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INTRODUCTION 
 

People age chronologically at the same rate but show 

substantial individual differences in their rates of 

biological aging, or the gradual, multi-system decline in 

physiology that occurs with aging. Recent advances are 

underway to quantify biological aging. DNA 

methylation (DNAm)-based measures, including first- 

and second-generation epigenetic clocks and pace of 

aging measures, are promising aging biomarkers that 

predict morbidity and mortality independent of 
chronological age [1–3]. 

 

Links between DNAm measures and risk for cognitive 

decline have been less well characterized, despite the 

substantial and growing burden of cognitive decline and 

dementia [4]. The majority of existing evidence on 

DNAm measures and neuropsychologically assessed 

cognitive function is cross-sectional [5] and cannot 

address whether changes in biological aging are 

associated with changes in cognition. Four studies to 

date [6–9] have examined but did not find changes in 

cognitive function relating to changes in first- or 

second-generation epigenetic clocks. 

 

First-generation clocks, including Horvath [10] and 

Hannum [11], were trained to predict chronological 

age. Therefore, Horvath and Hannum clocks exhibit 

high correlations with chronological age; however, they 

predict morbidity and mortality more weakly than 
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ABSTRACT 
 

DNA methylation-based (DNAm) measures of biological aging associate with increased risk of morbidity and 
mortality, but their links with cognitive decline are less established. This study examined changes over a 16-
year interval in epigenetic clocks (the traditional and principal components [PC]-based Horvath, Hannum, 
PhenoAge, GrimAge) and pace of aging measures (Dunedin PoAm, Dunedin PACE) in 48 midlife adults enrolled 
in the longitudinal arm of the Adult Health and Behavior project (56% Female, baseline AgeM = 44.7 years), 
selected for discrepant cognitive trajectories. Cognitive Decliners (N = 24) were selected based on declines in a 
composite score derived from neuropsychological tests and matched with participants who did not show any 
decline, Maintainers (N = 24). Multilevel models with repeated DNAm measures within person tested the main 
effects of time, group, and group by time interactions. DNAm measures significantly increased over time 
generally consistent with elapsed time between study visits. There were also group differences: overall, 
Cognitive Decliners had an older PC-GrimAge and faster pace of aging (Dunedin PoAm, Dunedin PACE) than 
Cognitive Maintainers. There were no significant group by time interactions, suggesting accelerated epigenetic 
aging in Decliners remained constant over time. Older PC-GrimAge and faster pace of aging may be particularly 
sensitive to cognitive decline in midlife. 
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second-generation clocks [12, 13]. Second-generation 

clocks, including PhenoAge [14] and GrimAge [12], 

were optimized for lifespan prediction. Specifically, 

PhenoAge and GrimAge were developed to capture 

DNAm patterns that not only change with 

chronological age, but also account for differences in 

risk for morbidity and mortality. Finally, the latest 

DNAm measures include epigenetic “pace of aging” 

metrics [2, 3] and principal components (PC)-based 

clocks [15]. Pace of aging measures differ from first- 

and second-generation clocks in that they were trained 

to predict longitudinal changes in multi-system 

biomarkers [2, 3]. Specifically, Dunedin PoAm was 

trained in individuals of the same chronological age to 

predict changes in 18 biomarkers across 12 years (age 

26 to 38), and Dunedin PACE, an updated version, was 

trained to predict changes in 19 biomarkers across 20 

years (age 26 to 45) [2, 3]. Last, PC-based clocks were 

developed to enhance the reliability of traditional 

epigenetic clocks (Horvath, Hannum, PhenoAge, and 

GrimAge), which use individual CpG sites that are 

noisy and unreliable [16]. Instead, PC-based clocks use 

principal components (shared systematic variation 

across many CpG sites) rather than individual CpGs to 

estimate PC-clock ages [15] (see Supplementary 

Materials for additional DNAm clock descriptions). 

These latest DNAm measures (Dunedin PoAm, 

Dunedin PACE, and PC-clocks) may be particularly 

robust predictors of cognitive decline, but these 

associations have yet to be thoroughly examined, 

including longitudinally. 

 

This preliminary study examined overall levels and 

changes in traditional and PC-based first- and second-

generation epigenetic clocks and pace of aging 

measures in participants selected from a larger 

prospective cohort to represent extremes of maintained 

and declining cognitive function (termed Maintainers 

and Decliners, respectively) between a baseline visit 

when participants were in midlife and a second visit 

approximately 16 years later. We hypothesized that 

overall, cognitive Decliners would be biologically older 

compared to cognitive Maintainers. We also explored 

whether cognitive Decliners would show faster 

biological aging (i.e., steeper increases in DNAm over 

time) compared to cognitive Maintainers; and whether 

particular cognitive domains associated more strongly 

than others with measures of biological aging. We 

expected that PC-based clocks of enhanced reliability 

would outperform traditional clocks and that second-

generation clocks and pace of aging measures trained to 

predict morbidity, mortality, and multi-system decline 

would outperform first-generation clocks optimized for 

age prediction. Notably, we tested several DNAm 

measures because a comparative analysis approach is 

recommended to simultaneously evaluate the utility of 

many DNAm measures and determine which ones are 

associated with aging outcomes of interest [17]. 

 

RESULTS 
 

Neuropsychological tests were administered and 

biological age was estimated at both time 1 (T1) and 

time 2 (T2) for 24 people who declined in cognitive 

function (Decliners) and 24 who maintained cognitive 

function (Maintainers) from T1 to T2 (mean years 

between assessments = 15.9, range: 15.4 to 16.9), 

selected using an extreme groups approach (see 

Methods). Table 1 summarizes study participant 

characteristics. Decliners and Maintainers did not 

significantly differ on chronological age, sex, education, 

race, body mass index, smoking status, or T1 cognition 

(a composite score derived from neuropsychological 

tests for spatial reasoning, working memory, processing 

speed, executive function, and attention; see Methods). 

Decliners’ cognitive composite decreased from T1 to 

T2 (T1M = 67.61; T2M = 53.89, p < 0.001) whereas 

Maintainers’ cognitive composite did not change over 

time (T1M = 66.48; T2M = 67.56, p = .189). The 

observed cognitive decline was more than a standard 

deviation decline, a clinically noticeable change in 

cognitive performance associated with risk for future 

cognitive impairments. Normative values on several 

neuropsychological tests were further examined to 

contextualize changes in the cognitive composite. As 

the sample performed above average at T1, the 

Decliners’ change can be interpreted as moving from 

above average to average, whereas the Maintainers 

remained slightly above average at both time points (see 

Supplementary Results). All individuals in the Decliner 

and Maintainer groups denied being diagnosed with 

dementia. Adjudications were not performed, so clinical 

determinations regarding mild cognitive impairment 

(MCI) cannot be made. 

 

Table 2 summarizes descriptive statistics for the DNAm 

measures: Horvath, Hannum, PhenoAge, GrimAge, 

Dunedin PoAm, Dunedin PACE, PC-Horvath, PC-

Hannum, PC-PhenoAge, and PC-GrimAge (see 

Methods). All DNAm measures exhibited rank-order 

stability between baseline and follow-up (r’s ranged 

from 0.71 to 0.93); GrimAge and PC-GrimAge had the 

highest test-retest correlations (both r = .93) and 

Dunedin PACE (r = .73) and Dunedin PoAm (r = .71) 

were lower. In addition, there were strong and similar 

inter-correlations among DNAm measures within each 

time point (Figure 1). The exceptions were Dunedin 

PoAm and Dunedin PACE, which only correlated with 

each other (r = .66–.77) and with GrimAge (r = 0.45–

0.61) and PC-GrimAge (r = .40–.58) at T1 and T2. 

DNAm measures independent of chronological age 

(denoted Age Acceleration, AA) are displayed in 
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Table 1. Characteristics of cognitive decliners (n = 24) and maintainers (n = 24). 

