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INTRODUCTION 
 

Gastrointestinal adenocarcinomas (GIAC) mainly consist 

of esophageal adenocarcinoma, gastric adenocarcinoma 

and colorectal adenocarcinoma and have the highest 

incidence and mortality across all kinds of malignant 

tumors. Approximately 1.4 million people die from 

GIAC each year worldwide [1]. Though GIAC has a 

similar epithelial tissue origin and gastrointestinal 

physiological environment, the clinical phenotypes and 
genetically molecular characteristics are quite distinct [2]. 

Genomic and transcriptomic analysis have further 

defined the heterogeneity of GIAC by identifying 

molecular subtypes. According to DNA mutation and 

copy number alteration and DNA methylation pattern, 

GIAC patients can categorize into five subtypes, namely, 

EpsteinBarr virus(EBV), chromosomal instability (CIN), 

microsatellite instability (MSI), hypermutated-SNV 

(HM-SNV) and genome stable (GS) tumors, or other four 

subtypes, i.e., CIMP-H, CIMP-L, EBV-CIMP and non-

CIMP [3]. Recent studies suggest that nearly all GIAC 

tumors appear to present with four subtypes that are 

either characterized by canonical epithelial origin, 

extensive immune infiltration, metabolic dysregulation or 

mesenchymal gene expression signatures [4]. Although 

these studies have greatly enhanced the understanding of 

the tumor underlying mechanism, effective molecular 

markers to predict survival and guide treatment in 
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ABSTRACT 
 

Accumulated evidence has elucidated that the tumor microenvironment (TME) is great of clinical significance in 
predicting survival outcomes and therapeutic efficacy. Nonetheless, few studies have investigated the prognostic 
and immunotherapeutic signature correlated with TME phenotypes in gastrointestinal adenocarcinomas (GIAC). 
Here, by estimating the TME pattern of immune infiltration and expression in over 1,000 GIAC patients, we 
revealed three TME subgroups and identified six key differential genes. To predict the TME phenotypes, TMEscore 
was established and validated to be an independent prognostic factor, where the high TMEscore was 
characterized by immune activation and response to immunotherapy and accompanied with favorable prognosis 
in GIAC. Furthermore, TMEscore was confirmed to predict prognosis and immunotherapeutic response in six 
datasets. In summary, depicting TME landscape of GIAC patients may be beneficial for interpreting survival and 
immunotherapeutic response, and provide new strategies for clinical treatment of GIAC. 
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specific subtypes are still lacking. Thus, it is quite 

essential to identify tumor subgroups, exploit prognostic 

and therapeutic response biomarker at the pan-digestive 

tract tumor level. 

 

Calculated evidence suggests that tumor initiation and 

progression are not only governed by the genetic 

changes of cancer cells but also by tumor micro-

environment (TME) factors [5]. Transformed cancer 

cells admixed with immune cells and stromal cellular 

elements form complicated TME, which significantly 

influences therapeutic response and clinical outcome 

[6]. Stromal cells (epithelial cells, and fibroblasts) as 

well as immune cells (macrophages, neutrophils, 

dendritic cells, T cells and B cells) are recurrently 

reported to contribute to tumor progression and 

metastasis when present in TME [7]. Extensive research 

on TME has revealed a crucial role of the immune 

response genes and tumor-infiltrating immune cells in 

patient survival outcome, tumor dissemination, relapse, 

metastasis, and therapeutic response to immunotherapy 

[8–11]. Immune checkpoint molecules PD-1, PD-L1, 

CTLA-4 and even their combination showed excellent 

predictive performance with immune checkpoint 

blockade response. For instance, Sun et al. investigated 

the relevance between the RNA expression of current 

biomarkers with the response of immunological 

therapy, and assessed predictive performance in 

different cancer types and therapeutic strategies [12]. 

 

Numerous studies have confirmed that immune and 

stromal cell infiltration and their crosstalk in the TME 

modulate cancer progression and are attractive 

therapeutic targets [13, 14]. Moreover, the effects of 

infiltrating immune and stromal cells on prognosis and 

have been extensively reported [15, 16]. Therefore, 

designing the therapeutics simultaneously target 

multiple components of the TME will benefit for 

increasing the likelihood of favorable patient outcomes. 

For predicting patient prognosis or immunotherapy 

response in esophageal cancer, gastric cancer and 

colorectal cancer, large studies have revealed many 

signatures or score systems based on gene expression 

[17–19], cell infiltration level [13, 20] or their 

combinations [21, 22], which providing potential 

biomarkers and therapeutic targets. In spite of these, no 

studies have been analyzed intensively in pan-

gastrointestinal cancers. Meanwhile, the vast majority 

were not validated in additional datasets, the reliability 

was questionable. 

 

Thus, we aimed to uncover a robust rating system 

predicting patient prognosis and immunotherapy 
response in GIAC based on the RNA expression of the 

signature genes reflecting TME. In this study, we 

analyzed the gene-expression profiles of GIAC patients 

and acquired a comprehensive landscape about TME. 

Based on immune infiltration and immune pathway 

expression patterns, we classified the GIAC into three 

subtypes with distinct clinical and immune 

characteristics. Further, we determined 6 stromal  

or immune genes representative for the TME of GIAC 

patients, and established a TME score, which could 

precisely predict patient survival outcome and response 

to immunotherapy in multiple immunotherapeutic 

datasets. 

 

MATERIALS AND METHODS 
 

Data source 

 

We obtained RNASeq expression data and clinical data 

of 1,199 GIAC patients in PanCanAtlas [23] website 

from The Cancer Genome Atlas (TCGA) project. GIAC 

included colorectal adenocarcinoma (CRC, namely, 

colon adenocarcinoma (COAD), rectum adeno-

carcinoma (READ), gastric adenocarcinoma (GAD) and 

esophageal adenocarcinoma (ESAD). For validation of 

the prognostic value of our marker, we additionally got 

two datasets (GSE17536 and GSE39582) from Gene 

Expression Omnibus (GEO). 

 

For validation of the immunotherapeutic predictive 

value of our marker, we collected six datasets, i.e., 

VanAll [24] (42 melanoma patients treated with CTLA4 

inhibitor (CR/PR = 14, PD/SD = 23), Riaz [25] (51 

melanoma patients treated with PD1 inhibitor (CR/PR = 

10, PD/SD = 39), Mariathasan [26] (also named 

IMvigor210, 348 urothelial carcinoma patients treated 

with PD1 inhibitor (CR/PR = 68, PD/SD = 230), 

Auslander [27] (14 melanoma patients treated with 

PD1-CTLA4 inhibitor (CR/PR = 2, PD/SD = 12), Gide 

[28] (41 melanoma patients treated with PD1-CTLA4 

inhibitor (CR/PR = 19, PD/SD = 22) and 32 melanoma 

patients treated with PD1 inhibitor(CR/PR = 21, PD/SD 

= 11) and Kim [29] (45 gastric cancer patients treated 

with PD1 inhibitor (CR/PR = 12, PD/SD = 33). The 

gene expression was detected using RNA transcriptional 

sequencing on patients prior to immunotherapy. 

