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INTRODUCTION 
 

Self-sufficiency in growth, tissue invasion and 

metastasis are typical tumor characteristics [1]. To 

support these proliferative activities, tumor tissue must 

undergo metabolic reprogramming. A classic example 

of metabolic reprogramming was the Warburg’s effect 

in which glucose undergoes anaerobic glycolysis in 

tumor cells [2]. In recent years, several studies have 

shown that a few metabolic substrates, including 

glucose, lactic acid, fatty acid, and amino acid, are 

preferentially utilized for cancer growth, invasion and 

metastasis. Lipid metabolism has also been reported to 

perform a role in cancer metastasis. Previously 

understood as simple metabolic substrates, fatty acids 

are now known to influence lipid level in tissues, 

becoming a subject of much research interest [3]. 

 

Clear cell renal carcinoma is a urological malignant 

tumor with high incidence in the population. However, 

effective treatment for advanced renal clear carcinoma 
in patients is still lacking. Developing new molecular 

drug targets for treating advanced renal clear carcinoma 

would potentially improve survival outcomes of 
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ABSTRACT 
 

Objective: To explore fatty acid metabolism-related genes and signature, which could predict survival outcomes 
of clear cell renal carcinoma (ccRCC) patients. 
Materials and Methods: Transcriptional and survival data of fatty acid genes in ccRCC patients were retrieved 
from UCSC Xena and Geo DataSets. We first performed Lasso Cox regression analysis to identify survival-related 
genes. These genes were then used to construct metabolic-related gene signature and risk score. Enrichment 
analysis and immune component and chemotherapy response prediction were also performed. 
Results: In total, five survival-related genes were identified: AGR2, HAO2, IGF2BP1, MCCD1 and OLFM4 
(p < 0.05). A series of survival value analyses revealed survival-related signature and risk score, including KM 
analysis (training set: p < 0.001; test set: p = 0.008). Four clinical indexes (T stage, N stage, M stage, and 
pathology) were positively correlated with risk score. Time-dependent ROC analysis yielded AUC value of 0.813. 
Immune landscape analysis revealed that risk score was strongly correlated with TAM score and cytotoxic 
score. Patients with high risk score and TAM score or cytotoxic score had the shortest survival time. Finally, 
inhibition of fatty acid metabolism in human ccRCC cell line produced corresponding changes in five genes,  
consistent with our preliminary results. 
Conclusion: We identified five survival-related genes (AGR2, HAO2, IGF2BP1, MCCD1 and OLFM4) in ccRCC 
patients. Our results also indicated that survival-related signature based on these genes is a potential robust 
prognostic biomarker for ccRCC in patients. 
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patients. Based on previous literature, key fatty acid 

proteins were reported to be strongly correlated with 

renal clear cell carcinoma’s growth, invasion and 

metastasis [4, 5]. Inhibition of fatty acid synthase was 

shown to activate P53 and STAT pathways, decreasing 

growth of renal cancer cells [6]. Moreover, fatty acid 

binding proteins (FABP) have been implicated in renal 

cell carcinogenesis [7]. 

 

However, fatty acid metabolism-related genes set 

associated with clear cell renal carcinoma in patients 

have not been systematically studied. In this study, we 

investigated key fatty acid-related protein and potential 

signature predicting survival of renal clear cell carcinoma 

patients to provide a basis for future research directions. 

 

MATERIALS AND METHODS 
 

Data source 

 

Two clear cell renal carcinoma patients’ datasets with 

survival results were used in this study: TCGA-KIRC 

dataset, including RNA sequences and clinical 

phenotypes, downloaded from the UCSC Xena [8] and 

GSE29609 dataset, including expression matrix and 

survival results, downloaded from the GEO DataSets 

[9]. These two datasets were publicly available from the 

databases. We used TCGA-KIRC dataset as a training 

set to perform a series of survival analyses and identify 

a survival-related signature. In contrast, GSE29609 was 

designed as a test set for testing the signature’s accuracy 

and stability. 

