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INTRODUCTION 
 

Tumour neovascularization, a complex pathological 

process in primary lesion or metastases, has been 

validated that plays prominent role on promoting cancer 

progression and evaluating tumour prognoses [1, 2]. New 

vessels not only provide tumour cells with abundant 

nutrition, but also form natural metastasis access to 

accelerate progression [3, 4]. Hence, angiogenesis-related 

precise treatment is promising for cancer comprehensive 

strategy. In addition, discovering more promising genetic 

biomarkers and targets is also of vital importance for 

pushing forward angiogenesis-related therapy. 

Pancreatic adenocarcinoma (PAAD), as the most 

aggressive gastrointestinal carcinoma, is one of the  

most fatal of common malignancies [5, 6]. Although 

tremendous advance has been achieved in the mechanistic 

investigation of PAAD, early diagnosis and treatment  

are intractable yet, because of the heterogeneity  

and euangiotic intratumoral microenvironment [7, 8]. 

At present, expect for chemotherapy, there is no  

valid medical therapies for PAAD, besides, surgical 

intervention is merely appropriate for a small fraction of 

PAAD patients with resectable tumors [9]. Recently, a 

chain of promising angiogenesis-related biomarkers has 

been validated to play prominent roles on cancer early 
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ABSTRACT 
 

Background: Long non-coding RNAs (lncRNAs) have been reported to play significant roles in tumour angiogenesis 
which prominently facilitates pancreatic adenocarcinoma (PAAD) progression. 
Methods: The clinical PAAD data were obtained from TCGA database and clinical specimens of 122 PAAD patients. 
The Molecular Signatures Database v4.0 was used to identify angiogenesis-related long non-coding RNAs 
(ARLNRs). Survival-related ARLNRs (sARLNRs) were further validated by univariate and multivariate COX 
regression analyses. The expressions of CASC8, AC015660.1, Z97832.2 and PAN3-AS1 in PAAD cell lines and tissues 
were examined by qPCR. The correlations between sARLNRs (CASC8 and AC015660.1) and clinicopathological 
characteristics of the 122 PAAD patients were analyzed by the chi-square test and Fisher’s exact probability 
method. 
Results: 590 lncRNAs were identified as ARLNRs, of which four sARLNRs were further used to establish an 
angiogenesis-related risk score model (ARRS), by which patients in the low-risk group have better survival 
probabilities than those in the high-risk group. The expression levels of CASC8 and AC015660.1 were significantly 
higher in PAAD cell lines and tumor tissues especially in patients with advanced grades and T-stages, while 
Z97832.2 and PAN3-AS1 were inverse. In addition, the higher expression of CASC8 and AC015660.1 prominently 
associated with the larger tumour size, and the more advanced grade and T-stage. However, the relevance 
between the sARLNRs (CASC8 and AC015660.1) expression and lymph node metastasis status was not significant. 
Conclusions: In the study, we illuminate the clinical significance, angiogenesis relevance and prognosis-predictive 
value of four sARLNRs for PAAD. The results build a bridge between sARLNRs and tumour vascularization, and also 
establish a reliable and accurate risk scoring model for PAAD antiangiogenic strategy. 
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diagnosis and prognosis assessment. In consequence, a 

comprehensive knowledge of angiogenesis-related 

pathogenesis and the identification of novel angiogenetic 

markers and precise targets are promising for reaching 

better PAAD strategy. 

 

Long non-coding RNAs (lncRNAs), which are a group 

of single-stranded nucleotide sequences exceeding 200 

base pairs in length, participate in regulating a chain of 

biological processes, such as tumorigenesis, metastasis 

and angiogenesis. Emerging studies have highlighted 

the significance of lncRNAs in angiogenetic regulation 

[10–15]. Besides, certain angiogenesis-related 

lncRNAs (ARLNRs) are increasingly applied to 

prognostic assessment of malignancies [16]. LncRNA-

FAM66C has been identified as a crucial regulator for 

reprogramming tumor microenvironment (TME) and 

hypoxia-related pathways in glioblastoma [17]. 