 Total  Decliners Maintainers  p-valuea 

Age (yrs), mean (SD) 

T1  44.79 (6.34) 44.57 (6.43) 45.01 (6.38) 0.815 

T2 60.67 (6.27) 60.42 (6.34) 60.91 (6.32) 0.791 

Education (yrs), mean (SD)  

T1  15.15 (2.45) 14.46 (2.38) 15.83 (2.37) 0.051 

T2 15.46 (2.71) 14.79 (2.54) 16.12 (2.77) 0.089 

Sex, N (%) 

Male 21 (43.8)  11 (45.8)  10 (41.7)  0.239 

Female 27 (56.2)  13 (54.2)  14 (58.3)   

Race, N (%) 

White 44 (91.7)  22 (91.7)  22 (91.7)  0.656 

Black or African American 4 (8.3)  2 (8.3)  2 (8.3)   

Time between T1 and T2, mean (SD) 15.87 (0.33) 15.85 (0.27) 15.90 (0.39) 0.592 

BMI (kg/m2), mean (SD) 

T1  24.70 (3.60) 25.13 (3.37) 24.27 (3.85) 0.411 

T2 26.80 (5.18) 27.79 (5.35) 25.85 (4.93) 0.203 

Current smoker, N (%) 

T1, No 36 (75.0)  19 (79.2)  17 (70.8)  0.107 

T1, Yes 12 (25.0)  5 (20.8)  7 (29.2)   

T2, No 39 (81.2)  19 (79.2)  20 (83.3)  0.261 

T2, Yes 9 (18.8)  5 (20.8)  4 (16.7)   

Cognitive Composite, mean (SD)  

T1  67.05 (8.60) 67.61 (9.17) 66.48 (8.15) 0.653 

T2 60.73 (11.19) 53.89 (10.05) 67.56 (7.58) <0.001 

Total sample size is 48. Means and standard deviations (SD) are displayed for continuous measures; sample size (N) and 
percentages (%) are shown otherwise. T1: time 1; T2: time 2. ap-value comparing groups. Dependent t-tests were used for 
continuous variables; chi-square tests were used for categorical variables. p-values are bold if <0.05. 

 

 

Table 2. Descriptive statistics among the DNAm measures. 

 T1, M (SD) T2, M (SD) Change per year, M (SD) Test-retest (r) 

Chronological Age   44.79 (6.34) 60.67 (6.27) 1.00 (0.00) 1.00 

Horvath 46.32 (6.52) 59.07 (6.44) 0.80 (0.19) 0.89 

Hannum 37.27 (6.75) 50.38 (6.69) 0.83 (0.18) 0.91 

PhenoAge 34.46 (8.15) 49.76 (9.03) 0.96 (0.31) 0.85 

GrimAge 48.43 (6.68) 60.86 (7.07) 0.78 (0.16) 0.93 

Dunedin PoAm 1.01 (0.08) 1.04 (0.08) 0.002 (0.004) 0.71 

Dunedin PACE 0.91 (0.12) 0.97 (0.13) 0.003 (0.006) 0.73 

PC-Horvath 46.77 (6.25) 58.49 (6.26) 0.74 (0.15) 0.93 

PC-Hannum 52.97 (6.38) 65.40 (6.30) 0.78 (0.18 0.90 

PC-PhenoAge  44.07 (8.23) 59.19 (8.05) 0.95 (0.29) 0.85 

PC-GrimAge  58.09 (5.97) 70.98 (6.30) 0.81 (0.15) 0.93 

Means (M) and standard deviations (SD) are shown for Time 1 (T1) and Time 2 (T2) DNAm measures. Change per year 
represents the average rate of change in each DNAm measure per year. Test-retest correlations are displayed as Pearson r. 
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Figure 2. As compared to raw DNAm measures, the 

inter-correlations among DNAmAA measures were 

smaller within each time point, with the exception of 

Dunedin PoAm-AA and Dunedin PACE-AA, which 

were more strongly correlated with GrimAgeAA (r = 

.69–.77) and PC-GrimAgeAA (r = .68–.76), as well as 

with PhenoAgeAA (r = .46–.59) and PC-PhenoAgeAA (r 

= .37–.57) at T1 and T2. 

Time and group main and interacting effects on 

DNAm 

 

The traditional and PC-based epigenetic clocks and 

pace of aging measures significantly increased over 

time, generally consistent with or underestimating the 

time elapsed between study visits (Table 3 and 

Supplementary Table 1). With respect to group 

 

 
 

Figure 1. Pearson correlations among DNAm measures at Time 1 (left) and Time 2 (right). Correlations greater than r = .29 are 
statistically significant at p < .05. 

 

 

 
 

Figure 2. Pearson correlations among DNAm measures independent of chronological age (denoted Age Acceleration, AA) at 
Time 1 (left) and Time 2 (right). Correlations greater than r = .29 are statistically significant at p < .05. 
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Table 3. Main effects of group and time on PC-Clocks and pace of aging measures. 

Predictors 

PC-Horvath PC-Hannum PC-PhenoAge PC-GrimAge Dunedin PoAm Dunedin PACE 

γ (CI) p γ (CI) p γ (CI) p γ (CI) p γ (CI) p γ (CI) p 

Intercept 
48.78 

(47.22–50.35) 
<0.001 

54.46 

(52.90–56.02) 
<0.001 

44.14 

(41.88–46.40) 
<0.001 

58.14 

(56.41–59.87) 
<0.001 

0.98 

(0.95–1.02) 
<0.001 

0.88 

(0.82–0.94) 
<0.001 

Female 
−2.90 

(−4.58–−1.22) 
0.002 

−2.26 

(−3.91–−0.61) 
0.010 

−1.21 

(−3.59–1.17) 
0.323 

−1.91 

(−3.77–−0.05) 
0.050 

0.01 

(−0.03–0.05) 
0.714 

−0.00 

(−0.07–0.06) 
0.914 

Baseline 

Age 

0.83 

(0.70–0.96) 
<0.001 

0.85 

(0.72–0.98) 
<0.001 

1.05 

(0.86–1.24) 
<0.001 

0.78 

(0.64–0.93) 
<0.001 

0.00 

(−0.00–0.00) 
0.528 

0.00 

(−0.00–0.01) 
0.672 

Group-

Decliners 

−0.77 

(−2.43–0.90) 
0.372 

−0.43 

(−2.07–1.21) 
0.608 

1.22 

(−1.14–3.58) 
0.315 

2.05 

(0.20–3.90) 
0.035 

0.04 

(0.00–0.08) 
0.045 

0.08 

(0.01–0.14) 
0.027 

Time 
11.72 

(11.04–12.39) 
<0.001 

12.42 

(11.60–13.24) 
<0.001 

15.12 

(13.82–16.41) 
<0.001 

12.89 

(12.23–13.55) 
<0.001 

0.03 

(0.02–0.05) 
0.001 

0.05 

(0.03–0.08) 
<0.001 

95% Confidence Intervals (CI) are reported. 

 

differences, Decliners overall had an older PC-GrimAge 

(γ = 2.05, SE = .94, t(44) = 2.18, p = .035) and a faster 

pace of aging on both Dunedin PoAm (γ = .042, SE = 

.021, t(44) = 2.06, p = .045) and Dunedin PACE (γ = 

.075, SE = .033, t(44) = 2.28, p = .027) than Maintainers 

(Table 3, Figure 3). (Decliners did not significantly differ 

from Maintainers on PC-PhenoAge (γ = 1.22, SE = 1.20, 

t(44) = 1.02, p = .31)). In other words, Decliners were on 

average 2.05 years older than Maintainers using PC-

GrimAge; in terms of pace of aging, Decliners 

biologically aged at rates .042 (Dunedin PoAm) and .075 

(Dunedin PACE) faster than Maintainers. For example, if 

Maintainers age at a rate of 1.0 biological year per 

chronological year, Decliners age at 1.042 (Dunedin 

PoAm) and 1.075 (Dunedin PACE) biological years per 

chronological year. In analyses that adjusted for multiple 

comparisons using the Benjamini-Hochberg correction 

[18] (see Data Analyses), these group differences 

remained statistically significant at a false discovery rate 

(FDR) of .10 but not .05. In addition, in sensitivity 

analyses that further controlled for percentages of CD8 T 

cells, CD4 T cells, NK cells, plasma blasts, monocytes, 

and granulocytes, these group differences remained 

statistically significant (Supplementary Table 2). 

