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INTRODUCTION 
 

Brain tissue atrophy is a pervasive phenomenon 

associated with aging [1, 2]. Nonetheless, recent studies 

modeling brain integrity with machine learning have 
indicated that brain aging is a process that can be 

decoupled from chronological age, where the brain can 

“age slower or faster” than would be expected based on 
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ABSTRACT 
 

Background: Brain age is an MRI-derived estimate of brain tissue loss that has a similar pattern to aging-related 
atrophy. White matter hyperintensities (WMHs) are neuroimaging markers of small vessel disease and may 
represent subtle signs of brain compromise. We tested the hypothesis that WMHs are independently 
associated with premature brain age in an original aging cohort. 
Methods: Brain age was calculated using machine-learning on whole-brain tissue estimates from T1-weighted 
images using the BrainAgeR analysis pipeline in 166 healthy adult participants. WMHs were manually 
delineated on FLAIR images. WMH load was defined as the cumulative volume of WMHs. A positive difference 
between estimated brain age and chronological age (BrainGAP) was used as a measure of premature brain 
aging. Then, partial Pearson correlations between BrainGAP and volume of WMHs were calculated (accounting 
for chronological age). 
Results: Brain and chronological age were strongly correlated (r(163)=0.932, p<0.001). There was significant 
negative correlation between BrainGAP scores and chronological age (r(163)=-0.244 , p<0.001) indicating that 
younger participants had higher BrainGAP (premature brain aging). Chronological age also showed a positive 
correlation with WMH load (r(163)=0.506, p<0.001) indicating older participants had increased WMH load. 
Controlling for chronological age, there was a statistically significant relationship between premature brain 
aging and WMHs load (r(163)=0.216, p=0.003). Each additional year in brain age beyond chronological age 
corresponded to an additional 1.1mm3 in WMH load. 
Conclusions: WMHs are an independent factor associated with premature brain aging. This finding 
underscores the impact of white matter disease on global brain integrity and progressive age-like brain 
atrophy. 
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chronological age [3, 4]. The reasons underlying the 

decoupling of chronological and brain aging remain 

unclear, but they may relate to the unique physiological 

and dynamic properties of the central nervous system, 

with brain plasticity serving as a protective mechanism 

[5]. Conversely, premature brain aging may reflect a 

unique susceptibility to chronic injury given to the 

brain’s high metabolic demand, particularly in the case 

of chronic insufficient cerebrovascular supply. To date, 

researchers have identified strong associations between 

age and systemic structural changes to the brain, 

including both changes in white matter, gray matter, and 

cerebrospinal fluid [6, 7]. 

 

To elucidate the mechanisms related to premature brain 

aging, it is important to consider white matter hyper-

intensities (WMHs). WMHs are neuroimaging markers 

of small vessel disease and are indicative of chronic 

insufficient cerebrovascular supply [8]. They have been 

previously regarded as benign findings but may 

represent signs of brain structural changes with a subtle 

relationship with cognitive performance [9, 10] in 

particular, executive functioning [11–14]. Even in 

younger individuals with low WMH load, a relationship 

between WMH load and working memory has been 

reported [11]. The association between chronological 

age and WMH load is well-reported, where older 

individuals have a higher WMH load [11]. Due to this 

relationship, recent research has also sought to predict 

chronological age using measures of WMH load [15]. 

However, these studies typically focus on the 

relationship between WMH load and chronological age, 

rather than brain age. More specifically, an association 

between quantifiable load of WMHs and premature 

brain aging would imply a relationship between small 

vessel disease and premature brain aging either as a 

direct link or through a shared common cause. It is 

important to note that estimates of cortical integrity 

using measures of brain age typically use structural T1-

weighted MRI scans, whilst other modalities are more 

appropriate for the quantification of age-related WMH 

load (i.e., T2-weighted or T2-FLAIR) [16, 17]. The 

necessity of these different modalities is one reason why 

research has typically focused on the relationship 

between WMH load and chronological age rather than 

brain age. Despite this, the relationship between WMH 

severity and age-related changes have been previously 

investigated, for example, Habes and colleagues found 

that individuals with higher WMH burden also had age-

related brain atrophy [18], however, to our knowledge 

no one has previously explored the relationship between 

WMH and brain age using the well-known software 

package BrainAgeR [19], which is capable of 
estimating differences between chronological age and 

brain-metric based age [3] and has been shown to out-

perform other methods of estimating brain age [20]. 