LncRNA MYLK-AS1 stimulating neovascularization 

by regulating miR-424-5p/E2F7 axis and activating 

VEGFR-2 signal transduction pathway in hepatocellular 

carcinoma [18]. LncRNA PAARH was validated to 

promote angiogenesis of hepatocellular carcinoma by 

inducing HOTTIP and activating HIF-1α/VEGF axis 

[19]. Besides, the prominent role of ferroptosis-related 

lncRNAs on predicting prognosis signature of PAAD 

has also been validated [20]. Therefore, ARLNRs as a 

category of potential biomarkers, are attaching 

increasing interest in the realm of angiogenesis-related 

targeted strategies. 

 

MATERIALS AND METHODS 
 

Human PAAD clinical samples and cell lines 

 

PAAD patients’ tumor tissues and adjacent tissues were 

collected from 122 patients admitted to Songshan 

General Hospital between May 2018 and December 

2021 (Table 1). The collected tissue samples were 

immediately frozen in liquid nitrogen until RNA 

extraction. HPDE6-C7 and PAAD cell lines (BXPC3, 

PANC1, ASPC1 and COLO357) were purchased from 

ATCC (Manassas, VA, USA). DMEM, EMEM and 

1640 basic medium supplemented with 10% fetal bovine 

serum (Gbico), 100 u/ml penicillin and 100 mg/ml 

streptomycin (Beyotime) was used to culture cell lines. 

Cells were incubated at 37° C in 5% CO2. The medium 

was changed every 3 days. 

 

Transcriptome data download and preprocessing 

 

Transcriptome RNA-sequencing data and clinical 

information of PAAD were downloaded from the 

TCGA database (https://portal.gdc.cancer.gov/), which 

contained 179 PAAD and 4 normal tissues, for 

subsequent analyses. RNA-seq results and clinical 

results were combined into a matrix file by a merge 

script in the Perl language (http://www.perl.org/). 

 

Angiogenesis-related long non-coding RNA extraction 

 

The Molecular Signatures Database v4.0 was utilized  

to identify angiogenesis-related genes (ARGs). The 

correlation between ARGs and lncRNA levels was 

calculated by Pearson correlation analysis. A standard of 

|r|>0.3 and P<0.05 was used for ARLNR identification. 

 

Acquiring the survival-related ARLNRs (sARLNRs) 

and establishing the angiogenesis-related risk score 

model (ARRS) 

 

ARLNRs with remarkable survival significance were 

served as sARLNRs in PAAD patients. sARLNRs were 

screened by univariate COX regression analysis (P < 

0.05). sARLNR were further divided into protective and 

detrimental portions according to Hazard ratio (HR). In 

addition, sARLNRs are further screened by multivariate 

analysis, and the ARRS was established by sARLNRs 

regraded as independent prognostic indicators. Based on 

the different expressions of sARLNRs, we developed an 

ARRS to separate PAAD patients into high-risk group 

and low-risk group. The formula of ARRS construction 

was as followed, [level of AC015660.1 * (0.276515)] + 

[level of CASC8 * (0.373895)] + [level of PAN3-AS1* 

(-0.44547)] + [level of of Z97832.2 * (-0.61251)]. 

Patients were separated into high-risk group and low-

risk group by the median risk score of ARRS. 

 

Real-time quantitative PCR 

 

RT-qPCR was performed as previously described [21, 

22]. Trizol (Invitrogen) was used to extract RNA from 

PAAD cell lines and tissues according to the 

manufacturer’s instruction. cDNA Synthesis Kit 

(TaKaRa) combined with 1μg RNA was utilized to 

reverse transcribed cDNA. The qPCR was performed on 

an ABI 7500 real-time PCR system (Applied 

Biosystems) according to the SYBR-Green method 

(TaKaRa). Relative expression levels of ARLNRs 

normalized to β-actin was calculated by the 2−ΔCt 

method. The sequences were illustrated in Table 1. 

 

Bioinformatics analysis 

 

OS of patients in the high-risk group and the low-risk 

group was assessed via Kaplan-Meier curve. ROC curve 

was utilized to estimate the sensitivity and specificity. 

Gene set enrichment analysis (GSEA) was used to 

explore the underlying pathways of ARRS. Univariate 

and multivariate Cox regression analyses and PCA were 

utilized for identifying independent prognostic factors 

of PAAD patients. 

https://portal.gdc.cancer.gov/
http://www.perl.org/
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Table 1. The primer sequences of CASC8, AC015660.1, Z97832.2, PAN3-AS1 and β-actin. 