Furthermore, results were similar from logistic regression 

models that regressed Cognitive Decliner group 

membership (1) [vs. Cognitive Maintainer (0)] on 

average biological age, controlling for sex and baseline 

chronological age: a 1-year increase in PC-GrimAge was 

associated with a .22 increased log-odds of being in the 

Cognitive Decliner group (p = .049); in addition, a 1-year 

rate increase in Dunedin PoAm and Dunedin PACE were 

associated with 9.91 (p = .061) and 6.03 (p = .034) 

increased log odds of being in the Cognitive Decliner 

group. The Dunedin PoAm finding is no longer 

statistically significant likely due to power loss moving 
from a multilevel modeling framework to logistic 

regression. In the main analyses, there were no group by 

time interactions (ps > .24). 

Exploring specific cognitive components on DNAm 

 

To further explore whether the several components of 

cognitive functioning associated differentially with 

PC-GrimAge and pace of aging measures, we 

conducted secondary analyses using the same 

adjusted multilevel model predicting T1 and T2 

DNAm, but instead of the categorical Group 

predictor, we tested the continuous scaled version of 

each cognitive component at T2 to determine which 

cognition component(s) were significantly associated 

with DNAm-based measures of biological aging. We 

focused on T2 cognitive components because this 

was the time point that differentiated the two groups 

(see Supplementary Table 3). 

 

Results are depicted in Table 4. In terms of executive 

function, worse performance on T2 Trail A-B was 

significantly associated with older PC-GrimAge (p = 

.013) and faster pace of aging for Dunedin PoAm (p = 

.016) and for Dunedin PACE (p = .019). In addition, 

worse performance on Stroop Color-Word was 

significantly associated with older PC-GrimAge (p = 

.017). In terms of processing speed, slower Trail A and 

worse performance on Stroop Word were associated with 

faster pace of aging for Dunedin PACE (Trail A: p = .046, 

Stroop Word: p =.035). Finally, in terms of spatial 

reasoning, worse matrix reasoning was associated with 

faster pace of aging for Dunedin PACE (p = .041). The 

following components of cognition at T2 were not 

significantly associated with DNAm: working memory 

(Digit Span forward and backward), attention (Digit 

Vigilance), and one measure of processing speed (Stroop 

Word). In analyses that adjusted for multiple 

comparisons, only the associations with the executive 

function tests remained statistically significant at an FDR 
of .05 or .1 (Trail A-B: all padj = .019; Stroop Color-Word: 

padj = .051). Results further adjusted for cell percentages 

did not differ and are in Supplementary Table 4. 



www.aging-us.com 9428 AGING 

Table 4. Main effects of scaled Time 2 cognitive components on PC-GrimAge and pace of aging measures. 

 
PC-GrimAge Dunedin PoAm Dunedin PACE 

γ (CI) p γ (CI) p γ (CI) p 

Matrix Reasoning 
−0.049 

(−0.120–0.021) 
0.179 

−0.001 

(−0.002–0.001) 
0.467 

−0.003 

(−0.005–−0.000) 
0.041 

DS-Forward 
−0.026 

(−0.074–0.022) 
0.286 

−0.000 

(−0.001–0.001) 
0.601 

−0.001 

(−0.003–0.001) 
0.231 

DS-Backward 
−0.035 

(−0.086–0.015) 
0.180 

−0.000 

(−0.001–0.001) 
0.521 

−0.001 

(−0.003–0.001) 
0.220 

Trail A 
−0.163 

(−0.365–0.039) 
0.120 

−0.004 

(−0.008–0.001) 
0.092 

−0.007 

(−0.014–−0.000) 
0.046 

Trail A-B 
−0.097 

(−0.171–−0.024) 
0.013 

−0.002 

(−0.004–−0.000) 
0.016 

−0.003 

(−0.006–−0.001) 
0.019 

Stroop Word 
−0.054 

(−0.113–0.005) 
0.079 

−0.001 

(−0.002–0.000) 
0.122 

−0.002 

(−0.004–−0.000) 
0.035 

Stroop Color 
−0.057 

(−0.115–0.002) 
0.065 

−0.001 

(−0.002–0.000) 
0.093 

−0.001 

(−0.003–0.001) 
0.236 

Stroop Color-Word 
−0.068 

(−0.121–−0.014) 
0.017 

−0.001 

(−0.002–0.000) 
0.089 

−0.002 

(−0.004–0.000) 
0.111 

Digit Vigilance-pg1 
−0.052 

(−0.123–0.019) 
0.162 

−0.002 

(−0.003–0.000) 
0.117 

−0.001 

(−0.004–0.002) 
0.414 

Digit Vigilance-pg2 
−0.063 

(−0.138–0.012) 
0.109 

−0.002 

(−0.004–0.000) 
0.078 

−0.002 

(−0.005–0.001) 
0.167 

95% Confidence Intervals (CI) are reported. Models included female, baseline age, and time (estimates not shown). Higher scaled cognitive scores indicate 
better performance. Abbreviation: DS: digit span. 

 

 
 

Figure 3. Boxplots of significant group effects on PC-GrimAge, dunedin PoAm, and dunedin PACE. Two values are shown per 

person, but analyses accounted for repeated measures within person. 

 

DISCUSSION 
 

This is the first report to explore changes over time in 

several of the latest DNAm biological aging measures – 

including traditional and PC-based epigenetic clocks 

and pace of aging measures – in an age-, race-, sex-, 

education-, cognition-, and body mass index- matched 

case control comparison and where cases were selected 

for having cognitive performance declines on objective 

neuropsychological tests. There were no group 

differences in DNAm slopes over time, which may be 

due to low statistical power, but is in line with the few 

previous studies that have examined only first- and 

second-generation epigenetic clocks [6–9]. However, 

cognitive decline was related to an overall older PC-

GrimAge and a faster pace of aging (Dunedin PoAm 

and Dunedin PACE) compared to those without 

cognitive decline over this 16-year time frame. These 

group differences remained statistically significant 

when corrected for multiple comparisons at a false 

discovery rate of .10. 

 

There was no evidence of associations between the first-

generation epigenetic clocks and cognitive decline. 

Rather, our findings point to the second-generation 

clock PC-GrimAge as being more sensitive to cognitive 

change, which aligns with others who report 

associations between GrimAge, but not Horvath or 
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Hannum, and worse cognitive performance cross-

sectionally [19], worse future cognitive performance 

[8], and cognitive decline from adolescence to age 45 

[3] and from age 70 to 79 [20]. Notably, we did not 

observe associations with (PC)-PhenoAge and cognitive 

decline, which may be due to limited power, but is also 

consistent with other reports [3, 8]. Although PhenoAge 

and GrimAge are both second-generation clocks, they 

differ in how they were trained: PhenoAge was created 

by identifying CpGs that predict a composite measure 

of mortality-related blood biomarkers (see 

Supplementary Materials for biomarker list) and 

chronological age [14]. Conversely, GrimAge was 

created by generating DNAm surrogates of morbidity- 

and mortality-related plasma proteins (see 

Supplementary Materials) and smoking pack-years; 

then time-to-death was regressed onto these DNAm 

surrogates, chronological age, and sex to identify the 

CpGs [12]. The blood-based biomarkers across both 

epigenetic clocks reflect the functioning of similar 

physiological systems (e.g., immune, kidney, 

metabolic), but GrimAge also explicitly includes the 

effects of smoking, which is an established risk factor 

for cognitive decline and dementia [21]. In addition, of 

the first- and second-generation clocks, GrimAge and 

PC-GrimAge tend to have the highest reliability due to 

its two-step DNAm calculation [3, 15]; thus, this 

measurement property may also explain why GrimAge 

tends to outperform other clocks, including PhenoAge. 

However, these reasons remain speculative and future 

studies with DNAm data should continue to evaluate 

and report associations across multiple DNAm 

measures (including the newest pace of aging measures, 

below) to facilitate comparison across studies, reconcile 

inconsistencies, and facilitate their inclusion in future 

meta-analyses and systematic reviews. 