 

Immunophenotyping for GIAC patients 

 

We analyzed the gene-expression profiles of GIAC 

tumor and adjacent samples and utilized TIMER2.0 [30] 

and CIBERSORT [31] method to quantify infiltration 

level of immune cells for GIAC patients. To further 

investigate TME with GIAC patient classification, we 

firstly obtained 160 immune related signatures of 9,131 

patients of multiple cancer types from panImmune [32] 

resource (https://gdc.cancer.gov/about-data/publications/ 

panimmune) and only retained 1,021 GIAC (including 

CRC, GAD and ESAD) patients. The 160 signatures 

https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
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were from 7 resources, namely, Attractors (9 

signatures), Bindea (25), c7atoms (32), CIBERSORT 

(20), ICR (3), Senbabaoglu (3) and Wolf (68) 

(Supplementary Tables 1, 2). 

 

Based on the tumors with the 160 signatures, three 

unsupervised clustering algorithms (Lee, brunet and 

nsNMF) were used to identify TME patterns and 

classify patients. Kappa value was used to assess 

classification consistency of the three algorithms. 

Multiple classification indexes (silhouette, dispersion 

and cophenetic coefficient) were applied to determine 

the best number of clusters. These procedures were 

performed using the NMF R package, which adopted 

non-negative matrix factorization (NMF) method [33] 

and was repeated 1,000 times to ensure the stability of 

classification. Finally, the nsNMF algorithm and 

optimal cluster number 3 was selected, and patients 

were clustered into 3 TME subtypes, i.e., 403 patients 

from TME-C1, 276 from TME-C2, 324 from TME-C3. 

 

Clinical and immune cell were extracted from 

PanCanAtlas resource (https://gdc.cancer.gov/about-

data/publications/pancanatlas) (including survival 

information, cancer type, tumor stage, cancer cell 

fraction, and Shannon score) and the immune cell 

infiltration fractions (leukocyte, CD8 T cell, regulatory 

T cell, resting NK cell, and activated NK cell) estimated 

by CIBERSORT algorithm were obtained from 

panImmune resource. Fisher exact test or Pearson’s chi-

square test for discrete variables and Wilcoxon rank-

sum test for continuous variables were used to assess 

the correlation of these features and three TME 

subtypes. 

 

Differential expression analysis and functional 

enrichment analysis 

 

To identify genes differentiating TME clusters, 

differentially expressed genes (DEGs) across these 

clusters were firstly identified using the R package 

Limma [34], which implements an empirical Bayesian 

approach to estimate gene-expression changes using 

moderated t tests. The 54 genes in signature A and 85 

genes in signature B were used for gene enrichment 

analysis. Gene Ontology (GO) terms were identified 

with a strict cutoff of P < 0.01 and false discovery rate 

(FDR) of less than 0.05. Enriched pathways and cancer 

hallmarks were identified by running Gene Set 

Enrichment Analysis [35] (GSEA) of the adjusted 

expression data for all genes. Enrichment P values were 

based on 10,000 permutations and subsequently 

adjusted for multiple testing using the Benjamini-
Hochberg (BH) procedure to control the FDR. Gene 

sets were downloaded from MSigDB [36] database of 

the Broad Institute. R function “clusterProfiler” and 

“enrichplot” was adopted using the clusterProfiler [37] 

R package was performed on TME signature A and B 

genes. 

 

Establishment of TMEscore in GIAC 

 

For identify prognostic and immunotherapeutic gene 

signature, we firstly screened some representative genes 

distinguishing the three immune subtypes. And then the 

random forest classification algorithm packaged in 

Boruta [38] was used to perform dimension reduction in 

order to reduce noise or redundant genes. Univariate 

Cox regression analysis was utilized to determine 

candidate prognostic genes for PFS and OS. GIAC 

patients were stratified into two subgroups based on the 

expression of each gene above or below the median. 

The survival curves were plotted using Kaplan-Meier 

(KM) curve and the survival difference of two patient 

groups were estimated using log-rank test (p value 

< 0.05). 

 

The TMEScore was established with a formula: 

TMEScore = exp(Gi) + exp(Gj), where the Gi and Gj 

represent the average expression of genes in signature A 

and signature B. TMEscore = α∑(exp_IA)/len(A) + 

β∑(exp_JB)/len(B), where exp_IA, exp_JB indicates the 

expression of gene I in signature A, the expression of 

gene J in signature B; α, β were set as 1 if gene I or J 

were protective factors and -1 otherwise. Here, 

TMEscore = −(C6orf223 expression + EPHX4 

expression + HES6 expression + NKD2 expression)/4 + 

(OLR1 expression + ONECUT2 expression)/2. 

 

Tissue specimens 

 

Our in-house GIAC cohort included 96 pairs of fresh 

GIAC tumor and adjacent normal tissue specimens 

without radiotherapy or chemotherapy, which were 

immediately stored in liquid nitrogen after surgery 

(Supplementary Table 3), all enrolled subjects were 

pathologically diagnosed as adenocarcinoma. All 

specimens were collected from Zhengzhou Central 

Hospital Affiliated to Zhengzhou University between 

2019 and 2020 and this study was approved by the 

Zhengzhou Central Hospital Affiliated to Zhengzhou 

University. All subjects have undergone rigorous 

screening and underwent informed consent. 

 

Quantitative RT-PCR (qRT-PCR) 

 

QRT-PCR was employed to detect the RNA level of 6 

genes (C6orf223, EPHX4, HES6, NKD2, OLR1 and 

ONECUT2). In brief, total RNAs of 96 pairs of fresh 
GIAC tissue specimens were extracted by Trizol 

method. After testing for concentration, purity, and 

integrity, an equal amount of RNAs was used to 

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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synthesize cDNA. Finally, SYBR Green Quantitative 

Kit (DBI, Germany) and 7500 Fast Quantitative PCR 

System (AB, USA) were used for detection. The 

housekeeping gene GAPDH was used as internal 

reference, and the relative gene expression was 

expressed as 2−ΔΔCt. Primer sequences were shown in 

Supplementary Table 4. The relative gene expression of 

the 6 genes in 96 GIAC patients (matched adjacent 

normal and tumor samples) were showed in 

Supplementary Table 5. 

 

Western blot 

 

Western blot was used to detect protein levels of 

corresponding genes in 27 pairs of tumor and matched 

adjacent normal sample from our center. In brief, total 

protein was extracted using a lysate mixture containing 

RIPA and protease inhibitors. After concentration 

determination, an equal amount of total proteins from 

each sample was used for polyacrylamide gel electro-

phoresis. After transfer to PVDF membranes, the 

membranes were blocked and incubated with the 

primary antibody overnight at 4°C. After incubated with 

the secondary antibody at room temperature for 1 hour, 

ECL was added for exposure and development. 