Therefore, we tested this relationship and evaluated the 

independent association between quantifiable WMHs 

and brain age using the BrainAgeR analysis pipeline. 

We hypothesized that a higher WMH load is linearly 

associated with premature brain aging controlling for 

chronological age. 

 

MATERIALS AND METHODS 
 

Participants 

 

Local healthy adult participants (N=166) were part of 

the Aging Brain Cohort at the University of South 

Carolina (ABC@UofSC) repository [21], an ongoing 

cross-sectional cohort study. Institutional Review 

Board approval was obtained, followed by written 

informed consent provided by all participants at 

enrolment. 

 

Neuroimaging acquisition and preprocessing 

 

Participants underwent MRI scanning on a Siemens Trio 

3T scanner with a 20-channel head coil. T1-weighted 

images were used for brain age estimation and were 

acquired using the following parameters: T1-weighted 

imaging (MP-RAGE) sequence with 1mm isotropic 

voxels, 256x256 matrix size, 9° flip angle, and 92-slice 

sequence with repetition time (TR)=2250ms, inversion 

time (TI)=925ms, and echo time (TE)=4.11ms. Fluid 

attenuated inversion recovery (FLAIR) scans were also 

acquired on the same scanner using the following 

parameters: TR = 5000 ms, TE = 387 ms, matrix = 256 x 

256, FOV = 230 x 230 x 173 mm2, 1mm isotropic 

voxels, 160 sagittal slices. 

 

WMHs were manually delineated on the FLAIR images 

in accordance with the STRIVE protocol (Standards for 

Reporting Vascular Changes on Neuroimaging) [17] by 

a trained individual (author SW) blinded to 

demographic information. The WMH load was 

calculated as the volume in mm3 (the total number of 

voxels) corresponding the WMH. 

 

Brain age estimation 

 

Brain age estimation was performed based on T1-

weighted images using the BrainAgeR analysis pipeline 

(github.com/james-cole/brainageR) [3, 19]. The T1-

weighted images were segmented and normalized using 

SPM12's DARTEL toolbox [22]. Probabilistic tissue 

maps were visually inspected by a neurologist to ensure 

quality of the segmentation. Gray and white matter 

probabilistic tissues were entered into a machine-
learning algorithm using a pretrained Gaussian 

regression model implemented in R-package Kernlab to 

estimate brain age. 
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The difference between estimated brain age and 

chronological age (brain age gap: BrainGAP) was 

determined by subtracting an individual’s chronological 

age from their estimated brain age. Therefore, the 

BrainGAP corresponded to premature or delayed brain 

age beyond chronological age [23]. Positive values 

suggest that the predicted brain age is older than the 

chronological age of the participant (i.e., premature 

brain aging) whereas negative values suggest that an 

individual’s brain age is younger than their chronological 

age (i.e., delayed brain aging). 

 

Behavioral testing 

 

Participants were administered both standardized and 

informal measures of cognition and language on a laptop 

(MacBook Pro) or an iPad. Researchers administering 

the cognitive battery had C-level qualifications and 

obtained a cognitive unlock code in accordance with the 

NIH guidelines. Cognitive measures included the 

Montreal Cognitive Assessment (MoCA) [24], a 

cognitive screening assessment sensitive to mild 

cognitive impairment. Researchers completed training 

for administration and scoring of the MoCA. The total 

MoCA score is based on the following cognitive 

domains: attention and concentration, executive 

functions, memory, language, visuoconstructional skills 

and orientation. Total MoCA scores were calculated 

using the rules provided by the National Alzheimer’s 

Coordinating Center Uniform Data Set instruction 

manual for neuropsychological testing battery [25]. 

 

Statistical analysis 

 

As WMH volume increased exponentially with older 

age, we log-transformed the WMH volume data.  