 

In addition to PC-GrimAge, faster pace of aging was 

associated with cognitive decline. This report is the first 

to replicate Belsky and colleagues’ [2, 3] findings of 

Dunedin PoAm and Dunedin PACE associating with 

cognitive decline. Our findings suggest that pace of 

aging measures, which were developed from Dunedin 

Study participants aged 26–45, can inform cognitive 

outcomes in middle-aged and older adults. Pace of 

aging measures may be particularly sensitive to pre-

clinical cognitive changes because they are indexed by a 

longitudinal panel of biomarkers across multiple 

physiological systems, which may more closely reflect 

the mechanisms of cognitive decline, relative to first-

generation epigenetic clocks that are optimized for age 

prediction. Interestingly, the epigenetic clocks that pace 

of aging was most strongly correlated with at T1 and T2 
were GrimAge and PC-GrimAge (Figures 1, 2), 

suggesting that these DNAm measures may be detecting 

some shared biological aging signals. A limitation to the 

current DNAm measures is a lack of mechanistic 

understanding of their underlying biology. Current work 

is underway to deconstruct these DNAm composite 

measures into distinct “modules” that may reflect 

functionally related biological changes [22]. Each 

epigenetic clock is comprised of differing proportions 

of CpGs from a given module; however, in line with our 

findings, GrimAge and DunedinPoAm share a similar 

composition of modules and have higher quantities of 

modules that are stronger predictors of morbidity and 

mortality, as compared to PhenoAge, Horvath, and 

Hannum [22]. Continued efforts to examine the 

underlying mechanisms of DNAm measures will aid 

our understanding of why certain clocks outperform 

others in predicting health outcomes, including 

cognitive health. 

 

All DNAm measures significantly increased over time; 

however, these estimates of biological aging did not 

increase between T1 and T2 more steeply in Decliners, 

compared to Maintainers, as evidenced by the absence 

of a significant group by time interaction. In other 

words, DNAm estimates of biological aging were 

associated with the 16-year change in cognitive 

functioning, but did not progress more rapidly in 

Decliners than among Maintainers, which may suggest 

that Decliners’ accelerated profile of epigenetic aging 

was established prior to the initial assessment. 

However, we note that we had limited power to detect 

small and moderate effects (particularly interaction 

effects); therefore, we cannot confidently infer 

whether the non-significant group by time interactions 

are due to truly null effects and/or due to the smaller 

sample size. 
 

In exploring whether particular cognitive domains 

may covary with PC-GrimAge and pace of aging 

measures more strongly than others, executive 

function showed the most consistent associations, as 

well as withstanding correction for multiple 

comparisons. One previous report links older 

epigenetic age estimated from other clocks, including 

Horvath’s intrinsic and Hannum derived extrinsic 

epigenetic age acceleration and PhenoAge, but not 

GrimAge, to poorer executive function in African 

Americans with HIV and a control group [23]; others 

report null associations between GrimAge and 

executive function composites [24, 25], and between 

Dunedin PACE and one test of executive function, 

Trails B [26]. Therefore, converging evidence for 

associations between DNAm and specific cognitive 

domains remains inconclusive. Future studies will 

benefit from investigating separate cognitive domains 
(in addition to general composites, which is more 

commonly done), to shed light on which components 

of cognition may be more or less affected. 
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The current study focused on neuropsychologically-

assessed cognitive decline, which can indicate future 

risk for dementia [27]. Indeed, in other studies, DNAm 

measures predicted MCI and clinical diagnosis of 

Alzheimer’s Disease (e.g., [26, 28]). No participants in 

our sample reported having a dementia diagnosis, but 

adjudications were not performed, so MCI status could 

not be assessed. However, descriptively, the group with 

cognitive performance decrements over time 

experienced greater than a standard deviation change in 

their average composite score, an indication they may 

be at future cognitive risk, with their T2 assessments 

falling slightly below normative values on several 

neuropsychological tests (see Supplemental Results). It 

remains unclear whether these individuals will manifest 

future cognitive impairments, but this magnitude of 

decline is considered clinically meaningful [29]. 

 

Strengths of this study include the longitudinal design 

with a relatively long follow-up of 16 years; the 

comprehensive assessment of cognition across several 

domains known to decline with age; and the 

recommended analysis of multiple DNAm measures 

[17] that allowed for comparisons across traditional and 

PC-based epigenetic clocks and pace of aging measures. 

However, this preliminary study had limited power to 

detect small and moderate effects (particularly 

interaction effects), although we maximized our ability 

to detect effects by selecting cognitive groups from the 

tails or extremes of the distribution of cognitive change. 

In addition, the cognition composite approach used to 

identify Cognitive Decliners vs. Maintainers assumed 

that the neuropsychological tests have the same 

meaning and factor structure across the 16-year time 

frame in both groups; our smaller, multi-group sample 

does not meet sample size recommendations for testing 

measurement invariance [30, 31]. However, using a 

latent variable approach and testing measurement 

invariance is an important future direction for cognitive 

change research, and may yield stronger effects than a 

composite approach (e.g., [32]). Other limitations 

include only two time points for longitudinal analysis; 

limited generalizability in terms of education and race; 

and DNAm measured in blood but not the brain, 

although blood-brain global DNAm profiles are highly 

correlated (r = .86) [33]. 

 

In conclusion, these preliminary results suggest PC-

GrimAge and DNAm based pace of aging measures 

(Dunedin PoAm and PACE) associate with 16-year, 

neuropsychologically-validated cognitive decline in 

midlife. The results warrant a larger-scale study to 

better examine longitudinal associations between 
changes in DNAm measures and changes across 

multiple cognitive domains. Ultimately, establishing 

DNAm measures as biomarkers of cognitive function in 

midlife may offer pre-clinical markers of a molecular 

aging mechanism that can help identify individuals at 

increased risk for cognitive impairment and dementia in 

later life. 

 

METHODS 
 

Participants 
 

Participants were selected from a longitudinal arm of 

the Adult Health and Behavior (AHAB)-1 study, which 

comprises a registry of behavioral and biological 

measurements for the study of midlife individual 

differences [34]. AHAB-1 participants were first 

recruited at 30–54 years of age via mass-mail 

solicitation from southwestern Pennsylvania and were 

relatively healthy. Study exclusions at the time of initial 

recruitment (time 1) were a reported history of 

atherosclerotic cardiovascular disease, chronic kidney 

or liver disease, cancer treatment in the preceding year, 

and major neurological disorders, schizophrenia, or 

other psychotic illness. Other exclusions included 

pregnancy and reported use of insulin, glucocorticoid, 

antiarrhythmic, psychotropic, or prescription weight-

loss medications. Baseline (T1) assessments occurred 

between 2001 and 2005 and follow-up (T2) assessments 

began in 2017 and are ongoing, with additional subjects 

being added at the time of writing. 

 

Selection of participant groups 

 

Using an extreme groups approach, a subset of AHAB-

1 participants was selected for the current study: 24 

Cognitive Decliners (i.e., those who showed the most 

decline in cognition from T1 to T2 based on changes in 

a cognitive composite score, described below) and 24 

matched Cognitive Maintainers (i.e., those who 

maintained cognitive composite levels from T1 to T2, 

matched to Decliners on demographics and health). The 

selection was carried out in the following steps: First, 

from the 300 available AHAB-1 participants with both 

T1 and T2 data who were enrolled for follow-up (T2) 

evaluation between June, 2017 and March, 2020, we 

excluded those who reported medical conditions having 

potential cognitive sequelae, as might be associated 

with Alzheimer’s disease, stroke, transient ischemic 

attack, multiple sclerosis, Parkinson’s disease, epilepsy, 

brain cancer, or brain cyst, and people who endorsed 

having a head injury, concussion, or spinal cord injury. 

We also excluded people with diagnosed diabetes or 

HbA1c greater than or equal to 7%; individuals who 

reported exposure in the previous 12 months to any of 

the neurocognitive tests administered here; were 

missing more than 3 of 10 cognitive measurements used 

in the present analyses; or for whom we lack a stored 

T1 blood sample sufficient for DNA extraction and 
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DNAm profiling. These exclusions resulted in 167 

remaining participants. From the 167, we selected the 

24 most extreme cognitive decliners, identified using 

the cognitive composite (described below). Next, we 

identified the 50 most extreme cognitive maintainers, 

and from those 50, matched on sex, race, T1 age, T1 

education, T1 cognitive composite, and T1 body mass 

index to obtain the matched 24 cognitive maintainers. 

One-to-one multivariate matching based on 

Mahalanobis distance was performed using the Match 

function in R (Matching package) [35]. Matching was 

performed without replacement and by randomly 

breaking ties. Groups (Decliners, Maintainers) were 

identified blind and prior to assessment of DNAm 

measures. 