 

Primary antibodies used in this study include rabbit 

anti-β-tubulin (Abcam, ab6046, 1:1000 dilution for 

WB), rabbit anti-EPHX4 (Abcam, ab183739, 1:1000 

dilution for WB), mouse anti-HES6 (Abcam, ab172800, 

1:1000 dilution for WB), rabbit anti-NKD2 (CST, 

2073T, 1:1000 dilution for WB), rabbit anti-OLR1 

(Bioss, bs-2044R, 1:1000 dilution for WB) and anti-

ONECUT2 (Bioss, bs-19643R, 1:1000 dilution for 

WB). A goat-anti-mouse-HRP (Bioss, bs-40296G-HRP, 

1:10000 dilution for WB) antibody (Bioss, bs-19643R, 

1:1000 dilution for WB) and a goat-anti-rabbit-HRP 

antibody (Bioss, bs-80295G-HRP, 1:10000 dilution for 

WB) were used in WB. The relative protein expression 

of the 5 genes in 27 GIAC patients (matched adjacent 

normal and tumor samples) were showed in 

Supplementary Table 6. 

 

Prognostic evaluation using TMEscore 

 

For overall survival (OS), disease specified survival 

(DSS) and progression free survival (PFS), GIAC 

patients were stratified into two subgroups based on 

TMEscore above or below the median. We analyzed and 

validated the prognostic value of TMEscore in TCGA 

and two GEO datasets (GSE17536 and GSE39582). 

Receiver operating characteristic (ROC) curve analysis 

and Area Under Curve of ROC (AUC) was utilized to 
show prediction power according TMEscore and other 

factors. And multi-variate Cox regression analysis was 

employed to determine the independent prognostic 

factors for OS and PFS with adjustment for other 

potential clinicopathological factors, i.e., age, gender, 

and tumor stage. We adopted nomogram and calibration 

plot to display the predictive ability and power of 

multiple features using R package rms. 

 

Prediction of immunotherapeutic response using 

TMEscore 

 

To explore the correlation between TMEscore and 

immunotherapeutic response, the expression profiles of 

six immunotherapeutic datasets were normalized into 

FPKM (Fragments Per Kilobase of exon model per 

Million mapped fragments). TMEscore was constructed 

using the RNA expression of the six genes. The 

immunotherapeutic response contained four status, 

complete response (CR), partial response (PR), stable 

disease (SD) and progression disease (PD), where the 

former two indicate response to immunotherapy, while 

the latter two indicate none-response to immunotherapy. 

Fisher exact test or Pearson’s chi-square test was used to 

measure the relevance of TMEscore (high/low) and 

immunotherapeutic response (responder/non-responder). 

Wilcoxon rank-sum test was adopted to detect the 

statistical difference of TMEscore between the 

responders and non-responders. Based on immuno-

therapeutic response status and patient TMEscore, ROC 

curve analysis and AUC were utilized to assess the 

immunotherapeutic predictive value of TMEscore. To 

predict patients' likelihood of responding to ICBs,  

we utilized “EaSIeR” R package [39] to estimate  

the immune response score based on hallmarks of 

immune response (CYT, TLS, IFNy, Ayers_expIS, 

Tcell_inflamed, Roh_IS, Davoli_IS and chemokines) in 

TCGA GIAC cohort and compute the integrated immune 

response score. Pearson correlation test was used to 

measure TMEscore and these immune response scores. 

 

Availability of data and materials 

 

The datasets supporting our results are available in the 

public database GEO, TCGA and data source in 

method. The data of our in-house cohort is provided in 

Supplementary Tables. 

 

RESULTS 
 

TME landscape of GIAC 

 

To quantify infiltration level of immune cells for GIAC 

patients, we analyzed the gene-expression profiles of 

GIAC tumor and adjacent samples by TIMER2.0. 

Compared with 93 adjacent normal samples, we observed 

that the infiltration fraction of Dendritic cell and 

Neutrophil in 1,068 GIAC tumors were significantly 

elevated, while that of B cell, CD8 T cell and 
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macrophage were relatively decreased (Figure 1A, 

Supplementary Tables 7–9), suggesting the formation of 

a complex and differentiated tumor immune micro-

environment during the progression process from normal 

tissue to tumor. We wondered whether there was 

potential for cell communication between different cell 

types and found that CD4 T cell and CD8 T cell (r = 

−0.69), Dendritic cell and B cell/macrophage (r = −0.55, 

−0.47), Neutrophil and B cell (r = −0.45) had 

significantly negative relationship (Figure 1B, 

Supplementary Table 10). For OS, DSS and PFS, GIAC 

patients with high infiltration of CD8 T cell had favor 

survival rate, while those with high infiltration of CD4 T 

cell had poor survival rate (Figure 1C–1E, 

Supplementary Table 11). The TME landscape depicted 

the infiltration fraction and interactions of GIAC 

immune cells, as well as their effects on patient survival 

outcome. 

 

Three GIAC subtypes were determined based on 

TME pattern 

 

Immunotyping can mirror the immune status in tumors and 

their TME, and thus benefit for identifying suitable 

patients for immunotherapy. Based on the TME pattern of 

1,100 GIAC patients with matched 160 immune features 

from panImmune project, unsupervised clustering was 

performed using three distinct algorithms (Lee, brunet and 

nsNMF), and their classification consistency (Kappa 

value) was close to and above 0.7 (Supplementary Table 

12), which indicated the stability of classification based on 

TME pattern of immune infiltration and expression. The 

nsNMF algorithm was selected due to the highest average 

classification consistency than the others, and the optimal 

cluster number was set to three according to multiple 

clustering indicators (Figure 2A, 2B, Supplementary 

Figures 1, 2, Supplementary Table 13). The GIAC patients 

from three main groups (termed as TME C1 (403 patients), 

C2 (276 patients) and C3 (324 patients) were determined 

(Figure 2C). They showed significant differences in OS, 

DSS and PFS, where TME C3 and C2 had the best and 

worst survival, respectively (Figure 2D–2F). When 

considering the cancer type, COAD and READ were 

almost evenly distributed in the three groups, while TME 

C2 and C3 were enriched in GAD and ESAD, respectively 

(Figure 2G, Supplementary Table 14). Meanwhile, TME 

C2 had higher fraction of patients with tumor stage III and 

IV (Figure 2H, Supplementary Table 14), which was 

consistent with the above survival outcome, reflecting its 

high degree of malignancy. 

 

TME-C2 subtype was associated with tumor 

immunity 

 

By association with genomic characteristics, we 

discovered that TME C2 was closely associated with 

lower cancer DNA fraction and larger Shannon score 

(Figure 3A, 3B, Supplementary Table 14), suggesting 

relatively its high tumor heterogeneity. Considering the 

crucial role of immune checkpoints (ICPs) and 

immunogenic cell death (ICD) modulators in cancer 

immunity, we next investigated their expression level in 

the three subtypes. Most of the ICPs and ICDs related 

genes were differentially expressed between the 

immune subtypes (Supplementary Figures 3, 4). For 

instance, the current approved and potential 

immunotherapy targets, PDCD1 (also known as PD-1), 

CD274 (also known as PD-L1), CTLA4, HAVCR2 

(also known as TIM3), LAG3 and BTLA’s expression 

were significantly elevated in TME-C2 (Figure 3C, 

Supplementary Tables 15, 16). In the context of cancer, 

PD-L1 is usually highly expressed on tumor cells, 

thereby evading immune surveillance, but it has also 

been reported that high PD-L1 expression can make 

tumor cells more sensitive to PD-1/PD-L1 inhibitors. 