CASC8 
F primer (5’-3’) CCAATCTAGGTTACCGGCAAG 

R primer (5’-3’) TTCATGTGGCCTCTCATTGCT 

PAN3-AS1 
F primer (5’-3’) CTGATGTTTGCGCTAATACCCT 

R primer (5’-3’) TCTGCCGTTTGTGAACCTCTT 

AC015660.1 
F primer (5’-3’) TTTCTCCCTGGCTGCTTCACA 

R primer (5’-3’) GCATTCAGTCTGGAGTAGCCT 

Z97832.2 
F primer (5’-3’) TCCTGAGATGAAGCTGGAAATCAA 

R primer (5’-3’) AGTTTCTACGGTGGAGGGGT 

β-actin 
F primer (5’-3’) AGGCCAACCGCGAGAAGATGACC 

R primer (5’-3’) GAAGTCCAGGGCGACGTAGCAC 

Note: F primer, forward primer; R primer, reverse primer. 

 

Statistical analysis 

 

Statistical analysis was conducted by SPSS21.0 

software (SPSS 21.0) and GraphPad Prism8 

(GraphPad prism 8, La). The difference comparison of 

two or more groups was performed by Student T-test, 

ANOVA and post-hoc test (Boferroni method). The 

correlations between sARLNRs and clinicopathological 

characteristics of PAAD patients were analyzed by the 

chi-square test and Fisher’s exact probability method. 

P<0.05 was considered a significantly statistical 

difference. 

 

Availability of data and materials 

 

Authors can provide all of datasets analyzed during the 

study on reasonable request. 

RESULTS 
 

Seven sARLNRs are correlated to PAAD prognosis 
 

Following analyzing PAAD transcriptome data of TCGA 

database, we identified 72 ARGs, of which 590 lncRNAs 

were further verified as ARLNRs via Pearson correlation 

analysis. Based on univariate COX Regression analysis, 

we then verified 7 ARLNRs that were correlated to 

prognoses of PAAD patients, such as TRAF3IP2-AS1, 

AC068580.2, Z97832.2, CASC8, ZNF326-DT, 

AC015660.1 and PAN3-AS1. The associations between 

these sARLNRs and prognoses are illustrated in the 

forest map clearly (Figure 1). AC068580.2, CASC8 ANS 

and AC015660.1 increase mortality risk of PAAD 

patients, while TRAF3IP2-AS1, Z97832.2, ZNF326-DT 

and PAN3-AS1 are positively correlated to OS. 

 

 
 

Figure 1. Survival-related ARLNRs forest plot. The hazard ratios of sARLNRs (TRAF3IP2-AS1, AC068580.2, Z97832.2, CASC8, ZNF326-DT, 

AC015660.1 and PAN3-AS1) were demonstrated in the forest plot. Red parts represent up-regulated sARLNRs, and green parts represent 
down-regulated sARLNRs. 
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PAAD patients in the high-risk group show poor 

prognoses 

 

Four sARLNRs (Z97832.2, CASC8, PAN3-AS1 and 

AC015660.1) among the 7 sARLNRs were used to 

establish the ARRS, by which PAAD patients were 

separated into the high-risk group and the low-risk 

group (Figure 2A). In addition, the mortality rate of 

PAAD patients constantly decreased with lower risk 

score (Figure 2B). Along with the increasing risk score, 

the expression levels of AC015660.1, and CASC8 were 

enhanced, while Z97832.2 and PAN3-AS1 expressed 

decreasingly (Figure 2C). The low expression of 

Z97832.2 (Figure 3A) and PAN3-AS1 (Figure 3B) 

revealed the poor prognoses of PAAD patients, while 

the low expression of CASC8 (Figure 3C) and 

AC015660.1 (Figure 3D) showed opposite results. The 

survival curve of patient in the high-risk group was 

remarkably lower than patient in the low-risk group 

(Figure 3E). Therefore, the ARRS based on Z97832.2, 

 

 
 

Figure 2. ARRS was established based on sARLNRs. The distribution of risk score in high-risk group and low-risk group (A). Survival 
status of the low-risk group and high-risk group (B). The heatmap of sARLNRs in ARRS (C). 
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Figure 3. Survival curve of sARLNRs and ARRS. Kaplan-Meier survival curves of Z97832.2 (A), PAN3-AS1 (B), CASC8 (C) and AC015660.1 
(D). The results showed the high expressions of Z97832.2 and PAN3-AS1 were correlated with a favorable prognosis, while the high 
expressions of CASC8 and AC015660.1 showed the opposite results. (E) Survival curve of the high-risk group and low-risk group. The results 
showed that the high-risk group of PAAD patients have a poor prognosis. 
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CASC8, PAN3-AS1 and AC015660.1, to some extent, 

can accurately reflect prognoses of PAAD patients. 