 

Survival-related fatty acid genes 

 

Based on a review of previous literature, 90 fatty acid-

related genes were selected [10]. To find the survival 

value of each of the 90 fatty acid genes, we performed 

Lasso cox regression analysis on the TCGA-KIRC 

dataset. Subsequently, univariate and multivariate Cox 

regressions were performed on genes with survival 

value to find survival-related fatty acid genes. 

 

Signature of survival-related fatty acid genes 

 

We predicted a new signature containing survival-

related fatty acid genes. The following formula was 

used to calculate each sample risk score: 

iRisk Score = (Coefi × ExpGenei)  

 “Coef” represents non-zero regression coefficients 

calculated with univariate Cox regression analysis. 
“ExpGene” represents expression values of genes from 

the prognostic risk score model. We calculated risk 

score level for TCGA-KIRC dataset’ patients and 

verified the survival value of the signature in both the 

training set and test set using KM analysis. 

 

Relationship between risk score and clinical features 

 

First, using test set, we performed a time-dependent ROC 

analysis to predict risk score on 1-, 3- and 5-year survival 

results. Second, important clinical prognostic features, 

such as age and TMN stage, were compared in the training 

set using Cox regression analysis. R package “survival”, 

and “glmnt” were used for ROC and Cox regression 

analyses. We constructed a forest plot showing these 

results. In addition, prognostic characteristics with 

significantly different risk scores selected for further 

analysis. A nomogram of overall survival for clear cell 

renal carcinoma patients in the training set with risk scores 

and other important clinical prognostic indexes was drawn. 

 

Enrichment analysis for low- and high-risk score 

patient groups 

 

Patients included in the training set were divided into two 

groups: high risk-score group and low risk-score group. 

R package ‘limma’ was used to identify differentially 

expressed genes between two patient groups. Genes with 

FDR <0.05 were considered statistically significant. 

Three functional enrichment analyses were performed on 

differentially expressed genes for the two groups: GO 

analysis [11], KEGG analysis [12], and Gene set 

variation analysis (GSVA) [13]. R packages “cluster 

Profile” and “GSVA” were used for enrichment analysis. 

Based on enrichment analysis results, we identified 

candidate different functions between the high-score 

group and low-score group patients. 

 

Immune-related characteristics in low- and high-risk 

score groups 

 

We performed multi-dimension immune-related analysis 

on the two groups of patients. First, we used cibersort 

website (https://cibersort.stanford.edu/) to analyze the 

immune component of the two patients groups and 

divided patients into immune subtypes [14]. Second, we 

used R package “GSVA” to analyze immune-related 

score. Third, we explored immune status of the two 

groups using R package “estimate”. Fourth, the TAM 

score and Cytotoxic score, important prognostic indexes 

generated using R package “GSVA”, were compared 

between the two patient groups. Finally, we compared 

the expression levels of two important immune 

checkpoint genes: CTLA4 and PDL1. 

 

Chemotherapy drug sensitivity analysis 

 

Ridge regression model was constructed with R 

package “pRRophetic” and “oncoPredict” using the 

https://cibersort.stanford.edu/
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remaining data. Drug sensitivity (IC50) was chosen as 

an outcome index. Chemotherapeutic response was 

predicted using tumor genes expression and drug 

sensitivity data of cell lines from the cancer genome 

project (CGP) and drug sensitivity in cancer (GDSC) 

[15]. 

 
Verification of survival-related fatty acid genes in 

cell lines 

 

Increasing the expression level of fatty acid synthase 

(FASN) was positively correlated with aggressive cell 

proliferation, migration, apoptosis, and lipid droplet 

formation. It was also shown to regulate metabolic 

disorders associated with clear cell renal carcinoma. 

Researchers also proved that pharmacological inhibitor 

of FANS could suppress the growth and invasiveness of 

clear cell renal carcinoma. Therefore, we used two 

human clear cell renal carcinoma cell line (caki-1 and 

786-0 cell lines) from authenticated cell cultures of the 

Chinese national collection. We down-regulated the 

expression of FANS in caik-1 cells by the way of 

siRNA virus and exposed FASN inhibitorC75 (HY-

12364, MedChemExpress, China) with two cell line 

(caki-1 and 786-0). We verified the expression level of 

survival-related fatty acid genes with quantitative real-

time polymerase chain reaction (Q-PCR) [16]. 