TME C2 was also related to the higher fraction of 

leukocyte, CD8 T cell, regulatory T cell and activated 

NK cell, and the lower fraction of resting NK cell 

(Figure 3D–3H, Supplementary Table 17), indicating 

their potential benefit for immunotherapy, such as PD1 

inhibitors or other combination therapies. Therefore, 

immunotyping could reflect the level of immune 

modulators and guild the selection of population 

suitable for immunotherapy. 

 

Two TME signatures were involved in stromal and 

immune functions 

 

To uncover the underlying biological mechanism of the 

TME phenotypes, high-confidence differential 

expressed genes (DEGs) were acquired across TME 

phenotypes, where TBC1D3G was specifically highly 

expressed in TME C1, 54 genes (termed as signature A) 

was expressed in TME C2, and 85 genes (termed as 

signature B) was expressed in TME C3 (Figure 4A, 

Supplementary Table 18). TBC1D3G was reported to 

regulate the payload of macrophage-released extra-

cellular vesicles to mediate inflammation [40]. We 

focused our attention on signature A and B, which 

showed enrichment in distinct molecular functions by 

literature annotation and overlapping with panImmune 

gene sets (Figure 4B, Supplementary Table 19). 

Signature B was involved in tumor immunity in GIAC, 

while signature A was involved in stromal-related 

function (Figure 4C, Supplementary Tables 20, 21). GO 

functional enrichment analysis also proved that 

signature B, instead of signature A, was enriched in 

chemokine activity and chemokine receptor binding 

(Figure 4D). Chemokines and their receptors play a key 
role in tumor growth, invasion and metastasis, as well 

as differentiation and development of immune cells and 

the regulation of immune response [41]. Gene-set
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Figure 1. The immune landscape in GIAC tumors. (A) The cell infiltration level of six main immune cell types in GIAC tumor and 

adjacent normal samples. (B) The cell infiltration correlation of six immune cell types. (C) The P-value and HR of cell infiltration level of six 
immune cell types in survival analysis. (D) The KM plot of CD8 T cell infiltration in GIAC patients for OS, DSS and PFS. (E) The KM plot of CD4 
T cell infiltration in GIAC patients for OS, DSS and PFS. 
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enrichment analysis (GSEA) also demonstrated that 

signature B was indeed involved in inflammatory and 

immune processes (Figure 4E). 

 

TMEscore was a prognostic biomarker for 

predicting GIAC patient outcome 

 

To refine the gene signature A and B, the random forest 

classification algorithm was used to perform dimension 

reduction in order to reduce noise or redundant genes. 

Overlapping with the common up-regulated genes in 

three cancer types (CRC, GAD and ESAD), 11 genes in 

signature A and 34 genes in signature B were kept. To 

investigate the relationship between these genes with 

patient survival, univariate Cox regression analysis was 

performed and 6 prognostic genes (C6orf223, EPHX4, 

HES6 and NKD2 in signature A, OLR1 and ONECUT2 

in signature B) were identified to correlate to both 

 

 
 

Figure 2. The three TME subtypes in GIAC tumors. (A) The classification indexes of different clusters in NMF results. (B) The 

consensus matrix when the cluster set as 3. (C) The heatmap of immune features for three TME subtypes determined by NMF classification 
analysis. (D–F) The KM plot of three TME subtypes in GIAC patients for OS, DSS and PFS. (G, H) The proportion of cancer types and tumor 
grade for the three TME subtypes. 
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patient OS and PFS (Figure 5A, Supplementary 

Table 22). The patients with high expression of 

C6orf223, EPHX4, HES6 and NKD2 had significantly 

longer survival time than other patients, while patients 

with high expression of OLR1 and ONECUT2 had 

significantly shorter survival time (Supplementary 

Figures 5, 6), which suggested C6orf223, EPHX4, 

HES6 and NKD2 were protective factors and OLR1 and 

ONECUT2 were risk factors. 

 

We then focused on their expression status at the RNA 

and protein levels. Their RNA expression in GIAC 

tumors were significantly elevated compared with 

adjacent normal samples in TCGA cohort (Figure 5B). 

We subsequently explored their RNA expression status 

in 96 GIAC patients (55 CRC, 32 GAD and 9 ESAD) 

from our in-house cohort by qRT-PCR assay. Their 

RNA expression levels were significantly up-regulated 

in GIAC compared with matched adjacent normal 

samples (Figure 5C, Supplementary Figures 7, 8). 

Since C6orf223 was annotated as a long noncoding 

RNA in GeneCards, thus we investigated the protein 

expression status of other five protein-coding genes in 

27 GIAC patients (10 CRC, 10 GAD and 7 ESAD) 

from our in-house cohort by Western blot assay. Their 

protein expression levels were also significantly 

elevated in GIAC compared with matched adjacent 

normal samples (Figure 5D, Supplementary Figures 9, 

10; Figure 5E and Supplementary Figures 11, 12). 

Similar results in GIAC tumors were also confirmed in 

multiple previous studies (Supplementary Table 23). 

Interestingly, though EPHX4 has hardly been studied 

in GIAC, the immunohistochemical (IHC) data from 

the HPA database revealed that its staining showed 

moderate to strong cytoplasmic immunoreactivity in 

CRC and GAD, and weak immunoreactivity in normal 

colon/rectum and stomach tissues (Supplementary 

Figures 13, 14). 

 

 
 

Figure 3. TME-C2 subtype was associated with tumor immunity. (A, B) The cancer DNA fraction and Shannon score across three 

TME subtypes. (C) The expression of current approved and potential immunotherapy targets (PDCD1, CD274, CTLA4, HAVCR2, LAG3 and 
BTLA) across three TME subtypes. (D–H) The immune cell infiltration fraction (leukocyte, CD8 T cell, regulatory T cell, resting NK cell, and 
activated NK cell) across three TME subtypes. 
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We used the weighted average expression of these six 

genes to construct a TMEscore. Univariate and multi-

variate Cox regression analysis showed TMEscore was as 

an independent prognostic factor in GIAC even 

considering the confounding factors such as age, gender 

and tumor stage (Supplementary Tables 24, 25). In 

TCGA, we observed that the patients with high 

TMEscore had significantly better prognosis than others, 

suggesting the predictive value of TMEscore for patient  

survival in GIAC (HR = 2.5, P = 3.3e-16 for OS and HR 

= 1.81, P = 2.6e-8 for PFS, Figure 5F, 5G). The 

nomogram analysis for OS also showed the good 

predictive ability of TMEscore as well as gender and 

tumor stage (Supplementary Figure 15), thus ROC curve 

analysis based on the independent prognostic factors 

(TMEscore, age, gender, and tumor stage) was 

performed. The AUC of TMEscore (0.81, 0.8, and 0.8 for 

1‐, 3‐ and 5‐year OS) were obviously higher that of 

 

 
 

Figure 4. The signature genes differentiating TME subtypes. (A) Gene expression of signature A, B and TBC1D3G in three TME 
subtypes and normal samples. (B) The Venn diagram of signature A, B and PanImmune gene sets. (C) The enrichment of signature A and B 
in immune related gene sets. (D) The bubble diagram of signature A enriched in GO terms. (E) The GSEA plot of signature A enriched in 
cancer hallmark gene sets. 
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Figure 5. TMEscore was an independent factor for predicting patient survival. (A) The identification flowchart of six prognostic 

genes (C6orf223, EPHX4, HES6, NKD2 OLR1 and ONECUT2). (B) The expression of the six genes in GIAC tumor and normal samples from 
TCGA cohort. (C) The RNA expression of the six genes in 55 pairs of CRC tumor and normal samples from our center (GAD and ESAD see in 
Supplementary Figures 7, 8). (D) The expression of the five proteins in 10 pairs of CRC tumor and normal samples from our center (GAD and 
ESAD see in Supplementary Figures 9, 10). (E) The WB image of protein expression for CRC (GAD and ESAD see in Supplementary Figures 11, 
12). (F–K) The survival time (OS and PFS) of patients with high/low TMEscore in TCGA cohort (F, G), GSE17536 (H, I) and GSE39582 (J, K). 
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age, gender, and tumor stage (Supplementary 

Figure 16). The calibration plot also showed good 

consistency between observation and predictive values 

for 1‐, 3‐ and 5‐year OS (Supplementary Figure 17). 