This log-transformed variable is used in all future 

analyses. Pearson correlation coefficients were 

calculated between chronological age and estimated 

brain age, BrainGAP and WMH volume. Partial 

Pearson correlations were conducted between 

BrainGAP and WMH volume, accounting for 

chronological age. To investigate the relationship 

between these measures of cortical integrity and 

behavior, partial Pearson correlations were conducted 

between these measures and MoCA scores. All 

statistical analyses were conducted in the statistical 

software R (R Core Team, 2017), applied using R 

package NLME [26] and all figures were created 

using the GGPLOT2 package [27]. 

 

Data availability 

 

The data that support the findings of this study are 

available from the corresponding author upon reasonable 

request. 

RESULTS 
 

Participants had an average chronological age of  

47.35 years (SD=18.33, range=20-79). Similarly, they 

had an average brain age of 43.76 years (SD=17.80, 

range=16.95-80.22). There was a significant positive 

correlation between chronological age and estimated 

brain age (Pearson: r(163)=0.932, p<0.001), see 

Figure 1A. 

 

The average BrainGAP was -3.72 years (SD=6.48, 

range=-23.90-14.57). There was a significant negative 

correlation between chronological age and BrainGAP 

(Pearson: r(163)=-0.244, p<0.001), see Figure 1B. 

 

Participants had an average of 4.17 cubic centimeters of 

WMH (SD=4.02, range=0.49-23.12). There was a 

significant positive correlation between chronological 

age and volume of log-transformed WMH (Pearson: 

r(163)=0.560, p<0.001), see Figure 1C. 

 

Due to the significant relationship between chronological 

age and BrainGAP (likely related to floor and ceiling 

effects as the BrainAgeR model was initially trained  

on participants older than 20 and younger than 80)  

and chronological age and volume of WMHs, we 

conducted partial Pearson correlations (accounting for 

chronological age) between BrainGAP and volume of 

(log-transformed) WMHs which revealed a significant 

relationship (Pearson: r(163)=0.233, p=0.003), see 

Figure 1D. See Figure 2 for example participants. Based 

on the partial correlation between BrainGAP and WMH 

(controlling for chronological age) each additional year 

in brain age corresponded to additional 1.1mm3 in WMH 

load. 

 

Partial correlations, accounting for chronological age, 

revealed that BrainGAP and WMH volume were 

significantly associated with different aspects of 

cognition. Specifically, BrainGAP was significantly 

associated with the MoCA words generated sub score 

(r(163) = -0.186, p = 0.008), where premature brain aging 

is associated with worse scores, but there was no 

significant relationship with MoCA total score (p = 0.357) 

or any other MoCA sub score (p > 0.05). Conversely, 

WMH volume was significant associated with MoCA 

total score (r(163) = -0.199, p = 0.005) and the MoCA 

attention and concentration index score (r(163) = -0.221, 

p = 0.002), where increased WMH volume was associated 

with poorer scores. No other significant relationship with 

MoCA sub scores were found. 

 

DISCUSSION 
 

Brain age is a measure of brain integrity that captures 

age-related atrophy in the brain independent from 
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Figure 1. Scatterplots to show the relationship between chronological age, brain age and volume of WMHs. (A) shows 
chronological age and estimated brain age. (B) depicts chronological age and BrainGAP. (C) displays chronological age and volume of WMHs, 
and (D) shows BrainGAP and volume of WMHs. 
 

 
 

Figure 2. Two example participants of a similar chronological age (A: 58, B: 61) but different estimated brain age (A: 49.13, B: 66.97) and 
different WMH volume (A: 0.694cm3, B: 14.174cm3). The left column shows FLAIR scans with WMHs highlighted by red arrows, the right 
shows grey matter (green) and white matter (blue) maps for each participant. 
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chronological age. Conversely, WMHs are a measure of 

white damage due to small vessel disease. In this study, 

we investigated the independent association between 

quantifiable WMHs and brain age in an original aging 

cohort, and the association between these markers and 

cognition. Our results support previous work suggesting 

there is a relationship between chronological age and 

WMH volume, and chronological age and estimated 

brain age. Our results also demonstrate that there is a 

significant association between WMHs and premature 

brain age when accounting for chronological age. 