 

Data availability statement 

 

The original data presented in this study are included in 

the article. All data were retrieved from public 

databases. 

 

RESULTS 
 

Identity of survival-related fatty acid genes 

 

We downloaded 90 fatty acid genes, 525 patient clinical 

records and RNA sequences from the TCGA-KIRC 

dataset (the training set) and survival results of 39 renal 

cancer patients and the matrix of genes’ expression 

from the GSE29609 (the test set). We performed Lasso 

regression analysis on the training set for all fatty acid 

genes (Figure 1A, 1B). The results showed that only 14 

genes had survival value for renal cancer patients. 

 

 
 

Figure 1. (A, B) The lasso regression analysis; (C) The correlation of 5 key genes; (D) The univariate and multivariate COX regression 

analysis; (E) The risk score distribution in the training set; (F) The KM analysis in the TCGA cohort; (G) The KM analysis in the GSE cohort. 
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After univariate and multivariate Cox regression 

analyses (Figure 1D), only five survival-related genes 

(AGR2, HAO2, IGF2BP1, MCCD1 and OLFM4) were 

significantly different to have the statistical value 

(p < 0.05). The correlation among the five genes was 

also established in the Figure 1C. 

 

Risk score construction and survival value 

verification 

 

The risk score was calculated using the following 

formula: 

 

Risk score = (0.0726303) × AGR2 + (−0.17735540) × 

HAO2 + (0.18400723) × IGF2BP1 + (−0.08972776) × 

MCCD1 + (−0.08952658) × OLFM4. 

 

The patients in the training set were divided into low- 

and high-risk score groups based on their risk score 

level. We also presented the distribution of risk score in 

the training set (Figure 1E). To explore the survival 

value of each risk score, we tested it on both training 

and test sets using KM analysis. The results showed 

that renal cancer patients with high risk score had 

shorter survival time for both the training set (p < 

0.001, Figure 1F) and test set (p = 0.008, Figure 1G). 

We also used time-dependent ROC curve to analyze 

the risk score in the test set. The AUC value of risk 

score was 0.813, with satisfactory results for ROC 

curves (Figure 2A, 2B). 

 

Relationship between risk score and clinical features 

 

We compared clinical features (like TMN stages) in the 

training set using Cox regression analysis. The results 

showed that six clinical features (age, T stage, N stage, 

M stage, gender and pathology stage) had significant 

survival value (p < 0.05, Figure 2C) and were presented 

in a forest plot. A further separate comparison of these 

six indexes between the two groups showed that 

patients with high-risk score had worse T stage, N 

stage, M stage, and pathology stage (P < 0.001) than 

low-risk score patients (Figure 2D–2I). A nomogram 

containing several clinical features and risk score was 

drawn predicting 1-, 3- and 5-year overall survival 

(Figure 3A–3D). 

 

 
 

Figure 2. (A, B) The ROC time dependent analysis; (C) The forest plot for clinical features in the training set; (D–I) The comparative results 

for age, gender, T stage, N stage, M stage, and pathology stage. 
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Enrichment analysis for low- and high-risk score 

patient groups 

 

Using R package “limma”, we identified differentially 

expressed genes, which were represent in a volcano plot 

(Figure 4A). Three forms of functional enrichment 

analysis were used to determine potential function of 

risk score in two groups of renal cancer patients. First, 

GO analysis showed that functions of extracellular 

matrix organization, extracellular structure organization, 

and urogenital system development would be activated 

in high-risk score patients (Figure 4C). In contrast, the 

functions of negative thymic T cell selection and actin 

cytoskeleton reorganization were inhibited in high-risk 

score patients. Second, KEGG analysis showed that 

pathways of PIK3, papillomavirus infection, and MAPK 

signaling would be activated in high-risk score patients 

(Figure 4D). Third, GSVA analysis ultimately found 

that a high-risk score was strongly correlated with 

inflammatory response and epithelial mesenchymal 

response in patients (Figure 4B). 