The nomogram analysis and ROC curve analysis for 

PFS had similar results (Supplementary Figures 18–20). 

In addition, we analyzed the relevance of TMEscore 

and survival outcome in GSE17536 and GSE39582 

from GEO and validated the prognostic value of 

TMEscore (Figure 5H–5K). These results declared that 

TMEscore was a potential biomarker for predicting 

GIAC patient survival. 

 

TMEscore predicted patient survival and 

immunotherapeutic benefits 

 

In order to illustrate the role of TMEscore in tumor 

immunotherapy, we collected six immunotherapy 

datasets (Gide, Mariathasan, Auslander, Riaz, VanAll 

and Kim cohort) in melanoma, urothelial carcinoma and 

gastric cancer. Then we computed TMEscore based on 

the RNA expression of the six genes (C6orf223, 

EPHX4, HES6, NKD2, OLR1 and ONECUT2) and 

assessed TMEscore’s relevance of patient survival time 

and immunotherapy response. 

 

In Gide cohort, the 41 melanoma patients treated with 

PD1-CTLA4 combination inhibitor with high 

TMEscore had significantly better OS and PFS than 

other patients (P = 0.0012, HR = 2.387, CI = [1.22, 

6.77] for OS; P = 0.0063, HR = 1.31, CI = [1.31, 6.15] 

for PFS, respectively, Figure 6A, 6B). TMEscore of the 

responders (n = 19) was apparently higher than that of 

non-responders (n = 22) (P = 0.0097, Figure 6C), and 

the patients with high TMEscore had significantly 

higher response rate than those with low TMEscore 

(P = 0.0048, Figure 6D). The TMEscore had a good 

immunotherapeutic predictive value (AUC = 0.73, 

Figure 6E). Similarly, the 32 melanoma patients treated 

with PD1 inhibitor with high TMEscore had 

significantly better PFS than other patients (P = 0.045, 

HR = 2.89, CI = [1.11, 9.41], Figure 6G), while OS had 

no statistical difference (Figure 6F). TMEscore of the 

responders (n = 21) was higher than that of non-

responders (n = 11) (P = 0.0048, Figure 6H), and the 

patients with high TMEscore had increased response 

rate compared with the others (P = 0.0023, Figure 6I). 

TMEscore also had an outstanding immunotherapeutic 

predictive value (AUC = 0.8, Figure 6J). We observed a 

similar phenomenon in the other four data sets 

(Mariathasan, Auslander, Riaz, and VanAll cohort) 

(Supplementary Figure 21). 

 
Besides, in Kim cohort, 45 gastric cancer patients were 

treated with PD1 inhibitor and 12 patients have 

complete response or partial response. The TMEscore 

of the responders (n = 33) was higher than that of non-

responders (n = 12) (P = 0.0015, Figure 6K), and the 

patients with high TMEscore had increased response 

rate compared with the others (P = 0.0074, Figure 6L). 

The immunotherapeutic predictive value was AUC = 

0.8 (Figure 6M). Furthermore, TMEscore was highly 

correlated with eight response scores based on 

hallmarks of immune response estimated by “EaSIeR” 

and the integrated score in TCGA GIAC dataset 

(Supplementary Figure 22, Figure 6N). In summary, 

these results demonstrated that TMEscore could predict 

tumor survival and immunotherapy response status. 

 

DISCUSSION 
 

Despite numerous clinical trials about gastrointestinal 

cancer treatment in the last two decades, especially for 

metastatic patients, the clinical outcome is still not 

optimistic, and the survival usually is less than 30 

months [42]. Innovative ideas, such as the gut 

microbiota imbalance and tumor immune 

microenvironment, have been introduced into the basic 

research of GIAC and tentative clinical treatment [43, 

44]. In addition to traditional radiotherapy and 

chemotherapy, immunotherapy, cellular therapy, 

molecular targeted therapy and microbial therapy have 

developed rapidly [45], thus forming some experience 

and consensus guiding clinical practice. Hence, the 

development of novel and effective strategies to control 

GIAC is an urgent need in GIAC prognosis and 

treatment. 

 

Immune checkpoint blocking (ICB) therapy has caused 

a great change of the therapeutic landscape, making 

some advanced-stage cancer patients achieve clinical 

benefits [46]. It is quite attracting and necessary to 

develop biomarkers for ICB response for clinical trials 

and applications [47]. Sun et al. systematically assessed 

the predictive power of 22 current transcriptomic 

biomarkers for ICB responses involving immune 

checkpoints and lymphocyte infiltration in multiple ICB 

treatment baseline datasets [12]. They revealed that 

these biomarkers exhibited distinct predictive value for 

ICB response, where some performed superior 

overwhelmingly or slightly just in certain circum-

stances. Unfortunately, some accepted biomarkers still 

did not have any predictive value of ICB response in 

benchmark datasets, indicating the possibility of the 

combination of multiple biomarkers for predicting ICB 

response in future. 

 

The underlying mechanisms of immunotherapy have 

been widespread explored and some consensus has 

emerged. When T cell is continuously stimulated, T cell 

will become exhausted and continuously express high 

PD-1. In the tumor microenvironment, tumor cells can 
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express PD-L1 or PD-L2. As a result, T cell function is 

continuously inhibited, which makes it unable to kill 

tumor cells [48]. One-way cancer cells evade 

destruction by the immune system is through ligands 

attached to the PD-1 protein of T cells. When the ligand 

binds to PD-1, T cells are unable to detect tumors and 

deliver signal the immune system to attack them [49]. 