 

Procedure 

 

Sociodemographic, cognitive, psychosocial, and 

instrumented biological measurements were collected 

over multiple study visits at both T1 and T2. At T1, the 

neuropsychological tests used in the present analyses 

were administered at visit 1 and blood was drawn at 

visit 2. On average, there were 30.85 days between 

visits 1 and 2 for the sample analyzed (median = 25.5, 

range: 2 to 98). At T2, the neuropsychological tests 

used in the present analyses were administered at visits 

2 and 3 and blood was drawn at visit 2. On average, 

there were 26.1 days between visits 2 and 3 for the 

sample analyzed (median = 16.5, range: 8 to 102). 

AHAB was approved by the University of Pittsburgh 

Institutional Review Board, and all participants 

provided written informed consent. 

 

Measures 
 

Demographic and health characteristics 

Self-reported sex, race, years of education, and 

smoking status were assessed. Measures of height and 

weight were obtained to determine body mass index 

(in kg/m2).  

 

Cognition 

T1 and T2 neuropsychological tests used in the present 

analyses capture several domains of cognitive function: 

spatial reasoning, working memory, visuomotor 

processing speed, executive function, and attention. A 

cognition composite was used (described below). 

 

Spatial reasoning 

The Matrix Reasoning subtest from the Wechsler 

Abbreviated Scale of Intelligence [36, 37] was used to 

assess spatial perception and reasoning. This test 
involves viewing an incomplete matrix and selecting the 

response option that completes the matrix. Higher 

scores correspond to better spatial reasoning. 

Working memory 

Working memory was assessed with the Digit Span 

subtest from the Wechsler Adult Intelligence Scale – III 

(WAIS-III) [37]. The participant is read sequences of 

numbers and is asked to recall the numbers in the same 

order (forward) or in reverse order (backward). Higher 

scores indicate better working memory. 

 

Visuomotor processing speed 

Participants completed the first parts of the Trail 

Making Test [38] and the Stroop Color-Word Test [39] 

to assess processing speed. Part A (in seconds) of the 

Trail Making Test requires participants to draw a line 

connecting circles numbered from 1 to 25 as quickly as 

possible. Higher scores correspond to poorer processing 

speed. The first two parts of the Stroop Color-Word 

Test require participants to (A) read aloud a list of color 

names (i.e., red, green, blue) printed in black ink and 

(B) name the colors of the inks (i.e., “XXXX” written in 

blue ink) as quickly as possible. Scores are the number 

of correct responses within a 45-second period, with 

higher scores indicating better performance. 

 

Executive function 

Participants were administered two tests of executive 

functioning: task switching on Part B of the Trail 

Making Test [38] and the interference score of the 

Stroop Color-Word Test [39]. The Trail Making Test 

Part B requires subjects to draw a line connecting 

numbered and lettered circles as quickly as possible, 

alternating between numbers and letters in ascending 

numerical and alphabetical order (e.g., 1-A-2-B-3-C…, 

etc.). To derive a measure of executive function 

relatively independent of psychomotor speed, time to 

completion of Part B is subtracted from Part A, such that 

higher scores indicate better performance. Assessing 

ability to resist cognitive interference, the Stroop Color-

Word Test requires subjects to read aloud as quickly as 

possible from 3 pages of color word lists: pages 1 and 2 

provide tests of processing speed, previously described. 

On Page 3 individuals are asked to report the color of the 

ink used to print the name of incongruent colors (e.g., 

“blue” for blue ink used to spell the color name “red”), 

thus requiring participants to inhibit a prepotent response 

(color word naming). Scores are the number of correct 

responses within a 45-second period, with higher scores 

indicating better performance. 

 

Attention 

Digit Vigilance pages 1 and 2 [40] was administered to 

assess vigilant visual tracking and capacity for sustained 

attention. This test requires participants to rapidly scan 

a page of numbers arrayed in rows and to cross out only 
digits designated as targets as quickly as possible. Time 

(in seconds) was recorded. Higher scores correspond to 

lower performance. 
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Cognition composite 

A cognition composite was calculated using raw (not 

standardized or normed) test scores. First, the Trail 

Making Test Part A and Digit Vigilance Times were 

multiplied by (-1) so that higher scores correspond to 

better performance; then the proportion of maximum 

scaling approach [41] was applied to the individual 

subtests. This approach transforms each score to a 

metric from 0 (minimum observed) to 1 (maximum 

observed) by first transforming the score range from 0 

to the highest observed value and then dividing by the 

highest observed value. The resulting value between 0 

and 1 was multiplied by 100. This approach does not 

change the multivariate distribution and covariate 

matrix of the transformed variables and is the 

recommended approach for longitudinal data [42]. 

The scaled individual tests (Matrix Reasoning, Digit 

Span forward and backward, Trail Making Test A and 

A-B, Stroop word, Stroop color, and Stroop color-

word, and Digit Vigilance pages 1 and 2) were 

averaged together to create a cognition composite 

using all available data. At T1, no cognition data were 

missing. At T2, 1 participant was missing the Stroop 

test and 19 were missing Digit Vigilance pages 1 and 

2 and 1 was missing just page 2. Higher composite 

scores indicate better cognition. Notably, this 

composite approach assumes that the individual 

neuropsychological tests have the same meaning and 

factor structure over time. The composite’s multilevel 

reliability was calculated using coefficient omega 

(omegaSEM function in the multilevelTools package) 

and was adequate at both the between- (ω = .80, 95% 

CI [.62, .98]) and within-person levels (ω = .85, 95% 

CI [.79, .91]). 

 

Tissue acquisition and processing 

 

Fasting blood was collected by a trained phlebotomist 

between 8:00am and 10:00am. Whole blood samples 

were frozen in −80°C until time of DNA extraction and 

analysis. DNA was extracted using the DNeasy Blood 

and Tissue Kit (Qiagen) at the UCLA Cousins Center 

for Psychoneuroimmunology. Purified DNA was 

concentrated using GeneJET PCR Purification Kit 

(Thermo Fisher) and suspended in the elution buffer to 

a minimum of 12.5 ng/ul before plating in a 96-well 

plate. DNA was quantified using the Quant-iT dsDNA 

Assay Kit, high sensitivity (Invitrogen). 

 

Consideration for variability across assay chips was 

addressed by organizing samples from the same 

individual to be placed together on the same chip but 

randomly assigned by ID. In addition, samples from 

Decliners and Maintainers were assured to be evenly 

distributed within each chip, and position within chip 

was randomized. 

DNA methylation data pre-processing 

 
Bisulfite conversion using the Zymo EZ DNA Methylation 

Kit (ZymoResearch, Orange, CA, USA) and subsequent 

hybridization of the Human Methylation 850 K EPIC chip 

(Illumina, San Diego, CA, USA) and scanning (iScan, 

Illumina) were performed by the UCLA Neuroscience 

Genomics Core facilities according to the manufacturer’s 

protocols. DNA methylation image data were processed in 

R statistical software (version 4.1.1) using the minfi 
Bioconductor package (version 1.38.0) [43]. We checked 

for samples with >1% of sites with detection p-values 

>0.01 (n = 0) and for samples with DNA methylation 

predicted sex discordant with recorded sex (n = 0). The 

minfi preprocessNoob function was used to normalize dye 

bias and apply background correction before obtaining 

methylation beta-values. 

 

Epigenetic clocks and pace of aging measures 

 

The following traditional first- and second-generation 

epigenetic clocks were estimated using available online 

software (http://dnamage.genetics.ucla.edu/new, with the 

“Normalize Data” and “Advanced Analysis” options 

selected for blood samples): Horvath (353 CpGs) [10], 

Hannum (71 CpGs) [11], PhenoAge (513 CpGs) [14], and 

GrimAge (1030 CpGs) [12]. Given the low reliability of 

existing epigenetic clocks [15], we used available R code 

that uses principal component (PC) analyses to improve 

reliability of epigenetic clocks and calculated the following 

“PC” clocks: PC-Horvath, PC-Hannum, PC-PhenoAge, and 

PC-GrimAge. Finally, we also calculated Dunedin pace of 

aging measures using available R code: DunedinPoAm (46 

CpGs) [2] and DunedinPACE (173 CpGs) [3]. 