 

ARRS is closely correlated to clinical features of 

PAAD 

 

To verify the clinical significance of ARRS, we detect 

the correlation of ARRS and clinical characteristics.  

We found that the higher risk score was correlated to 

the advanced stage, T-stage, N-stage and M-stage 

(Figure 4C–4F). However, there were no significant 

differences in grade and age (Figure 4A, 4B). Besides, 

the results of univariate and multivariate analysis 

illustrated that only risk score was remarkably 

associated with OS (Table 2). As the ROC curves 

showed, the AUC of risk score, age, gender, grade, 

stage, T-stage, M-stage and N-stage are 0.754, 0.632, 

0.628, 0.713, 0.443, 0.488, 0.473 and 0.508 

respectively, representing the accuracy of the ARRS 

(Figure 5). In addition, we normalized the points of 

ARRS ranging from 0 to 100, and calculated the 1-year, 

3-year and 5-year survival probabilities by drawing 

expression of sARLNRs line between the total points 

axis and each prognosis axis (Figure 6A). The 

nomogram provided a novel diagnosis method at  

the genetic level for clinical doctors to estimate the 

prognoses of PAAD patients. In addition, we performed 

KEGG analysis to investigate mechanisms of the four 

sARLNRs included in the ARRS, and discovered that 

the high-risk group was associated with the activation of 

the VEGF signaling pathway (Figure 6B). Together 

with the above findings, we found that ARRS is not 

only associated with TNM stages of PAAD, but also 

displays the angiogenetic correlation. 

 

The expression levels of CASC8 and AC015660.1 are 

higher in tumour tissues and cell lines of PAAD 

 

Next, we examined the levels of CASC8, AC015660.1, 

Z97832.2 and PAN3-AS1 in HPDE6-C7 cell line, 

various PAAD cell lines and tumour and adjacent 

tissues of PAAD. We found that CASC8 and 

AC015660.1 expressed significantly higher in BXPC3, 

PANC1, ASPC1 and COLO357 cell lines than those in 

HPDE6-C7, while the expression of Z97832.2 and 

PAN3-AS1 showed the opposite results (Figure 7A). 

Furthermore, consistent with the results in cell lines, 

we found that Z97832.2 and PAN3-AS1 expressed 

lowly in PAAD tumour tissues than those in adjacent 

normal tissues, but CASC8 and AC015660.1 showed 

the higher levels in tumour tissues (Figure 7B). 

Therefore, the expression differences of the four 

sARLNRs in cell lines and clinical specimens are 

accordant to the analyzing result based on database, 

further reflecting the reliability and accuracy of the 

ARRS. 

The expression levels of CASC8, AC015660.1, 

Z97832.2 and PAN3-AS1 are closely associated with 

tumour size, grade and T-stage 

 

To further detect the clinical significances of the 

sARLNRs, we detected the expression levels of 

CASC8, AC015660.1, Z97832.2 and PAN3-AS1 in 

PAAD samples of various grades and T-stages. 

Compared with the adjacent normal tissues, CASC8 and 

AC015660.1 expressed higher in PAAD tumor tissues 

with more advanced grades (Figure 7C) and T-stages 

(Figure 7D), however, Z97832.2 and PAN3-AS1 

dropped. Furthermore, we also analyzed the relevance 

to different clinicopathological characteristics. We 

detected that the higher expression of CASC8 and 

AC015660.1 prominently correlated to the larger 

tumour size, and the more advanced grades and T-

stages (Table 3). Consistent with the results in database, 

we didn’t detect the prominent relevance between the 

sARLNRs and lymph node metastasis status. In general, 

the four sARLNRs-established ARRS is strongly related 

to clinicopathological features of PAAD, so as to 

relatively accurately reflect prognoses of PAAD 

patients. 