The mechanism of PD-L1/PD-1 antibody is that tumor 

 

 

 
Figure 6. TMEscore was a prognostic and immunotherapeutic biomarker in Gide, Kim and TCGA GIAC cohort. (A–C) The 

survival time (OS and PFS) and response rate of patients with high/low TMEscore for 41 patients treated with PD1+CTLA4 inhibitor in Gide 
cohort. (D) The TMEscore of patients with different response status for patients treated with PD1+CTLA4 inhibitor. (E) The ROC curve of 
TMEscore predicting immunotherapeutic response for patients treated with PD1+CTLA4 inhibitor. (F–H) The survival time (OS and PFS) and 
response rate of patients with high/low TMEscore for 32 patients treated with PD1 inhibitor in Gide cohort. (I) The TMEscore of patients 
with different response status for patients treated with PD1 inhibitor. (J) The ROC curve of TMEscore predicting immunotherapeutic 
response for patients treated with PD1 inhibitor. (K) The response rate of patients with high/low TMEscore for 45 gastric cancer patients 
treated with PD1 inhibitor in Kim cohort. (L) The TMEscore of patients with different response status for patients treated with PD1 
inhibitor. (M) The ROC curve of TMEscore predicting immunotherapeutic response for patients treated with PD1 inhibitor. (N) The 
correlation plot of TMEscore with integrated immune response score in TCGA GIAC cohort. 
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cells use PD-L1 to bind to the PD-1 of T cells, “trick” T 

cells, evade the recognition of T cells, and continue to 

roam in the body. However, PD-L1/PD-1 inhibitors can 

help T cells uncover the hypocrisy of tumor cells and 

restore their recognition and killing of tumor cells [50]. 

In recent years, immunotherapy has shown great success 

in improving response to some solid cancers, especially 

melanoma [51]. Thus, numerous clinical and preclinical 

studies have motivated researchers to focus their attention 

on gastrointestinal cancers, expecting that patients will 

benefit from immunotherapy, as represented by PD1 and 

CTLA4 blockers. In 2021, PD-1 antibody combined with 

chemotherapy achieved a substantial breakthrough in the 

first-line treatment of esophageal cancer. In Keynote-590 

phase 3 trial, first-line PD-L1 inhibitor pembrolizumab 

plus 5-fluorouracil or cisplatin significantly improved 

median OS and PFS in esophageal cancer patients [52]. 

The first-line treatment regimen of PD-1 monoclonal 

antibody combined with chemotherapy or HER2 

monoclonal antibody were found to improve the survival 

and effective rate of HER2-negative gastric cancer 

patients. In CheckMate 649 phase 3 trial, PD-L1 inhibitor 

nivolumab combined with FOLFOX or CAPE-OX as 

first-line therapy had better OS and PFS than first-line 

chemotherapy [53]. For MSI-H/dMMR CRC, immune 

monotherapy showed consistent advantages and moved 

forward to become the new standard of first-line 

treatment. In Keynote-177 phase 3 trial, pembrolizumab 

as first-line therapy in MSI-H/dMMR metastatic CRC 

tended to reduce the risk of death and increase PFS 

compared with standard therapy [54]. The success of 

these studies heralded a shift in the treatment strategy for 

certain types of gastrointestinal cancer, and prompting 

the National Comprehensive Cancer Network (NCCN) or 

Chinese Society of Clinical Oncology (CSCO) guidelines 

to incorporate new protocols. 

 

In CRC, the level of T cell infiltration to tumor is 

directly related to the therapeutic effect of tumor 

patients [55], suggesting that immune cell infiltration in 

tumor microenvironment plays a key role in inhibiting 

tumor growth. The MSI-H/dMMR CRC showed a 

higher accumulation of tumor mutations, accompanied 

by a higher level of immune cell infiltration. 

Pembrolizumab, nivolumab, and ipilimumab were 

approved to treat MSI-H/dMMR tumors mainly due to 

their severe infiltration with CD8+/CD4+ T cells T cells 

[56]. Metastatic CRC generally has a higher level of 

mutation accumulation and thus has a response effect to 

immunotherapy. Although advanced (Stage IV) MSI-

H/dMMR tumors account for 2–4% of all metastatic 

CRC, they have high expression of PD1, PDL1 and 

CTLA4, making this subtype more sensitive to immune 
checkpoint inhibitors. The low mutation load and 

immune cell infiltration are considered to be the main 

causes of immune resistance and non-response to 

immunotherapy for MSI-L/pMMR CRC [57]. 

Currently, immune checkpoint inhibitors in combination 

with other therapies are being explored in various 

preclinical and clinical trials for treatment of CRC with 

MSI-L/pMMR [58]. 

 

Although we have revealed TMEscore to be a 

biomarker for predicting prognosis and immuno-

therapeutic response, there are still some limitations and 

deficiencies in this study. First, the expression and 

biological function of the six key genes need further 

experimental investigation, including expression assays 

in more patients, as well as cell and animal function 

assays. Second, at present, immunotherapy datasets 

mainly focus on melanoma and urothelial carcinoma, 

there is indeed few immunotherapy datasets in GIAC 

patients except for Kim cohort (gastric cancer). We 

consider that many antitumor drugs have a broad 

spectrum and sometimes can be applied in multiple 

tumors, which is no exception for the immune-

checkpoint inhibitors targeting PD1 and CTLA4. Thus, 

we extra used the transcriptional sequencing data of 

GIAC patients and immunotherapy response status of 

melanoma and urothelial carcinoma patients to assess 

the value of TMEscore. Though this method often used 

in previous studies [59–64] can be serve as a tentative 

and preliminary expansion application, it is indeed 

biased and not rigorous. When relevant data is publicly 

available in the future, we can precisely assess the 

predicted value of TMEscore in matched datasets. 

Finally, whether TMEscore can be serve as a prognostic 

and immunotherapeutic biomarker of pan-cancer is 

worth exploring in multiple human cancers. 

 

In conclusion, we comprehensively analyzed the 

pattern of immune infiltration and immune pathway 

expression in over 1,000 GIAC patients and revealed 

three TME associated patient subgroups accompanied 

with quite distinct immune and clinicopathologic 

features. Based on the RNA expression of six key 

genes from two immune/stromal signatures, TMEscore 

was established and validated to be predictive to 

patient survival outcome and response to immune-

checkpoint inhibitors in multiple immunotherapeutic 

datasets. In summary, depicting a comprehensive TME 

landscape will benefit for understanding the underlying 

mechanisms in GIAC, such as cell communication and 

immunosuppression or activation. TMEscore will be 

useful to account for the responses of GIAC to 

immunotherapies and provide new strategies for the 

treatment of cancers. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The consensus map of nsNMF clustering for cluster number = 2,3,4,5. 
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Supplementary Figure 2. The cluster indicators of nsNMF clustering for cluster number = 2,3,4,5. 
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Supplementary Figure 3. The expression of 21 immunogenic cell death (ICD) modulators across three immune subtypes. 
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Supplementary Figure 4. The expression of 40 immune checkpoints (ICPs) across three immune subtypes. 
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Supplementary Figure 5. The survival plot of patient groups with different C6orf223, EPHX4, HES6 and NKD2 expression. 
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Supplementary Figure 6. The survival plot of patient groups with different OLR1 and ONECUT2 expression in TCGA GIAC 
cohort. 
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Supplementary Figure 7. The RNA expression of the six genes in 32 pairs of GAD tumor and normal samples from our 
center. 
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Supplementary Figure 8. The RNA expression of the six genes in 9 pairs of ESAD tumor and normal samples from our 
center. 
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Supplementary Figure 9. The expression of the five proteins in 10 pairs of GAD tumor and normal samples from our center. 
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Supplementary Figure 10. The expression of the five proteins in 7 pairs of ESAD tumor and normal samples from our 
center. 
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Supplementary Figure 11. The WB image of protein expression for GAD. 

