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INTRODUCTION 
 

As one of the most common diseases worldwide, 

osteoarthritis (OA) severely affects the life quality of 

patients and brings a tremendous socioeconomic burden 

[1]. The pathogenic factors of OA mainly include the 

alternation of genetics, metabolism, inflammation, and 

biomechanics, contributing to cartilage destruction and 

bone fragmentation [2]. However, given the fact that 

there is no cure for OA with the existing medical 

treatment except for artificial joint replacement [3], 

investigating the latent molecular mechanisms to better 

clarify the etiology and pathogenesis and to develop 

novel therapeutic agents is urgently demanded. 

 

RNA-binding protein (RBP) is defined as a group of 

proteins that are able to distinguish and bind to the 

target RNAs and thus influent these RNAs’ 

transcription, editing, splicing, and other biological 

processes [4]. RBPs are vital to maintaining body 

homeostasis, and the disorders of RBPs lead to a series 

of diseases, such as inflammatory diseases [5], 
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ABSTRACT 
 

Osteoarthritis (OA) is one of the most common diseases in the orthopedic clinic, characterized by progressive 
cartilage degradation. RNA-binding proteins (RBPs) are capable of binding to RNAs at transcription and translation 
levels, playing an important role in the pathogenesis of OA. This study aims to investigate the diagnosis values 
of RBP-related genes in OA. The RBPs were collected from previous studies, and the GSE114007 dataset 
(control = 18, OA = 20) was downloaded from the Gene Expression Omnibus (GEO) as the training cohort. 
Through various bioinformatical and machine learning methods, including genomic difference detection, 
protein-protein interaction network analyses, Lasso regression, univariate logistic regression, Boruta algorithm, 
and SVM-RFE, RNMT and RBM24 were identified and then included into the random forest (RF) diagnosis 
model. GSE117999 dataset (control = 10, OA = 10) and clinical samples collected from local hospital (control = 
10, OA = 11) were used for external validation. The RF model was a promising tool to diagnose OA in the 
training dataset (area under curve [AUC] = 1.000, 95% confidence interval [CI] = 1.000-1.000), the GSE117999 
cohort (AUC = 0.900, 95% CI = 0.769–1.000), and local samples (AUC = 0.759, 95% CI = 0.568–0.951). Besides, 
qPCR and Western Blotting experiments showed that RNMT (P < 0.05) and RBM24 (P < 0.01) were both down-
regulated in CHON-001 cells with IL-1β treatment. In all, an RF model to diagnose OA based on RNMT and 
RBM24 in cartilage tissue was constructed, providing a promising clinical tool and possible cut-in points in 
molecular mechanism clarification. 
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metabolism-related diseases [6], malignant cancer [7], 

and genetic diseases [8]. Similar to these situations, 

RBPs are also involved in the pathological processes 

of OA. For instance, the RBP PUM1 could alleviate 

the cartilage destruction caused by OA through down-

regulating TLR4 [9]; CPEB1, an RBP binding to the 

3′-UTR-cytoplasmic polyadenylation element of the 

target RNAs, was up-regulated in the cartilage samples 

of OA patients, and was associated with the severity of 

the disease [10]; the lack of the RBP Samd4 could lead 

to the chondrogenesis defects in mice [11]. This 

evidence proves that RBPs exert non-negligible 

functions in OA. Nevertheless, our understandings of 

the roles of RBPs in the initiation and development of 

OA are far from enough, and the associated researches 

are at the initial stage for the moment. Seeking more 

RBPs serving as biomarkers in OA is important and 

meaningful. 