BrainGAP and WMH burden were associated with 

different aspects of cognition, where WMH burden was 

associated with reduced overall cognition (MoCA total 

score) and premature brain aging was associated with 

poorer language fluency. 

 

This original cohort study is the first to use quantifiable 

measures of WMHs alongside machine learning-

derived brain atrophy measures (using the BrainAgeR 

pipeline) and demonstrated a strong association 

between WMHs and premature brain age. These results 

indicate a relationship between WMHs and premature 

brain aging, suggesting that there is either a direct link 

between small vessel disease and premature brain 

aging, or that processes shared a common causal link. 

Although significant, the correlation coefficient is 

relatively weak which may support the theory of a 

shared common causal link which may influence 

premature brain aging and small vessel disease  

at slightly different rates or through different 

mechanisms. Importantly, these results underscore the 

importance of overlapping factors related to brain 

health. WMHs are common in older age and are related 

to cardiovascular risk factors such as body mass index 

(BMI), hypertension or diabetes [28]. Albeit previously 

considered a finding of uncertain significance, more 

recent evidence suggests that WMH are related to 

lowered cognitive performance [29–31]. Taken 

together, WMHs can be considered a marker of brain 

health [32, 33] and, as these results indicate, a factor 

associated with premature brain aging. Similarly, 

premature brain aging has also been previously 

associated with higher cardiovascular burden [15] and 

declines in cognitive performance [34, 35]. 

 

It is unclear if premature brain aging shares the same 

pathophysiology compared with WMHs and is therefore 

an irreversible process. Nonetheless, premature brain 

aging is also increasingly recognized as a potent marker 

of lowered cognitive skills [34, 36, 37]. Its association 

with WMHs demonstrated here suggests that small 

vessel disease can be part of the process related to 
premature aging and underscores the importance of 

multiple converging factors supporting brain health and 

progressive declines in cognitive ability [29–31]. This is 

further supported by our results demonstrating that 

WMH burden and premature brain aging may 

differentially affect cognition and therefore provides a 

potential explanation for why some individuals 

experience different rates of cognitive decline in 

different aspects of cognition (i.e., memory, language 

etc.). The relationship between WMH load and general 

cognition (MoCA total score) is supported by previous 

literature [29–31], however the relationship found here 

between premature brain aging and language fluency is 

less well established. The differences in associated 

behavioral change may be related to the brain regions 

affected, as WMHs typically affect subcortical 

structures whilst premature brain aging is associated 

with a reduction in cortical integrity. It may be that 

brain regions such as the temporal lobe are particularly 

affected with premature brain aging and may explain 

why we found a relationship with BrainGAP and 

language fluency, however future studies should be 

conducted to investigate this further. Premature brain 

aging has also been found in many common brain 

disorders, including schizophrenia, multiple sclerosis, 

and dementia [38]. Similarly, small vessel disease and, 

in particular, white matter hyperintensity severity has 

also been associated with mild cognitive impairment 

and dementia [39, 40] Therefore, future research could 

investigate the interaction between brain age and white 

matter hyperintensity load in different disorders. 

 

Limitations 

 

The main limitation of this study is the relatively small 

sample size (N=166) compared to other datasets. 

However, the current cohort has associated behavioral 

data (MoCA scores) which is not available for the 

majority of the larger open access databases. This 

allows investigation of the relationship between markers 

of cortical integrity and different aspects of cognition 

which is not possible using larger datasets with only 

MRI-based information. However, future studies could 

investigate the relationship between WMH volume and 

brain age using the BrainAgeR analysis pipeline on 

larger datasets such as UK Biobank. 

 

CONCLUSIONS 
 

This study corroborated previous work which has found 

a relationship between chronological age and WMH 

volume, and chronological age and estimated brain age. 

Our results also demonstrate that a higher WMH load (a 

marker of small vessel disease) is associated with 

premature brain aging (a measure of brain integrity 

which captures age-related atrophy independent of 
chronological age), and that both are associated with 

different aspects of cognitive decline. Future research 

could investigate the interaction of premature brain 
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aging and WMH load on behavior in different cognitive 

disorders. 
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