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INTRODUCTION  
 

Gastric cancer remains one of the malignant tumors 

with the highest morbidity and mortality rates 

worldwide. According to Global Cancer Statistics, as of 

2020, a total of 1,089,103 new gastric cancer patients 

have been diagnosed worldwide, accounting for 5.6% 

of the total new cancer patients. There were 768,793 

new deaths from gastric cancer, accounting for 7.7% of 

the overall mortality [1]. Despite many significant 

advances in therapeutic strategies over the past decade, 

such as immunotherapy, chemotherapy, and radiation 

therapy, therapeutic efficacy is not ideal and the 

survival rate of patients after treatment remains poor 

[2, 3]. The conventional surgical resection is often 

associated with the risk of metastasis and recurrence, as 

most patients were diagnosed at advanced stage [4]. 

Hence, it is more urgent and practical to investigate the 

molecular mechanism of gastric cancer and further 

develop effective prognostic factors. 
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ABSTRACT 
 

Gastric cancer remains a malignant disease of the digestive tract with high mortality and morbidity 
worldwide. However, due to its complex pathological mechanisms and lack of effective clinical therapies, the 
survival rate of patients after receiving treatment is not satisfactory. An increasing number of studies have 
focused on cancer stem cells and their regulatory properties. In this study, we first constructed a co-
expression network based on the WGCNA algorithm to identify modules with different degrees of association 
with tumor stemness indices. After selecting the most positively correlated modules of the stemness  
index, we performed a consensus clustering analysis on gastric cancer samples and constructed the  
co-expression network again. We then selected the modules of interest and applied univariate COX 
regression analysis to the genes in this module for preliminary screening. The results of the screening were 
then used in LASSO regression analysis to construct a risk prognostic model and subsequently a sixteen-gene 
model was obtained. Finally, after verifying the accuracy of the module and screening for risk genes, we 
identified MAGE-A3 as the final study subject. We then performed in vivo and in vitro experiments to verify 
its effect on tumor stemness and tumour proliferation. Our data supports that MAGE-A3 is a tumor stemness 
regulator and a potent prognostic biomarker which can help the prediction and treatment of gastric cancer 
patients. 
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Recently, many studies have focused on a specific class 

of tumor cells, namely cancer stem cells. They are 

involved in most processes of disease progression and 

heterogeneity of tumor [5]. Cancer stem cells own 

some characteristics as normal stem cells, such as self-

renewal and ability to differentiate into other cells that 

consist of various parts of the tumor [6]. Besides, 

cancer stem cells also possess their own characteristics. 

They usually stay at a dormant state for a long time and 

are highly resistant to drugs and insensitive to external 

physical and chemical environments that are 

detrimental to the cells [7]. Accumulating evidence 

suggests that cancer stem cells take the main 

responsibility for post-surgical recurrence, tumor 

metastasis, resistance to chemotherapy and radiation 

therapy [8, 9]. Just for this reason, focusing on cancer 

stem cell therapy and exploring the key molecules that 

regulate the properties of tumor stem cells will greatly 

improve the likelihood of disease cure and patient 

survival rate. 

 

To better investigate and characterize these molecules 

that regulate and maintain tumor stemness, Malta  

and his colleagues analyzed transcriptome and other 

profiles from the TGCA database to obtain an indices 

which could quantify stemness [10]. The mRNA 

expression-based stemness index (mRNAsi) is used to 

quantify the stemness of mRNA expression in samples, 

the epigenetic regulation based-index (EREG-mRNAsi) 

is utilized to characterize the effect of epigenetic 

modifications on stemness. By applying these tumor 

stemness indices, researchers can obtain molecules 

involved in the regulation of tumor stemness in different 

tumors in the TCGA database. Higher index scores 

represent more important in its regulation of tumor 

stemness. Therefore, we got these tumor stem cell 

indices and applied them to the present study. 

 

In this study, we first identified tumor stemness-related 

modules and key genes by using the WGCNA and 

mRNAsi indices differentially expressed genes (DEGs). 