 

Immune-related characteristics in low- and high-risk 

score groups and chemotherapy drug sensitivity 

analysis 
 

Using cibersort website, we identified immune 

components of two patient groups. However, 

differences between main immune cells could not be 

identified by scanning whole immune landscapes of the 

two groups (Figure 5A). However, high-risk score 

patient group were more likely to exhibit immune 

insensitivity subtypes, such as immune C2 and C5, than 

low-risk score patients. Subsequently, we used R 

package “estimate” to analyze the estimate score and 

immune score (Figure 5B, 5C). The results showed that 

 

 
 

Figure 3. (A) The nomogram for all the clinical features; (B–D) The nomogram to predict probability 1-/3-/5- year OS. 
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immune scores were significantly different between the 

two patient groups (p = 0.043). Scanning the immune 

scores with R package “GSVA” revealed a strong 

correlation of TAM score and cytotoxic score were with 

risk score. TAM score and cytotoxic score have been 

reported to have a prognostic value for many cancers. 

Here, we analyzed the two scores for renal cancer 

patients. The results showed a strong positive survival 

value of TAM score and cytotoxic score in renal cancer 

patients (Figure 5D). KM analysis further revealed that 

patients with high-risk score and TAM score or 

cytotoxic score had poorer survival results than low-risk 

score patients (p < 0.001, Figure 5E, 5F). We further 

compared the correlation of risk score with two 

important immune therapy genes: PDL1 and CTLA4. 

The results showed a strong positive correlation 

between risk score and expression level of PDL1 or 

CTLA4 (Figure 6B, 6C). Finally, we performed 

chemotherapy drug sensitivity analysis on CGP and 

GDSC platforms. The landscape of drug sensitivity 

analysis was presented in Figure 6A. 

 

Verification of survival-related fatty acid genes in 

caki-1 cell line 

 

We verified survival related fatty acid genes in caki-1 

cell and 786-0 cell (two human renal clear cell 

carcinoma cell lines) in two ways: down-regulating 

FASN expression and exposure to pharmacological 

inhibitor of FASN. We measured expression levels of 

five survival-related fatty acid genes. The results showed 

that three genes (AGR2, IGF2BP1 and OLFM4) had 

been inhibited whereas two genes (HAO2 and MCCD1) 

had been activated in both two ways (Figure 6D, 6E). 

These changes suggested that the five genes regulated 

fatty acid synthase function in renal cancer patients. 

Therefore, the five-gene signature could be used to 

predict survival outcomes of renal cancer patients. 

 

 
 

Figure 4. (A) The volcano plot for the different expression level genes; (B) The GSVA analysis; (C) The GO analysis; (D) The KEGG analysis. 
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DISCUSSION 
 

Lipid metabolism has attracted significant attention in 

cancer research in recent years because it provides a 

novel connection between blockers of lipid metabolism 

and inhibitors of tumor growth and invasion [17]. 

FASN regulates fatty acid metabolism and plays a 

critical role in the growth and tissue invasion by many 

cancers [18, 19]. We found a few studies providing 

deep analysis of the role of FASN in clear cell renal 

carcinoma development. The study by Xu and team 

found that FASN expression was positively correlated 

with aggressive cell proliferation, migration, apoptosis 

and lipid droplet formation and regulated metabolic 

disorders in clear cell renal carcinoma micro-

environment [6]. Further, using a pharmacological 

inhibitor of fatty acid synthase has been shown to 

suppress growth and invasiveness of renal cancer cells 

[20]. 

 

With increasing research evidence for the role of fatty 

acids in clear cell renal carcinoma development in 

patients, analysis of fatty acid genes was warranted in 

the present study. With this purpose, we conducted a 

series of analyses to identify these genes. In total, we 

identified five survival-related fatty acid genes 

implicated in ccRCC. Consistent with these results, 

HAO2 was reported to inhibit malignancy of clear cell 

renal cell carcinoma by promoting lipid catabolic 

process [21]. In addition, AGR2 and IGF2BP1 
promoted tumorigenesis by accelerating hypoxia state in 

renal cell carcinoma cell line [22–23]. 