 

 
 

Supplementary Figure 12. The WB image of protein expression for ESAD. 

 



www.aging-us.com 10200 AGING 

 
 

Supplementary Figure 13. EPHX4 staining of colorectal cancer and normal colon/rectum tissues in HPA database. 
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Supplementary Figure 14. EPHX4 staining of stomach cancer and normal stomach tissues in HPA database. 
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Supplementary Figure 15. The nomogram plot of TMEscore for predicting OS. 
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Supplementary Figure 16. The ROC curve plot of TMEscore for predicting OS compared to tumor stage. 
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Supplementary Figure 17. The calibration plot of the model integrating TMEscore and tumor grade for predicting OS. 
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Supplementary Figure 18. The nomogram plot of TMEscore for predicting PFS. 
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Supplementary Figure 19. The ROC curve plot of TMEscore for predicting PFS compared to tumor stage. 
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Supplementary Figure 20. The calibration plot of the model integrating TMEscore and tumor grade for predicting PFS. 
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Supplementary Figure 21. TMEscore was a prognostic and immunotherapeutic biomarker in other four immunotherapeutic 
data sets. (A, B) The survival time and response rate of patients with high/low TMEscore in Mariathasan cohort. (C) The TMEscore of 
patients with different response status. (D) The ROC curve of TMEscore predicting immunotherapeutic response. (E, F) The survival time 
(OS and PFS) of patients with high/low TMEscore in Auslander cohort. (G) The TMEscore of patients with different response status (H) The 
ROC curve of TMEscore predicting immunotherapeutic response. (I, J) The survival time (OS and PFS) of patients with high/low TMEscore in 
Riaz cohort. (K) The TMEscore of patients with different response status (L) The ROC curve of TMEscore predicting immunotherapeutic 
response. (M, N) The survival time (OS and PFS) of patients with high/low TMEscore in Vanall cohort. (O) The TMEscore of patients with 
different response status. (P) The ROC curve of TMEscore predicting immunotherapeutic response. 
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Supplementary Figure 22. The correlation plot of TMEscore with eight immune response scores estimated by “EaSIeR” in 
TCGA GIAC cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3, 5–8, 12–15, 17, 18, 20 and 21. 

 

Supplementary Table 1. The 160 signatures from 7 sources download from PanImmune_GeneSet. 

 

Supplementary Table 2. The genes from 160 signatures download from PanImmune_GeneSet. 

 

Supplementary Table 3. The basic clinical information of 96 GIAC patients from our center. 

 

Supplementary Table 4. The primers used in this study. 

Name Direction Sequence(5′–3′) 

C6orf223 
Forward GCTGTGAGAGTTTTCCCCGA 

Reverse CCTTTTGACCCCAAAGCACG 

EPHX4 
Forward CCTGGTCTACTGCTACTGCG 

Reverse TTTCAACAGCTGAGCAGGGT 

HES6 
Forward CCGAGCTCCTGAACCATCTG 

Reverse GCTGCAGGGTCCCTAAAAGT 

NKD2 
Forward AAGTCCGGGAAAGCCTTCAG 

Reverse AGATGTGTTCACCGCCATGT 

OLR1 
Forward CATTATGGTGCTGGGCATGC 

Reverse TGGGGCATCAAAGGAGAACC 

ONECUT2 
Forward GGAATCCAAAACCGTGGAGTAA 

Reverse CTCTTTGCGTTTGCACGCTG 

GAPDH 
Forward CCGGGAAACTGTGGCGTGATGG 

Reverse AGGTGGAGGAGTGGGTGTCGCTGTT 

 

Supplementary Table 5. The RNA expression of 6 genes in 96 pairs of tumor and matched adjacent normal 
samples in GIAC patients detected by qRT-PCR. 

 

Supplementary Table 6. The protein expression of 5 genes in 27 pairs of tumor and matched adjacent normal 
samples in GIAC patients detected by Western blot. 

 

Supplementary Table 7. The infiltration fraction of six immune cell types in GIAC tumor samples. 

 

Supplementary Table 8. The infiltration fraction of six immune cell types in GIAC adjacent normal samples. 
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Supplementary Table 9. The statistic information about the infiltration level of 6 immune cell types in GIAC 
tumor and normal samples. 

 B_cell CD4_Tcell CD8_Tcell Neutrophil Macrophage Dendritic 

Tumor (average) 0.07 0.14 0.15 0.11 0.04 0.48 

Normal (average) 0.1 0.14 0.17 0.09 0.07 0.44 

log2 (Fold change) −0.46 \ −0.11 0.31 −0.73 0.15 

p value 1.60E-06 1 0.033 4.70E-23 4.20E-06 4.80E-11 

 

Supplementary Table 10. The infiltration correlation of 6 immune cell types in in GIAC tumor samples. 

 B_cell CD4_Tcell CD8_Tcell Neutrophil Macrophage Dendritic 

B_cell 1 0.16 −0.18 −0.45 −0.08 −0.47 

CD4_Tcell 0.16 1 −0.69 −0.3 −0.07 −0.07 

CD8_Tcell −0.18 −0.69 1 0 −0.08 −0.21 

Neutrophil −0.45 −0.3 0 1 −0.06 0.12 

Macrophage −0.08 −0.07 −0.08 −0.06 1 −0.55 

Dendritic −0.47 −0.07 −0.21 0.12 −0.55 1 

 

 

Supplementary Table 11. The univariate Cox regression result of 6 immune cell types for OS, DSS and PFS in 
TCGA. 

 Survival_index HR log10 (p-value) Threshold Percentage 

B_cell OS 1.2 2.7 non 3.64 

CD4_Tcell OS 0.81 3.8 Favorable 6.85 

CD8_Tcell OS 1.4 9 Risk 7.72 

Neutrophil OS 1.2 2.3 non 5.53 

Macrophage OS 0.91 1.3 non 2.18 

Dendritic OS 0.83 3.4 Favorable 24.09 

B_cell DSS 1 0.18 non 3.64 

CD4_Tcell DSS 0.66 7.8 Favorable 6.85 

CD8_Tcell DSS 1.6 9.1 Risk 7.72 

Neutrophil DSS 1.2 1.9 non 5.53 

Macrophage DSS 1 0.029 non 2.18 

Dendritic DSS 0.84 2.1 non 24.09 

B_cell PFS 1.1 1 non 3.64 

CD4_Tcell PFS 0.74 7.2 Favorable 6.85 

CD8_Tcell PFS 1.3 4.7 Risk 7.72 

Neutrophil PFS 1.3 4.9 Risk 5.53 

Macrophage PFS 0.86 2.6 non 2.18 

Dendritic PFS 1 0.029 non 24.09 

 

Supplementary Table 12. The patient classification consistency of the three NMF clustering methods. 

 

Supplementary Table 13. The signatures that differentiate three TME clusters. 
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Supplementary Table 14. The clinical and genomic characteristics of patients from three subgroups. 

 

Supplementary Table 15. The expression of 6 immunotherapy targets of patients from three subgroups. 

 

Supplementary Table 16. The statistics of 6 immunotherapy targets’ expression from three subgroups. 

