitochondria activity was 

significantly reduced in oocytes upon IVA by 

approximately 68% of normal levels (p < 0.05). ATP 

levels were also measured to estimate mitochondrial 

function. Although the ATP levels did not decrease 

initially after 24 h IVA (p > 0.05), the significant 

reduction of ATP level was detected after 48 h IVA (p < 

0.01, Figure 3C). Next, to evaluate if EGCG could 

rescue mitochondria dysfunction during the post-

ovulatory aging of oocytes, the oocytes were treated 

with 5 μM EGCG for 24 h or 48 h, and the 

mitochondrial activity and ATP levels were measured. 

Our results indicated that EGCG significantly prevented 

the reduction in both mitochondrial activity (p < 0.05, 

Figure 3B) and ATP levels after 48 h IVA. (p < 0.01, 

Figure 3C). Moreover, the level of PINK1 was 

performed by western blot which was higher in EGCG 

supplementation group compare with control after 48 h 

aging (Figure 3D). These data suggest that EGCG has 

protective effects on the mitochondria function of 

oocytes during IVA. 

 

EGCG prevents the release of cytochrome c induced 

by aging 

 

The role of EGCG treatment on cellular apoptosis was 

determined by analyzing the colocalization of 

cytochrome c and mitochondria (Figure 4A and 4B). 

We found that the disruption of the colocalization of 

mitochondria and cytochrome c upon IVA in the 24 h 

and 48 h groups was significantly prevented by 

supplementation with EGCG. Pearson’s correlation 

value indicated that supplementation with EGCG 

 

 
 

Figure 2. Epigallocatechin-3-gallate (EGCG) rescues aging-induced oxidative stress. (A) Representative images of glutathione 

(GSH) in the Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG oocytes. (B) Quantified intracellular levels of GSH by relative 
fluorescence intensity (RFI). *p < 0.05 indicates significant difference. (C) Representative images of reactive oxygen species (ROS) in the 
Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG oocytes. (D) Quantified intracellular levels of ROS by RFI. Scale bars represent 
100 μm. Values are presented as the mean ± standard error of the mean (SEM). ****p < 0.001 indicates significant difference. Values are 
expressed as the mean ± SEM. 
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resulted in evident colocalization of mitochondria and 

cytochrome c to prevent apoptosis. 

 

Next, the mtDNA copy number was analyzed using RT-

PCR. In agreement with previous study [24], the 

mtDNA copy number was significantly decreased after 

48 h IVA (p < 0.001, Figure 4C). However, in EGCG-

treated oocytes, the mtDNA copy number was 

significantly decreased at both 24 and 48 h of IVA but 

did not increase as predicted compared with control 

(24 h, p < 0.05; 48 h, p < 0.01, Figure 4C). Moreover, 

DRP1 level was higher in EGCG group compared to 

control group, which could induce mitochondrial 

fission. LC3 II/I ratio was lower in 48 h EGCG group 

compared to 48 h control group, which indicated that 

mitophagy was inhibited by EGCG supplementation. 

Collectively, the results showed that EGCG prevents 

cytochrome c release and improves mitophagy. 

 

EGCG rescues aging-induced apoptosis and 

autophagy 

 

Due to the activation of caspases, apoptosis culminated 

in the process of post-ovulatory aging [1]. Therefore, to 

evaluate whether apoptosis was prevented by treatment 

with EGCG, the expression level of P53 and active-

caspase 3 was detected by using immunofluorescence. 

As shown in Figure 5A and 5D, the intensity of active-

caspase 3 was higher in aged oocytes than that in fresh 

oocytes. However, supplementation with EGCG 

reduced the expression of active-caspase 3 at 24 h (p < 

0.01) and 48 h (p < 0.05) after IVA. Meanwhile,

 

 
 

Figure 3. Epigallocatechin-3-gallate (EGCG) rescues aging-induced mitochondrial dysfunction. (A and B) Fluorescence intensity 

of MitoTracker Red in aging Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG oocytes. Scale bars represent 20 μM. (C) 
Adenosine triphosphate (ATP) levels of oocytes in the Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG groups. (D) Lysates from 
oocytes with/ without EGCG for 24 h and 48 h aging were analyzed by western blot for detection of the PINK1 and GAPDH. *p < 0.05 and **p 
< 0.01 indicate significant differences. Values are expressed as the mean ± SEM. 
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the level of p53 was also decreased after 

supplementation with EGCG for 24 h (p < 0.001) and 

48 h of aging (p < 0.01, Figure 5C and 5D). Moreover, 

autophagy is reported to be involved in oocyte aging. 

We examined whether autophagy was inhibited in aged 

oocytes. As shown in Figure 5B and 5D, the aged 

 

 
 

Figure 4. Epigallocatechin-3-gallate (EGCG) prevents cytochrome c release induced by aging. (A and B) Immunofluorescence 
images and Pearson’s correlation coefficient (r) show colocalization of cytochrome c and MitoTracker Red in the Fresh, 24 h control, 24 h 
EGCG, 48 h control, and 48 h EGCG oocytes. Scale bars represent 20 μm. (C) Relative mitochondrial DNA (mtDNA) copy number in the 
Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG oocytes. (D) Lysates from oocytes with/ without EGCG for 24 h and 48 h aging 
were analyzed by western blot for detection of the DRP1, LC3 and GAPDH. *p < 0.05 and **p < 0.01 indicate significant difference. Values are 
expressed as the mean ± SEM. 
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group presented a significantly higher expression of 

Beclin 1 compared to that in the fresh group, and the 

level was significantly reduced after treatment with 

EGCG for 48 h (p < 0.01). These results demonstrate 

that EGCG can prevent post-ovulatory aging-induced 

apoptosis and is a potent molecule capable of delaying 

post-ovulatory aging. 