After extracting the expression data of these genes, we 

performed consensus clustering analysis on gastric 

cancer samples in TCGA. We found that gastric cancer 

patient samples could be classified into two tumor 

stemness subtypes (C1 and C2groups) based on these 

key genes. WGCNA were again applied to construct co-

expression network and screen key genes after gastric 

cancer samples consensus clustering analysis. Then, we 

implemented an initial screening of the modules we 

were interested in and applied the LASSO regression 

analysis algorithm to construct a risk model and 

validated it. Finally, we identified MAGE-A3 as the 
final study subject. The results show that MAGE-A3 is 

involved in the regulation of tumor proliferation and 

that tumor stemness regulates through PI3K/AKT 

signalling pathways. Thus, our study provides a new 

potential target for the treatment and prognosis of 

gastric cancer. 

 

MATERIALS AND METHODS  
 

CCK-8 assay 

 

To test the proliferative capacity of the cells, the CCK-8 

(Thermo Fisher, USA) assay was performed. Inoculate 

10,000 cells in wells of a ninety-six-well plate with 

three replicate wells per group. Continue all subsequent 

operations according to the kit instructions. The 

absorbance at 450 nm of each group was measured at 0, 

24 and 72 hours after inoculation using a microplate 

reader. 

 

5-ethynyl-2ǋ-deoxyuridine (EdU) incorporation assay 

 

Cells from the experimental and control groups were 

inoculated on cell coverslips at the same time. After 

overnight incubation at 37° C in 5% CO2, subsequent 

manipulations were performed as follows. Briefly, 

Replace the complete medium with fresh medium 

containing 20mM EDU (Thermo Fisher, USA) and 

incubated at 37° C for 2 hours. DAPI was used to stain 

cell nuclei. Olympus confocal microscope FV3000 was 

used to observe and take pictures. 

 

Immunofluorescence and confocal imaging 

 

Cellular immunofluorescence is utilized to detect  

the expression of tumor stem cell biomarker protein  

levels. The experimental steps are briefly described as 

follows:1 Cells were inoculated on coverslips, cultured 

overnight and washed three times.2 Cells were fixed  

with 4% paraformaldehyde at room temperature and 

permeabilized with 0.1% Triton-100. 3 Sealing of 

antigens at room temperature 1 hour.4 Primary antibody 

(CD44, EpCAM; Abclonal, China) was incubated 

overnight at four degrees and CY3-labeled secondary 

antibody(Abclonal, China) was added. Olympus confocal 

microscopy (Olympus, Japan) was used for photography. 

 

Tumor xenograft model and animal imaging 

 

Four-week-old immunodeficient nude mice, purchased 

from Beijing Huafukang Experimental Animal Co, Ltd, 

were kept in specific pathogen free (SPF) environment 

for three days before conducting the follow-up 

experiments. Test and control groups of 1x107 cells were 

simultaneously injected into the mice by subcutaneous 

injection. The volume size of the xenograft tumors was 

measured on the 6th, 12th and 18th days after injection, 

respectively. Animal imaging was used to observe tumor 

growth in mice in real time [11]. 
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Differentially expressed genes (DEG) 

 

Gastric cancer RNA sequencing data were processed by 

R package limma, pheatmap and ggplot2 for screening 

differentially expressed genes and presenting the top 50 

DEGsin a heat map [12]. The screening criteria were P-

value less than 0.05 and |LogFC|Ó2. 

 

WGCNA and identification of key module 

 

Unlike the focus on differentially expressed genes, 

Weighted Gene Co-expression Network analysis 

(WGCNA) analyzed the data based on two assumptions: 

1 Genes with similar expression patterns may be  

co-regulated, functionally related or under the same 

signaling pathway. 2 The genes in the network obey 

scaleless network distribution [13]. After removing the 

abnormal samples, the Pearson correlation coefficient 

between any paired genes was calculated. We then build 

the weight adjacency matrix by the power function amn 

= |cmn|ɓ method [14]. A suitable ɓ value is determined 

to remove weak correlations between genes, and 

therefore more conducive to building co-expression 

network. In the next step, we transform the weight 

adjacency matrix into a topological overlap matrix 

(TOM) so that we can measure the connectivity of genes 

in the network. Based on the TOM measurements, 

average linkage hierarchical clustering is used to classify 

genes with similar expression profiles with the same 

module. A minimum size of 50 per group is the criterion 

for gene dendrograms [13]. 