 TMEC1 TMEC2 TMEC3 p_value 

BTLA 2.61 4.56 2.8 5.00E-55 

CD274 4.31 5.83 4.1 1.00E-55 

CTLA4 5.01 6.5 4.68 7.40E-67 

HAVCR2 6.92 8.34 6.64 1.80E-66 

LAG3 5.66 7.19 5.23 6.80E-63 

PDCD1 4.46 5.92 4.24 6.40E-66 

 

Supplementary Table 17. The immune cell infiltration of patients from three subgroups. 

 

Supplementary Table 18. The genes in signature A, B and C that differentiate three TME clusters. 
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Supplementary Table 19. The p-value in functional enrichment of signature A and B on pan-immune genesets. 

 gene_sigA gene_sigB 

PanImmune_GeneSet 1 1.30E-07 

HER2_Immune_PCA_18006808 0.85 0.0061 

CSR_Activated_15701700 1 1 

GRANS_PCA_16704732 1 0.15 

B_cell_PCA_16704732 1 0.51 

CHANG_CORE_SERUM_RESPONSE_UP 1 1 

T_cell_PCA_16704732 1 1 

Troester_WoundSig_19887484 0.38 0.037 

Module11_Prolif_score 1 1 

CSF1_response 1 0.028 

STAT1_score 1 1.60E-08 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 1 0.41 

Module4_TcellBcell_score 1 0.39 

TGFB_score_21050467 0.27 0.0011 

Module5_TcellBcell_score 1 1.80E-07 

Immune_cell_Cluster_21214954 1 7.20E-05 

Immune_NSCLC_score 1 0.068 

IFNG_score_21050467 1 1 

LCK_19272155 1 1 

Minterferon_Cluster_21214954 1 0.032 

MCD3_CD8_21214954 1 1 

LYMPHS_PCA_16704732 1 1 

Angiogenesis 1 1 

Tcm cells 1 1 

CD8 T cells 1 1 

Interferon_Cluster_21214954 1 0.19 

NK cells 1 1 

Macrophages 1 0.015 

B cells 1 1 

Tfh cells 1 1 

Neutrophils 1 0.17 

MDACC.FNA.1_20805453 1 1 

iDC 1 0.17 

Eosinophils 1 1 

TAMsurr_TcClassII_ratio 1 0.00055 

Mast cells 1 1 

Th1 cells 1 0.15 

Th2 cells 1 1 

TcClassII_score 1 1 

Bcell_21978456 1 1 

Tcell_21978456 1 1 
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T helper cells 1 1 

Module3_IFN_score 1 0.0078 

ZHANG_INTERFERON_RESPONSE 1 1 

IL12_score_21050467 1 1 

IL2_score_21050467 1 1 

IgG_19272155 1 1 

ICR_SCORE 1 1.80E-08 

T cells 1 1 

CD8_PCA_16704732 1 1 

LIexpression_score 1 1 

 

Supplementary Table 20. The functional enrichment analysis of signature A on GO, KEGG and cancer hallmark. 

 

Supplementary Table 21. The functional enrichment analysis of signature B on GO, KEGG and cancer hallmark. 

 

Supplementary Table 22. The univariate Cox regression result of 6 genes for OS and PFS in TCGA. 

Gene Survival Index HR coef P value 

C6orf223 OS 2 0.68 2.30E-09 

EPHX4 OS 1.9 0.62 4.50E-08 

HES6 OS 2.2 0.79 6.00E-12 

NKD2 OS 1.6 0.44 7.80E-05 

ONECUT2 OS 0.57 -0.56 5.90E-07 

OLR1 OS 0.6 -0.51 4.20E-06 

C6orf223 PFS 1.6 0.48 7.80E-06 

EPHX4 PFS 1.4 0.37 0.00062 

HES6 PFS 2 0.68 4.50E-10 

NKD2 PFS 1.2 0.15 0.016 

ONECUT2 PFS 0.74 -0.29 0.0058 

OLR1 PFS 0.76 -0.27 0.01 
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Supplementary Table 23. The high expression of the five genes in literatures. 

Gene PMID Cancer Type 

OLR1(LOX-1) 34921134 Colon Cancer 

OLR1(LOX-1) 30483757 Gastric Cancer 

OLR1(LOX-1) 28345638 Gastric Cancer 

OLR1(LOX-1) 22641216 Colorectal Cancer 

HES6 30015909 Colorectal Cancer 

HES6 33681178 Colorectal Cancer 

ONECUT2(OC2) 32801861 Gastric Cancer 

ONECUT2(OC2) 34253241 Colorectal Cancer 

ONECUT2(OC2) 35874630 Colorectal Cancer 

ONECUT2(OC2) 32129880 Gastric Cancer 

ONECUT2(OC2) 33015779 Gastric Cancer 

ONECUT2(OC2) 34365839 Gastric Cancer 

NKD2 33455110 Colon Cancer 

NKD2 27246976 Gastric Cancer 

NKD2 26396173 Gastric Cancer 

NKD2 26985708 Colon Cancer 

EPHX4 31404997 Rectal Cancer 

 

Supplementary Table 24. The Cox regression result of TMEscore for OS in TCGA. 

Univariate Cox regression for OS 

 HR lower .95 upper .95 P value 

TMEscore 0.85 0.82 0.88 1.50E-16 

age 1 1 1 0.0024 

Gender = MALE (ref = FEMALE) 1.4 1.1 1.8 0.0024 

Stage = II (ref=I) 1.6 1 2.7 0.04 

Stage = III (ref=I) 3 1.9 4.8 2.80E-06 

Stage = IV (ref=I) 5.5 3.4 9 9.20E-12 

Multi-variate Cox regression for OS 

 HR lower .95 upper .95 P value 

TMEscore 0.84 0.8 0.88 4.60E-14 

age 1 1 1 6.90E-09 

Gender = MALE (ref = FEMALE) 1.1 0.84 1.4 0.51 

Stage = II (ref = I) 2 1.1 3.8 0.023 

Stage = III (ref = I) 3.7 2 6.8 1.70E-05 

Stage = IV (ref = I) 10 5.5 19 1.80E-13 
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https://pubmed.ncbi.nlm.nih.gov/32801861
https://pubmed.ncbi.nlm.nih.gov/34253241
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Supplementary Table 25. The Cox regression result of TMEscore for PFS in TCGA. 

Univariate Cox regression for PFS 

 HR lower .95 upper .95 P value 

TMEscore 0.9 0.87 0.93 2.80E-08 

age 0.99 0.98 1 0.14 

Gender = MALE (ref = FEMALE) 1.7 1.4 2.2 5.50E-06 

Stage = II (ref = I) 2.4 1.5 3.8 0.00039 

Stage = III (ref = I) 3.3 2.1 5.3 5.70E-07 

Stage = IV (ref = I) 7.6 4.6 12 9.50E-16 

Multi-variate Cox regression for PFS 

 HR lower .95 upper .95 P value 

TMEscore 0.91 0.87 0.95 3.70E-05 

Gender = MALE (ref = FEMALE) 1.4 1.1 1.8 0.0086 

Stage = II (ref = I) 2.3 1.3 4 0.0026 

Stage = III (ref = I) 3.2 1.8 5.5 3.70E-05 

Stage = IV (ref = I) 8.3 4.8 15 1.20E-13 

 

 