 

DISCUSSION 
 

Amount of evidence has unraveled that tumour-related 

angiogenesis prominently promoted cancer progression, 

including PAAD. A chain of angiogenic key regulating 

factors, such as vascular endothelial growth factor 

(VEGF), hypoxia-inducible factor 1 (HIF1) and 

fibroblast growth factor (FGF), have also been verified 

to closely associated with PAAD prognosis. Therefore, 

in the past decades, increasing numbers of 

antiangiogenic inhibitors targeting to these key 

regulators are constantly approved for clinical therapy, 

especially for those vessel-rich tumours [20, 23–26]. 

Belzutifan has been demonstrated to inhibit 

angiogenesis by attenuating the binding between Per-

ARNT-Sim-B and HIF-2α [27]. 

 

Furthermore, tumour-related angiogenesis mechanisms 

are increasingly revealed, which also provide 

fundament for identifying more promising therapeutic 

targets. Marina recently found that suppression of 

endothelial cell focal adhesion kinase expression 

reduced PAAD liver metastasis by attenuating 

gemcitabine-mediated angiogenetic factors [28]. Chen 

et al. revealed angiogenetic mechanism in PAAD 

microenvironment, and they found that PAAD-secreted 

exosomes containing miRNA-30b-5p activate 

angiogenetic activities of endothelial cells via inhibiting 

the expression of gap junction protein GJA1 [29]. The 

study from Marjorie validated that targeting cancer-

associated fibroblasts or inducing the endothelial-
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Figure 4. The relationship between the risk score and clinical features. Relationships between risk score and age (A), grade (B), stage 

(C), T- stage (D), N- stage (E) and M- stage (F). 



www.aging-us.com 9097 AGING 

Table 2. Univariate and multivariate COX analysis of PAAD patients. 

 Univariate analysis Multivariate analysis  

Variables HR HR 95% low HR 95% high P value HR HR 95% low HR 95% high P value 

Age 1.018628 0.989299 1.048826 0.215632 1.027764 0.997404 1.059049 0.073443 

Gender 1.223326 0.659408 2.269496 0.522628 1.374561 0.661768 2.855108 0.393650 

Grade 1.445900 0.953290 2.193066 0.082759 1.216647 0.754200 1.962649 0.421544 

Stage 0.955028 0.527062 1.730493 0.879406 0.222853 0.019778 2.511006 0.224406 

T-stage 0.990137 0.414295 2.366358 0.982211 2.296308 0.295395 17.85077 0.426902 

M-stage 1.061863 0.253749 4.443581 0.934496 17.41579 0.102794 2950.646 0.275195 

N-stage 1.644979 0.785281 3.445847 0.187076 2.180775 0.812202 5.855412 0.121815 

Risk score 1.709410 1.314281 2.223332 6.39e-05 1.802043 1.303285 2.491671 0.000367 

Note: HR, Hazard Ratio. 

 

mesenchymal transition reversion process can attenuate 

angiogenesis of PAAD [30]. 

 

Recently, emerging studies have highlighted the directly 

and indirectly regulating effects of lncRNAs in 

angiogenesis process by targeting various angiogenetic 

molecules. LncRNA MYLK-AS1 was verified to 

promote hepatocellular carcinoma angiogenesis by 

targeting miR-424-5p/E2F7 axis and induce VEGFR-2 

expression [18]. Moritz recently reviewed the potential 

of small extracellular vesicles containing lncRNAs as a 

series of biomarkers and proposed the possibility of 

small extracellular vesicle as delivery vehicles for 

lncRNA-based PAAD strategy [31]. Furthermore, a 

growing body of ARLNRs are potential for cancer 

assessment of diagnosis and prognosis. For example, 

AC005625.1 and AC008760.1 were significantly 

related to endothelial cells percentage, tumour size, 

muscle invasion status and poor prognosis in clear cell 

renal cell cancer in bladder urothelial carcinoma [16]. 