 

Covariates 

 

Analyses were adjusted for participant age and sex. 

Additionally, because DNAm profiles may differ 

between cell subtypes [44] and cell composition 

changes with age, the percentages of six cell subtypes 

(CD8 total, CD4 total, NK cells, plasma blasts, 

monocytes, and granulocytes) were estimated from 

Horvath’s website using the Houseman method [45] 

(and see [46] for validation) and further controlled for 

in sensitivity analyses. Some may consider controlling 

for cell subtypes to be unnecessary adjustment or 

overadjustment because cell subtypes may contribute to 

the observed differences in DNAm or be on a mediation 

pathway linking DNAm to aging outcomes; however, 

we present results both ways for interested readers. 

 

Data analysis 

 

All analyses were conducted using the traditional and 

PC-based epigenetic clocks and pace of aging measures. 

http://dnamage.genetics.ucla.edu/new
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Further mention of DNAm refers to all measures unless 

specified. 

 

The DNAm measures were modeled individually in two 

multilevel models with repeated measures nested within 

person. Model 1 included the main effect of group 

(Maintainers, Decliners) and time (T1 and T2) on DNAm. 

Model 2 included the interaction between group and time 

to explore group differences in change in DNAm over 

time. All models controlled for baseline chronological age 

(grand mean centered at 44.79 years) and sex (0 = male, 1 

= female, as a factor variable). Notably, because these 

statistical models control for level 2 (time-invariant) 

chronological age and include level 1 (time-varying) time 

as a predictor, our findings can be considered in terms of 

“age acceleration”, which in cross-sectional studies is 

achieved by controlling for chronological age or outputting 

residuals from DNAm age regressed on chronological age. 

Sensitivity analyses further controlled for the percentages 

of six cell subtypes (CD8 T cells, CD4 T cells, NK cells, 

plasma blasts, monocytes, and granulocytes), treated as 

time-varying covariates. 

 

Statistical analyses were conducted in R version 4.1.1 

using the nlme package (version 3.1.152). The variance-

covariance structure was modeled as a random intercept 

in all models. Gamma weights (γ), analogous to 

unstandardized beta weights (i.e., a 1-unit change in the 

predictor [Decliner vs. Maintainer, or T1 vs. T2] is 

associated with γ-year change in the outcome), are 

reported with their 95% confidence intervals (CIs) in 

tables. We adjusted for multiple comparisons using the 

Benjamini-Hochberg (BH) correction (using the 

p.adjust function in R) [18]. To examine different levels 

of stringency, false discovery rates (FDRs) of .05 and 

.10 were calculated and chosen to ensure no true 

discoveries were missed while balancing the number of 

false positives. FDRs can be interpreted as the expected 

proportion of false positives among all statistically 

significant tests. 

 

Power considerations 
 

We selected 24 participants per group to balance funding 

constraints with generating preliminary data. Although 

we maximized our ability to detect effects by selecting 

cognitive groups from extremes of the distribution of 

change in cognitive performance, the smaller sample size 

affects our power nonetheless. There is no conventional 

method for computing power in a multilevel model; 

however, for a parallel two-group independent t-test with 

24 participants per group and alpha set to .05, power of 

0.80 can detect approximately Cohen’s d = 0.82 (see 

power curve plotted in Supplementary Figure 1). 

Therefore, the current study was powered to detect large 

effects for comparing DNAm measures between groups; 

we had low statistical power to explore group by time 

interactions on DNAm measures. 
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SUPPLEMENTARY MATERIALS 
 

Introduction 
 

Overview of DNAm clocks 

 

The DNAm clock measures were developed using 

supervised machine learning techniques to derive 

algorithms that capture DNAm patterns that predict a 

dependent variable of interest, or a surrogate of 

“biological age”. The dependent variables differ across 

the different types of clocks. 

 

First-generation clocks 

 

The first-generation clocks were trained to predict 

chronological age. 

 

Hannum et al. [1] developed an epigenetic clock (71 

CpGs) using whole blood samples from 656 individuals 

(426 Caucasian and 120 Hispanic) aged 19 to 101. The 

Hannum clock used in the current study does not 

include cell distribution data. However, for 

completeness, there is a version of the Hannum clock 

known as extrinsic epigenetic age acceleration (EEAA) 

that is a weighted average of Hannum’s estimate with 

naïve and exhausted CD8 T cells and plasma blasts and 

adjusted for chronological age [2]. 

 

Horvath [3] developed a multi-tissue epigenetic clock 

(353 CpGs) from 8,000 samples (82 different datasets) 

representing people across the lifespan. The Horvath 

clock used in the current study does not include cell 

distribution data; there is a version of the Horvath clock 

defined as the residual resulting from regressing 

Horvath’s DNAm age on chronological age and 7 blood 

cell types (naïve and exhausted CD8 T cells, plasma 

blasts, CD4 T cells, NK cells, monocytes, and 

granulocytes) and is known as intrinsic epigenetic age 

acceleration (IEAA) [4]. 

 

Second-generation clocks 

 

The second-generation clocks were optimized for 

lifespan prediction. Levine et al. [5] proposed the 

“PhenoAge” clock, which was developed in two steps. 

First, using data from the National Health and Nutrition 

Examination Survey (9,926 people ages 20 and over), 

they developed a measure of “phenotypic age” by 

selecting from 42 blood-based clinical markers those that 

predicted mortality. Based on this analysis, 9 blood-based 

clinical markers (see table below) and chronological age 

were selected and combined into a phenotypic age 

estimate and validated in a new sample to predict all-

cause mortality. In the second step, data from 465 

participants aged 21–100 years in the Invecchiare in 

Chianti (InCHIANTI) study were used to regress 

phenotypic age on CpG sites. From this, the PhenoAge 

clock (513 CpGs) was developed, which strongly relates 

to all-cause mortality and aging-related morbidity [5]. 

 

Phenotypic age Role 

Albumin Liver 

Alkaline phosphatase   Liver  

Creatinine Kidney 

Glucose, serum Metabolic 

C-reactive protein  Inflammation 

Lymphocyte percent  Immune 

Mean (red) cell volume Immune 

Red cell distribution width  Immune 

White Blood cell count  Immune 

 

Lu et al. [6] developed the “GrimAge” epigenetic clock 

in two steps. First, DNAm-based surrogates for self-

reported smoking pack-years and a selection of plasma 

proteins associated with morbidity and mortality were 

constructed from 2,356 individuals from the 

Framingham Heart Study offspring cohort (average age: 

66 years). Second, time-to-death due to all-cause 

mortality was regressed on age, sex, DNAm-based 

pack-years, and 7 DNAm-based surrogate plasma 

markers (see table below). The resulting mortality risk 

estimate was transformed into an age estimate, called 

GrimAge (1030 CpGs). 

 

DNAm based surrogates for plasma proteins Role 

Adrenomedullin Multiple functions  

Beta-2-microglublin Immune  
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Cystatin C Kidney 

GDF-15 Stress response 

Leptin  Metabolic  

Plasminogen activator inhibitor-1 (PAI-1)  Fibrinolytic   

Tissue inhibitor matrix metalloproteinase 1 (TIMP-1)  Matrix regulation  

 

Pace of aging measures 

 

Most recently, “pace of aging” measures were 

developed, which have been referred to as the third-

generation of DNAm clocks. Pace of aging measures 

differ from first- and second-generation clocks in that 

they are trained to predict longitudinal biomarker data. 

Belsky and colleagues developed the Dunedin PoAm 

(Pace of Aging from methylation; [7]) and Dunedin 

PACE (Pace of Aging Calculated from the Epigenome; 

[8]) measures. Both measures were developed using the 

Dunedin Study (52% male, 93% white), a longitudinal 

investigation of individuals born between April 1972 

and March 1973 in Dunedin, New Zealand.  