 

Consensus clustering 

 

After finding key genes by WGCNA and mRNAsi, we 

applied consensus clustering analysis to divide TCGA 

patient samples into different subtypes. R package 

ConsensusClusterPlus completed the above analysis. 

Cumulative distribution function (CDF) and consensus 

matrices determine the appropriate number of 

subgroups [15]. 

 

Functional annotation 

 

Gene ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) analyses were applied to 

characterize the biological function of genes you are 

interested. And these analyses were carried out by 

applying these doses, clusterProfiler, org.Hs.eg.db, 

enrichplot and ggplot2 R packages [14, 16]. 

 

Construction of risk score models 

 
LASSO (least absolute shrinkage and selection operator) 

regression analysis and Kaplan-Meier survival analysis 

were used to construct risk score model [11, 17, 18]. 

Statistical analysis 

 

Data are presented as mean±standard deviation. A  

P-value of less than 0.05 was considered significantly 

different.(*P< 0.05; **P< 0.01; ***P< 0.001;****P< 

0.0001). 

 

Availability of supporting data  

 

The data generated during this study are included in this 

article and its Supplementary Information files are 

available from the corresponding author on reasonable 

request. 

 

RESULTS 
 

Detection of differences in mRNAsi and 

differentially expressed genes in gastric cancer 

 

The mRNAsi is a widely recognized parameter for 

determining the similarity between tumor cells and 

normal stem cells. We first explored the differences in 

mRNAsi in normal and tumor samples of gastric cancer. 

As shown in Figure 1A, mRNAsi was dramatically 

different between the two groups, with the tumor group 

samples possessing much higher mRNAsi values than 

the normal. Subsequently, we screened differentially 

expressed genes in TCGA gastric cancer RNA 

sequencing data. Limma and pheatmap R packages 

processed the above data and extracted the top 50 DEGs 

to plot as heat map and volcano map (Figure 1B, 1C). In 

total, we obtained 6736 differential genes of which 

1139 expressed down-regulated genes and 5597 up-

regulated genes. 

 

Identification of mRNAsi-related key genes and their 

functional annotation 

 

The above findings demonstrate that there may be 

genes that play a critical role in regulating tumor 

stemness in DEGs. Therefore, we applied WGCNA 

and mRNAsi to search for these genes more deeply. 

After DEGs were processed by the WGCNA 

algorithm, we first removed the samples that did not 

meet the threshold because t of the deflection of their 

gene expression (Figure 2A). We then select ɓ=4 

(scalefree R2=0.9) as a soft threshold to build the 

scaleless network (Figure 2B). After calculating the 

similarity between modules, we merged the modules 

below the red line (Figure 2C) and plotted the gene 

dendrogram (Figure 2D). A total of 8 modules were 

obtained and named with different colors. A heat map 

was plotted to show the relationship between different 
modules and tumor stem cell index (Figure 2E). 

Finally, we chose the brown module as the subject for 

the subsequent study. 
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Figure 1. Differences in mRNAsi and sample gene expression. (A) Differences in mRNAsi between normal and tumor tissues in gastric 

cancer. (B) Volcano map of differentially expressed genes. Green dots represent genes that are down-regulated, red dots represent genes 
that are up-regulated, and black dots represent no significant change. (C) The top 50 differentially expressed genes in GC cancer disease 
presented as a gene expression heat map. P<0.05. GC: gastric cancer. 
 