 

 
 

Figure 5. Receiver operating characteristic (ROC) curve. The AUC of risk score, age, gender, grade, stage, T-stage, M-stage and N-stage 
are 0.754, 0.632, 0.628, 0.713, 0.443, 0.488, 0.473 and 0.508 respectively. 
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Figure 6. The nomogram and KEGG pathway analysis. The nomogram predicted the 1-,3- and 5- year survival rates of PAAD patients 

(A). The high‐risk group had positive relations with the VEGF pathway (B). 
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In the present study, we identify four sARLNRs with 

prominent clinical significance for PAAD. By the 

ARRSM established based on these sARLNRs, PAAD 

patients are separated into the high-risk group and the 

low-risk group, reflecting the distinct OS. Additionally, 

we verified the clinical significance of the four 

sARLNRs and found that the expression levels of 

CASC8 and AC015660.1 were significantly higher in 

PAAD cell lines and tumor tissues especially in patients 

with advanced grades and T-stages, while Z97832.2  

and PAN3-AS1 were inverse. LncRNA-CASC8 

polymorphisms have been demonstrated to increase the 

risk of esophageal cancer and lung adenocarcinoma [32, 

33], but the role in PAAD is first revealed in the present 

study. AC015660.1 was identified as a novel 

inflammation-related lncRNAs to predict the prognosis 

of gastric carcinoma patients [34], furthermore, we 

demonstrate its potential, as an angiogenesis-related 

lncRNA, for assessing PAAD prognosis here. PAN3-

AS1 has ever been verified as a ferroptosis-related 

lncRNA to predict the immune landscape in PAAD 

[20]. Here, we, for the first time, establish an ARRSM 

based on CASC8, AC015660.1, Z97832.2 and PAN3-

AS1, which not only offer more promising targets, but 

also better assess tumour vascularization status and 

prognosis for PAAD patients. 

 

Although our findings reveal the values of ARRSM for 

prognosis evaluation of PAAD patients and verified 

clinical significance and angiogenetic relevance of 

CASC8, AC015660.1, Z97832.2 and PAN3-AS1 in cell 

lines and clinical specimens, some limitations are still 

needed to be further improved in subsequent study. We 

found that these angiogenesis-related lncRNAs are 

significantly differentially expressed in tumour cell or 

tumour tissue, but their levels and functions in tumour 

endothelial cells remain unknown. Furthermore, the 

approaches and underlying mechanisms by which these 

lncRNAs regulate angiogenesis in tumour environment, 

such as small extracellular vesicle dependence, extra-

cellular matrix degradation or others, are also needed to 

be further studied. Therefore, more in vivo and 

 

 
 

Figure 7. The expression levels of CASC8, AC015660.1, Z97832.2 and PAN3-AS1 in cell lines and clinical samples. The qPCR 
results of CASC8, AC015660.1, Z97832.2 and PAN3-AS1 in PAAD cell lines (BXPC3, PANC1, ASPC1 and COLO357), pancreatic epithelium cell 
(HPDE6-C7) (A), PAAD tumor tissues, tumor tissues with different grade and T-stage and adjacent normal tissues (B–D). CASC8 and 
AC015660.1 were highly expressed in PAAD cell lines (A), PAAD tissues (B), advanced grade (C) and advanced T-stage (D). While the 
expression of Z97832.2 and PAN3-AS1 increased in pancreatic epithelium cell (A), adjacent normal tissues (B), early grade (C) and early 
stage (D). 
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Table 3. Relationship between CASC8 and AC015660.1 expression and 
clinicopathologic factors of PAAD patients. 

Parameter N 
Average expression of sARLNRs 

P value 
Low  High  

Gender    0.260 

Male 79 42 37 

Female 43 18 25 

Age (year)    0.720 

< 60 46 21 25 

≥ 60 76 32 44 

Tumor size (cm)    <0.001 

≤4 103 76 27 

>4 19 3 16 

Grade    <0.001 

1 81 65 16 

2 36 14 22 

3 5 1 4 

T-stage    <0.001 

T1 68 55 13 

T2 35 21 14 

T3 19 3 16 

Lymph node status    1.000 

Negative 81 53 28 

Positive 41 27 14 

Note: The bold number represents the P-values with significant differences. 

 

in vitro models should be constructed to elucidate 

mechanisms underlying angiogenesis in tumour 

microenvironment, besides, multiple omics assays are 

also needed to reveal the deeper and wider perspectives 

on tumour vascularization. 

 

CONCLUSIONS 
 

In this study, we illuminate the promising roles of 

sARLNRs on prognosis evaluation for PAAD patients 

and determined the clinical significance and 

angiogenetic relevance, after the verification in 122 

PAAD tissues and cell lines. The results build a bridge 

between sARLNRs and tumour vascularization, and 

also establish a reliable and accurate ARRSM for 

PAAD antiangiogenic strategy. 
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