 

The pace of aging measures were developed in two 

steps, with slight differences highlighted. First, mixed-

effects growth curve models were used to estimate 

longitudinal changes over time in many blood-

chemistry and organ-system-function biomarkers across 

physiological systems (18 biomarkers for Dunedin 

PoAm; 19 biomarkers for Dunedin PACE – see table 

below). Biomarkers for Dunedin PoAm were measured 

across 12 years, at ages 26, 32, and 38. Biomarkers for 

Dunedin PACE were measured across 20 years, at ages 

26, 32, 38, and 45. In other words, these measures were 

trained in a cohort of same-aged individuals. The slopes 

were composited across the 18 or 19 biomarkers to 

calculate a participant’s “pace of aging” across 12 years 

(Dunedin PoAm) or 20 years (Dunedin PACE). Second, 

elastic-net regression analyses were used to select CpGs 

that predict the longitudinal pace of aging measures, 

resulting in Dunedin PoAm (46 CpGs) and Dunedin 

PACE (173 CpGs). Additional details for developing 

Dunedin PACE, including the selection of reliable CpG 

probes, are discussed in Belsky et al. [8]. 

 

 

(Bio)marker Role Dunedin PoAm Dunedin PACE 

Glycated hemoglobin (HbA1C) Metabolic  X X 

Cardiorespiratory fitness (VO2Max) Cardiovascular  X X 

Waist-hip ratio Anthropometric  X X 

Body mass index  Anthropometric X X 

FEV1/FVC ratio Pulmonary  X X 

FEV1 Pulmonary  X X 

Mean arterial pressure  Cardiovascular  X X 

Leukocyte telomere length  Immune  X (not included) 

Creatinine clearance (eGFR) Kidney  X X 

Blood urea nitrogen Kidney  X X 

Triglycerides Metabolic  X X 

Total cholesterol  Metabolic X X 

HDL cholesterol  Metabolic X X 

Lipoprotein (a) Metabolic X X 

Apolipoprotein B100/A1 ratio  Metabolic X X 

Gum health (combined attachment loss)  Periodontal X X 

Caries-affected tooth surfaces  Periodontal  (not included) X 

White blood cell count  Immune  X X 

High-sensitivity C-reactive protein  Inflammation  X X 

Leptin  Metabolic (not included) X 
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Principal components (PC)-based clocks 

 

Traditional epigenetic clocks use individual CpG sites as 

inputs to the epigenetic age algorithms, but individual 

CpGs are unreliable and noisy [9]. Therefore, Higgins-

Chen et al. proposed [10] that principal components 

analysis (PCA) can be used to enhance the reliability of 

traditional epigenetic clocks by extracting shared 

systematic variation across CpG sites (principal 

components, PCs) and feeding those PCs into the elastic 

net regressions to predict chronological age or other health 

phenotype. Higgins-Chen et al. provides R code that has 

users project their own DNAm data onto the original PCA 

space, which then allows PC-based clock outcomes to be 

estimated from new data. PC-based clocks show 

agreement between technical replicates (the same sample 

measured twice) within 0 to 1.5 years and more stable 

trajectories in longitudinal studies [10]. PC-based clocks 

have been used in other published studies (e.g., [11]). 

Supplementary Results 
 

Normed neuropsychological test scores  

 

The average normed scores for several individual 

neuropsychological tests at Time 1 and Time 2 are 

displayed below for each cognitive group (Decliners, 

Maintainers). The normed scores are represented as T-

scores (M[SD] = 50 [10]), with corresponding z-scores 

and percentile information. 

 

At T1, both cognitive groups had average or slightly 

above average normed test scores; when averaged 

across individual tests, Decliners were at the 60th 

percentile and Maintainers the 62nd percentile. At T2, 

Decliners were at the 49th percentile whereas 

Maintainers were at the 73nd percentile. 

 

Decliners Time 1 (T1) Time 2 (T2) 

 T-score z-score Percentile T-score z-score Percentile 

Matrix Reasoning   57.58 0.76 77.6 59.21 0.92 82.2 

Digit Span total  57.4 0.74 77.0 51.4 0.14 55.6 

Stroop Word  48.79 −0.12 45.2 43.96 −0.60 27.3 

Stroop Color  48.25 −0.18 43.1 44.46 −0.55 29 

Stroop Color-Word  51.25 0.13 55 49.96 0 49.8 

Average  52.65 0.266 59.58 49.79 −0.018 48.78 

 

Maintainers Time 1 (T1) Time 2 (T2) 

 T-score z-score Percentile T-score z-score Percentile 

Matrix Reasoning 58.21 0.82 79.4 63.42 1.3 91.0 

Digit Span total 54.3 0.43 66.6 57.2 0.72 76.5 

Stroop Word 53.08 0.31 62.1 52.65 0.27 60.5 

Stroop Color 51.67 0.17 56.6 52.35 0.24 59.3 

Stroop Color-Word 48.88 −0.11 45.5 57.13 0.71 76.2 

Average 53.23 0.32 62.04 56.55 0.65 72.7 
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Supplementary Figure 
 

 
 

Supplementary Figure 1. Power curve for two-sample independent t-test with 24 participants per group and α = .05. Dashed 

horizontal line indicates power of 0.80. 
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Supplementary Tables 
 

Supplementary Table 1. Main effects of group and time for traditional epigenetic clocks. 

 
Horvath Hannum PhenoAge GrimAge 

γ (CI) p γ (CI) p γ (CI) p γ (CI) p 

Intercept 
47.40 

(45.49– 49.31) 
<0.001 

39.65 

(37.98–41.32) 
<0.001 

34.80 

(32.47–37.13) 
<0.001 

48.35 

(46.06–50.65) 
<0.001 

Female 
−0.89 

(−2.93–1.16) 
0.398 

−2.83 

(−4.61–−1.05) 
0.003 

−0.58 

(−3.02–1.87) 
0.646 

−1.56 

(−4.05–0.93) 
0.226 

Baseline Age 
0.81 

(0.65–0.98) 
<0.001 

0.88 

(0.74–1.03) 
<0.001 

1.12 

(0.93–1.31) 
<0.001 

0.81 

(0.61–1.01) 
<0.001 

Group-Decliners 
−1.17 

(−3.19–0.86) 
0.265 

−1.58 

(−3.35–0.19) 
0.086 

−0.03 

(−2.45–2.40) 
0.984 

1.91 

(−0.56–4.38) 
0.136 

Time 
12.75 

(11.86–13.64) 
<0.001 

13.11 

(12.29–13.93) 
<0.001 

15.30 

(13.91–16.70) 
<0.001 

12.42 

(11.70–13.15) 
<0.001 

Random Effects 

σ2 4.71 3.99 11.54 3.15 

τ00 9.76 ahabid 7.19 ahabid 11.58 ahabid 16.38 habid 

N 48 ahabid 48 ahabid 48 ahabid 48 ahabid 

Observations 96 96 96 96 

95% Confidence Intervals (CI) are reported. 

 

 

Supplementary Table 2. Main effects of group and time on PC-clocks and pace of aging measures, controlling for cell 
percentages. 

 