 
 

Figure 2. Identification of cancer stem cell index-related modules by WGCNA. (A) Samples above the red line were removed 
because they were considered as the deflection of gene expression. (B) This represents the correlation coefficient R2 and mean connectivity 
in the scale-free network. (C) Calculate similarity between modules and merge modules with high similarity. (D) Hierarchical clustering of 
gene modules. (E) Heatmap of the correlationship between gene modules and cancer stemness index. (F) Scatter plot of maximum positive 
correlation with cancer stem cell index (mRNAsi). 
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Gene significance (GS) represents the correlation 

between the gene and the trait of interest. Module 

membership (MM) represents the correlation between 

the module genes and this module. In this study, we set 

gene significance (GS)>0.5, Module membership 

(MM)>0.75 as criteria to screen key genes in brown 

modules (Figure 2F). In total, 54 tumor stemness-

related genes were obtained. Firstly, we performed 

correlation analysis on these 54 genes to demonstrate 

the accuracy of the above parameter settings 

(Supplementary Figure 1). And we subsequently 

extracted the expression data of these genes to map 

them as box line plots and heat maps (Figure 3A, 3B). 

Functional enrichment analysis was likewise performed 

for these genes (Figure 4A, 4B). The results of GO 

analysis showed that these genes are involved in sister 

chromatid segregation and cell nuclear division, etc. 

The results of KEGG are mainly for cell cycle and 

mismatch repair, etc (Figure 4C, 4D). 

 

Molecular subtypes of gastric cancer based on 

mRNAsi-related key genes and identification of key 

modules 

 

To explore novel investigation objectives and horizons, 

we conducted a consensus clustering analysis using the 

obtained tumor stemness-associated key genes. After 

consensus clustering analysis, the 384 gastric cancer 

patient samples would be classified into different 

subtypes. Figure 5A shows the relative change of CDF 

curve of consensus score from k = 2 to 9. Relative 

change in area under the CDF curve for k = 2 to 9 

(Figure 5B). When k = 2 for consensus clustering, it 

proves to be the best choice for dividing the patient 

samples (Figure 5C). Then we performed survival curve 

analysis between the two groups and their relationship 

with clinical characteristics. The K-M survival analysis 

showed that the overall survival rate of the C1 group was 

higher than that of the C2 group (Figure 5D). Clinical 

heatmap for two groups was shown in Figure 5E. 

 

In this part of the study, we likewise performed 

WGCNA analysis on the consensus clustering samples. 

First filter out the outliers and this time we selected ɓ=4 

(scalefree R2=0.9) as the parameter to build the network 

(Figure 6A, 6B). And after merging the high similarity 

modules (Figure 6C, 6D), the heatmap was obtained 

(Figure 6E). Finally, we identified the blue module as 

object due to its maximum positive correlation with 

tumor to study. 

 

Establishment and validation of risk prognostic 

model 

 

A total of 621 genes were obtained. To investigate the 

prognostic role of these genes in gastric cancer, a risk 

prognostic model was constructed. We first perform 

initial screening and obtained 51 genes (Supplementary 

Figure 2 and Table 1). We then applied these 51 genes 

to the LASSO regression algorithm to construct a risk 

 

 
 

Figure 3. Differential expression analysis of key genes. (A) Box plot of the difference in expression of key genes between tumour and 

normal tissue. (B) Key genes differential expression heatmap. 
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Figure 4. Key genes function enrichment analysis. (A, B) GO enrichment analysis of key genes. (C, D) KEGG enrichment analysis of key 

genes. 

 

 
 

Figure 5. The mRNAsi-related key genes could classify GC into two groups by consensus clustering of TCGA dataset.  
(A) Cumulative distribution function (CDF) for k=2 to k=9. (B) Relative change in area under the CDF curve according to different k values.  
(C) Consensus clustering matrix of samples from TCGA dataset for k=2. (D) Survival analysis of patients in the C1 group and C2 group in TCGA 
cohort. (E) Heatmap of two clusters defined by the expression of mRNAsi-related key genes. 