 

However, no direct metabolic function could be 

identified for the other three genes (MCCD1, and 

OLFM4) in research. We used two ways to inhibit fatty 

acid metabolism in clear cell renal carcinoma cell line. 

The five survival-related genes exhibited corresponding 

expression variation upon Q-PCR test. Consistent with 

these results, previous studies showed that inhibition of 

fatty acid metabolism in a cell line using the two 

methods could suppress cancer cell line growth or 

invasion. Our results illustrated that the expression 

levels of the five genes not only reflected the fatty acid 

 

 
 

Figure 5. (A) The landscape of immunity response by the cibersort and GSVA; (B, C) The immune score and estimate score by the R package 

“estimate”; (D) The correlation between the TAM score and cytotoxic score; (E, F) The KM analysis of TAM score and cytotoxic score. 
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state of clear cell renal carcinoma patients, but were 

also strongly correlated with the survival of clear cell 

renal carcinoma patients. 
 

A metabolism-related signature, based on the five 

survival related fatty acid genes, was proven as a 

reliable prognostic model for clear cell renal carcinoma 

patients. Firstly, using KM analysis, the survival value 

of the signature was confirmed in both the training and 

test sets. Our results revealed a significant statistical 

association (training set: p < 0.001; test set: p = 0.008). 

Secondly, six clinical indexes with significant survival 

value were found in clear cell renal carcinoma patients. 

Further, the risk scores of the signature in four clinical 

indexes were positively correlated. Thirdly, ROC 

analysis revealed a high AUC value of 0.813 for the 

risk score of the signature. In addition, a five-year 

time-dependent ROC analysis revealed a satisfied AUC 

value of 0.92. Because the metabolism-related 

signature had a high AUC value, the sensitivity and 

specificity of this signature were higher than those of 

signatures reported by a few previous studies in renal 

cancer patients [24–25]. 

 

Metabolic reprogramming usually transforms immune 

ability and immune components in cancer tissues [2]. 

Interdisciplinary research examining metabolic 

reprogramming and immune function is increasingly 

pursued in cancer studies. We used three methods to 

identify the risk score, immune ability and immune 

component: cibersort website, estimate and GSVA. We 

found no significant differences in the immune 

component between low-risk and high-risk score groups 

using cibersort. In contrast, using estimate, we found 

stronger immune ability in the high-risk score group 

than in the low-risk score group. In addition, we 

analyzed different immune-related scores to determine 

TAM score and cytotoxic score. Our results showed that 

patients with high-risk score and TAM score or 

cytotoxic score had lower survival time than those with 

low-risk score. Recent studies on immune cells have 

found a correlation between TAM cells were and cancer 

 

 
 

Figure 6. (A) The landscape of drug response by the CGP and GDSC; (B, C) The correlation between the risk score and the expression level 

of CTLA4 and PDL1; (D, E) The results of 5 key genes by the test of Q-PCR among three groups: control group; fatty acid inhibitor group, and 
the FASN siRNA group, caki-1 cell line (D); 786-0 cell line (E). 
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progression and anti-immunotherapy [26]. So far, few 

researchers have studied the connection between the 

fatty acid metabolism and percentage or function of 

TAM cells in the cancer patients. Our results suggested 

a potential connection, providing a novel direction for 

future studies. Cytotoxic score, which has not been 

clearly defined in literature, was positively correlated 

with risk score or TAM score in clear cell renal 

carcinoma patients. Therefore, cytotoxic score provided 

a new approach to predicting survival outcomes of clear 

cell renal carcinoma patients. 

 

Studies examining fatty acid metabolism, a major 

metabolism reprogramming mechanism in cancer 

patients, have elicited much research interest in the 

topic in past several years. Whereas FASN has been a 

subject of intense research, the other fatty acid-related 

genes have not been studied for their role in cancer. The 

multifarious functions of fatty acid proteins in cancer 

provide another research direction that needs further 

exploration. 

 

CONCLUSION 
 

We identified five survival-related genes (AGR2, HAO2, 

IGF2BP1, MCCD1 and OLFM4) in clear cell renal 

carcinoma patients. The survival signature based on 

these genes was proved to have a significant prognostic 

value for clear cell renal carcinoma in patients. 
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