PC-Horvath PC-Hannum PC-PhenoAge PC-GrimAge Dunedin PoAm Dunedin PACE 

γ (CI) p γ (CI) p γ (CI) p γ (CI) p γ (CI) p γ (CI) p 

Intercept 
49.26 

(47.71–50.81) 
<0.001 

55.18 

(53.63–56.73) 
<0.001 

45.66 

(43.39–47.93) 
<0.001 

58.91 

(57.14–60.67) 
<0.001 

1.00 

(0.96–1.04) 
<0.001 

0.90 

(0.84–0.96) 
<0.001 

Female 
−3.06 

(−4.70–−1.41) 
0.001 

−2.51 

(−4.16–−0.87) 
0.006 

−1.83 

(−4.28–0.61) 
0.163 

−2.09 

(−4.01–−0.17) 
0.045 

0.01 

(-0.03–0.05) 
0.742 

−0.01 

(−0.07–0.06) 
0.882 

Baseline Age 
0.84 

(0.71–0.97) 
<0.001 

0.86 

(0.73–0.99) 
<0.001 

1.06 

(0.86–1.25) 
<0.001 

0.79 

(0.64–0.94) 
<0.001 

0.00 

(-0.00–0.00) 
0.399 

0.00 

(−0.00–0.01) 
0.677 

Group-

Decliners 

−0.59 

(−2.23–1.04) 
0.495 

−0.22 

(−1.85–1.41) 
0.799 

1.66 

(−0.77–4.09) 
0.201 

2.15 

(0.24–4.05) 
0.038 

0.04 

(0.00–0.09) 
0.048 

0.08 

(0.01–0.14) 
0.030 

Time 
11.25 

(10.58–11.91) 
<0.001 

11.74 

(11.07–12.41) 
<0.001 

13.73 

(12.97–14.48) 
<0.001 

12.18 

(11.74–12.61) 
<0.001 

0.02 

(0.01–0.04) 
0.012 

0.03 

(0.00–0.06) 
0.030 

CD8 T cell 
−11.78 

(−94.81–71.25) 
0.789 

−14.70 

(−98.24–68.84) 
0.740 

67.84 

(−27.49–163.18) 
0.184 

−10.84 

(−66.86–45.17) 
0.715 

−1.83 

(−3.70–0.03) 
0.069 

−0.59 

(−3.90–2.72) 
0.738 

CD4 T cell 
6.63 

(−36.09–49.34) 
0.770 

19.75 

(−23.22–62.73) 
0.388 

48.93 

(−0.11–97.98) 
0.065 

21.35 

(−7.47–50.16) 
0.167 

−0.67 

(−1.63–0.29) 
0.192 

0.28 

(−1.43–1.98) 
0.760 

NK cell 
30.17 

(−17.47–77.80) 
0.236 

49.66 

(1.73–97.58) 
0.056 

78.80 

(24.13–133.47) 
0.009 

23.22 

(−8.89–55.34) 
0.177 

−0.20 

(−1.27–0.87) 
0.720 

0.16 

(−1.74–2.06) 
0.873 

Plasma 

Blasts 

0.28 

(−5.08–5.64) 
0.921 

1.47 

(−3.92–6.86) 
0.606 

0.36 

(−5.81–6.54) 
0.912 

0.55 

(−3.09–4.18) 
0.776 

−0.10 

(−0.22–0.03) 
0.141 

0.03 

(−0.19–0.24) 
0.819 

Monocytes 
6.43 

(−47.64–60.50) 
0.822 

28.13 

(−26.27–82.53) 
0.332 

70.73 

(8.56–132.89) 
0.037 

27.31 

(−9.25–63.87) 
0.163 

−0.74 

(−1.96–0.47) 
0.252 

−0.30 

(−2.45–1.86) 
0.795 

Granulocytes 
19.49 

(−17.07–56.05) 
0.317 

35.31 

(−1.48–72.09) 
0.075 

80.82 

(38.88–122.76) 
0.001 

33.02 

(8.40–57.65) 
0.015 

−0.09 

(−0.91–0.73) 
0.836 

0.53 

(−0.93–1.99) 
0.494 

Random Effects 

σ2 1.97 1.99 2.48 0.84 0.00 0.00 

τ00 6.75 ahabid 6.69 ahabid 15.96 ahabid 10.22 ahabid 0.00 ahabid 0.01 ahabid 

N 48 ahabid 48 ahabid 48 ahabid 48 ahabid 48 ahabid 48 ahabid 

Obs 96 96 96 96 96 96 

95% Confidence Intervals (CI) are reported. 
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Supplementary Table 3. Scaled cognitive components for decliners (n = 24) and maintainers (n = 24). 

Scaled cognitive component n missa Overall Decliners Maintainers p-valueb 

Matrix Reasoning 

T1 0 74.31 (12.21) 74.23 (10.04) 74.38 (14.28) 0.966 

T2 0 70.45 (13.93) 65.59 (15.81) 75.31 (9.87) 0.014 

Digit Span – Forward 

T1 0 52.84 (24.93) 56.44 (21.94) 49.24 (27.59) 0.322 

T2 0 50.19 (21.22) 43.56 (19.14) 56.82 (21.49) 0.029 

Digit Span – Backwards  

T1 0 53.82 (24.31) 56.25 (24.97) 51.39 (23.91) 0.494 

T2 0 44.44 (19.85) 40.63 (15.98) 48.26 (22.79) 0.185 

Trail Making Test (A) 

T1 0 95.86 (2.70) 95.19 (2.90) 96.52 (2.37) 0.087 

T2 0 94.35 (4.90) 92.36 (5.97) 96.34 (2.28) 0.004 

Trail Making Test (A-B)   

T1 0 87.18 (9.52) 86.80 (10.80) 87.57 (8.26) 0.784 

T2 0 84.28 (12.45) 80.82 (15.13) 87.73 (7.94) 0.053 

Stroop Word 

T1 0 53.19 (15.60) 49.67 (16.37) 56.70 (14.27) 0.12 

T2 1 43.83 (16.42) 35.69 (15.47) 52.33 (12.88) <0.001 

Stroop Color  

T1 0 57.19 (14.90) 54.61 (14.59) 59.77 (15.07) 0.234 

T2 1 50.08 (17.17) 42.46 (16.25) 58.02 (14.52) 0.001 

Stroop Color-Word 

T1 0 38.24 (15.86) 40.63 (17.53) 35.85 (13.96) 0.302 

T2 1 36.14 (17.40) 29.47 (14.70) 43.09 (17.55) 0.006 

Digit Vigilance – page 1 

T1 0 79.20 (12.61) 81.17 (11.04) 77.23 (13.96) 0.284 

T2 19 71.42 (19.84) 50.24 (24.60) 79.49 (9.59) <0.001 

Digit Vigilance – page 2 

T1 0 78.65 (16.08) 81.15 (11.44) 76.16 (19.61) 0.287 

T2 20 72.18 (17.50) 53.70 (18.13) 78.34 (12.46) <0.001 

Means and standard deviations (SD, in parentheses) are displayed for all scaled cognitive measures (scaled using the 
proportion of maximum scaling method, range: 0-100, see Methods). Higher scores indicate better performance. T1 = time 
1; T2 = time 2. aAt T1, no cognition data were missing. At T2, 1 participant was missing the Stroop test and 19 were missing 
Digit Vigilance pages 1 and 2 and 1 was missing just page 2. bp-value comparing groups using dependent t-tests. p-values are 
bold if <0.05. 
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Supplementary Table 4. Main effects of scaled T2 cognitive components on PC-GrimAge and pace of aging measures, 
controlling for cell percentages. 

 
PC-GrimAge Dunedin PoAm Dunedin PACE 

γ (CI) p γ (CI) T2 Predictors γ (CI) p 

Matrix Reasoning 
−0.066 

(−0.138–0.005) 
0.086 

−0.001 
(−0.003–0.001) 

0.255 
−0.003 

(−0.005–−0.001) 
0.021 

DS-Forward 
−0.024 

(−0.074–0.025) 
0.356 

−0.000 
(−0.001–0.001) 

0.794 
−0.001 

(−0.003–0.001) 
0.278 

DS-Backward 
−0.034 

(−0.086–0.019) 
0.229 

−0.000 
(−0.001–0.001) 

0.602 
−0.001 

(−0.003–0.001) 
0.277 

Trail A 
−0.177 

(−0.385–0.030) 
0.113 

−0.004 
(−0.008–0.001) 

0.140 
−0.008 

(−0.015–−0.001) 
0.045 

Trail A-B 
−0.110 

(−0.184–−0.035) 
0.008 

−0.002 
(−0.004–−0.001) 

0.012 
−0.004 

(−0.006–−0.001) 
0.012 

Stroop Word 
−0.059 

(−0.119–0.002) 
0.074 

−0.001 
(−0.002–0.000) 

0.116 
−0.002 

(−0.005–−0.000) 
0.038 

Stroop Color 
−0.060 

(−0.120–0.000) 
0.066 

−0.001 
(−0.002–0.000) 

0.087 
−0.001 

(−0.004–0.001) 
0.225 

Stroop Color-Word 
−0.079 

(−0.133–−0.024) 
0.009 

−0.001 
(−0.002–0.000) 

0.097 
−0.002 

(−0.004–0.000) 
0.087 

Digit Vigilance-pg1 
−0.056 

(−0.131–0.018) 
0.173 

−0.001 
(−0.003–0.000) 

0.165 
−0.001 

(−0.004–0.002) 
0.466 

Digit Vigilance-pg2 
−0.068 

(−0.146–0.010) 
0.122 

−0.002 
(−0.004–0.000) 

0.123 
−0.002 

(−0.005–0.001) 
0.227 

95% Confidence Intervals (CI) are reported. Models included female, baseline age, time, and cell percentages (estimates not 
shown). Higher scaled cognitive scores indicate better performance. Abbreviation: DS: digit span. 