DISCUSSION 
 

It is well known that oxidative stress triggers the 

process of post-ovulatory oocyte aging. In fact, previous 

studies indicate that antioxidant supplements can delay 

the post-ovulatory aging process in oocytes [1, 25–30]. 

In this case, glutathione is an endogenous antioxidant, 

 

 
 

Figure 5. Epigallocatechin-3-gallate (EGCG) rescues apoptosis and autophagy induced by oocyte aging. (A) Active-caspase 3 

expression was analyzed by immunofluorescence in the Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG oocytes. (B) Beclin 1 
level was analyzed by immunofluorescence in the Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG oocytes. (C) P53 expression 
was analyzed by immunofluorescence in the Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG oocytes. (D) Relative intensities of 
caspase 3, Beclin 1, and P53 in the Fresh, 24 h control, 24 h EGCG, 48 h control, and 48 h EGCG oocytes. Scale bars represent 20 μm. *p < 
0.05, **p < 0.01 indicate significant differences between treatment groups. Values are expressed as the mean ± SEM. 
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which prevents the harmful effects of oxidative stress 

by reducing the accumulation of reactive oxygen 

species in oocytes. However, when oocytes missed the 

optimal fertilization time, ovulated MII oocytes showed 

increased GSH consumption and ROS accumulation 

[31, 32]. In the present study, when the IVM medium 

was supplemented with EGCG, ROS production and 

GSH consumption was abated during the process of 

post-ovulatory aging (Figure 6). These data suggest that 

EGCG supplementation can protect oocytes from 

oxidative stress induced by IVA. 

 

Moreover, oxidative stress in post-ovulatory aged 

oocytes can induce apoptosis and autophagy [1]. In this 

study, the supplementation of EGCG prevented 

autophagy by inhibiting the level of BECLIN1 and 

LC3, prevented apoptosis by reducing P53 and caspase-

3 activation (Figure 6). These results demonstrate that 

EGCG can inhibit ROS accumulation and prevent the 

harmful effects of oxidative stress on post-ovulatory 

aging oocytes. Since EGCG can improve the 

developmental ability of aging oocytes, it is suggested 

that EGCG can delay the porcine oocyte post-ovulatory 

aging. 

 

Previously study showed that mitochondrial activity and 

ATP production decrease in aged oocytes [33]. EGCG 

supplementation can, however, rescue these effects by 

increasing the level of ATP. The EGCG antioxidant 

properties may be benefit to the mitochondria. 

However, we found that the mtDNA copy number was 

reduced after supplementation of EGCG, which may be 

caused by mitophagy. 

 

Normally, PINK1 translocate to the mitochondria 

inner membrane and is degraded by the proteasome 

system [34]. However, PINK1 accumulates in the 

mitochondrial outer membrane [35] and recruits 

PARKIN to damaged mitochondrial outer membranes 

in depolarized mitochondria [36]. PINK1 also interacts 

with DRP1 to promote mitochondrial fission which 

regulates the mitochondrial number, size, and 

 

 
 

Figure 6. Schematic representation of the protective effects of epigallocatechin-3-gallate (EGCG) by targeting 
mitochondrial function after post-ovulatory aging in pig. EGCG prevents apoptosis by inhibiting mitochondrial P53 and caspase 3 
activity and mitochondrial dysfunction and ultimately prevents the oocyte damage induced by post-ovulatory aging. 
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morphology with mitochondrial fusion in a dynamic 

manner [37, 38]. Therefore, EGCG induces PINK1 and 

DRP1 expression during IVA (Figure 3D and 4D)  

and accelerating the clearance of damaged 

mitochondria. Even the number of mitochondria in the 

EGCG-treated oocytes was decreased; the other mito-

chondria were healthy. Therefore, healthy mitochondria 

would further lead to a decrease in the production of 

ROS. 

 

In addition, autophagy was shown to be downregulated 

during the EGCG-induced mitophagy process (Figure 

4D and 5B). This may be because autophagy is 

increased due to the elimination of damaged cell 

components formed by oxidative stress during the 

autophagy process after aging. Hence, the autophagy 

was downregulated as an adaptive response. The current 

study reveals how the mitochondrial quality control (QC) 

system of post-ovulatory aging oocytes is disrupted, and 

EGCG supplementation is shown to prevent these 

processes. 

 

CONCLUSION 
 

EGCG prevented several cellular alterations induced by 

post-ovulatory aging and promoted the development 

ability of aged embryos in pigs. EGCG has the potential 

to delay the aging of human oocytes or oocytes from 

other mammalian species processed for clinical assisted 

reproductive technology. 
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