 

Herein, the present study downloaded the transcriptome 

sequencing data of the knee cartilage tissue extracted 

from OA patients from the Gene Expression Omnibus 

(GEO) since knee OA is the most common form of 

arthritis. Diverse bioinformatical methods and machine 

learning algorithms, including genomic difference 

detection, protein-protein interaction (PPI) network 

analyses, Lasso regression, univariate logistic 

regression, Boruta algorithm, and SVM-RFE, were used 

for feature selection. Then, a random forest (RF) model 

was developed to diagnose OA. 21 clinical samples 

from the local hospital and the GSE117999 dataset from 

GEO were used for external validation. At last, we 

established an in vitro OA model in CHON-001 cells 

using Interleukin-1β (IL-1β) and measured the 

expression levels of the screened genes via real-time 

quantitative PCR (RT-qPCR) and Western Blotting. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

1525 RBPs identified by experimental research and 

high-throughput screening were collected from Stefanie 

and his colleagues’ report [12]. GSE114007 [13], which 

contained the RNA sequencing (RNA-seq) data of the 

knee cartilage tissue isolated from 18 healthy control 

and 20 OA subjects, was downloaded from GEO 

(https://www.ncbi.nlm.nih.gov/geo/) as the training 

dataset. The GSE117999 dataset, which was also 

obtained from GEO and included the transcriptome data 

of the knee cartilage tissue extracted from 10 control 

and 10 OA cases, was set as the external validation 

dataset. To reduce the divergence as possible, we 

transformed the RNA-seq data into Transcripts-per-

Million (TPM) format and then used the sva package in 

R software (version 3.6.3) to correct the batch effects. 

The detailed information of these public datasets is 

displayed in Table 1. 

 

Ethics and clinical specimens 

 

The protocol of the present study has been revised and 

approved by the Medical Ethics Committee of Yuebei 

People’s Hospital Affiliated to Medical College of 

Shantou University. All the participants have signed the 

informed consent. The knee cartilage samples were 

collected from 11 OA patients (4 female, 7 male, age 

range 49–73 years) undergoing total knee replacement 

and 10 subjects (6 female, 4 male, age range 52–71 

years) receiving traumatic amputation in the absence of 

rheumatoid arthritis or OA in Yuebei People’s Hospital 

Affiliated to Medical College of Shantou University 

between January 12, 2022 and July 28, 2022. The 

cartilage tissue was then immediately stored in liquid 

nitrogen for RNA extraction. The diagnosis of OA 

depends on the criteria recommended by the American 

College of Rheumatology.  

 

Genomic difference analyses 

 

The limma package in R software was used for genomic 

divergence detection. The false discovery rate (FDR) < 

0.05 and |logFC| > 1 were set as the filtering thresholds. 

 

Gene functional annotation 

 

The gene functional annotation was conducted via the 

Metascape database [14] (https://metascape.org/) or the 

clusterProfile package in R. The terms with P < 0.05 

were considered to be significant. 

 

PPI network construction 

 

The STRING database (https://cn.string-db.org/) was 

utilized to construct the PPI network with a confidence 

level of 0.4. Subsequently, the Cytoscape software 

(version 3.8.0) was used to visualize the network. The 

importance of the genes in the network was measured 

by the cytoHubba plug-in [15], which is a widely-used 

tool to calculate node scores according to various 

algorithms including MCC, DMNC, Degree, EPC, 

Bottle neck, EcCentricity, closeness, radiality, 

betweenness, stress, and clustering coefficient. Here, we 

chose “Degree” algorithm to measure the importance of 

the genes, and the Top 20 genes with the highest degree 

were included in further analysis. 

 

Feature selection via machine learning 

 
To identify the genes significantly associated with OA, 

we implemented various machine learning algorithms, 

as previously reported [16]. Lasso regression with 

https://www.ncbi.nlm.nih.gov/geo/
https://metascape.org/
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Table 1. The detailed information of the public datasets obtained from GEO. 

GEO series Platform Experiment type Tissue Control/OA Region 

GSE114007 GPL11154, GPL18573 RNA-seq Human knee cartilage 18/20 USA 

GSE117999 GPL20844 Microarray Human knee cartilage 10/10 USA 

Abbreviations: GEO: Gene Expression Omnibus; OA: Osteoarthritis. 

 

Table 2. The primer sequence used in this study. 

Gene Sequence (5′-3′) 

RBM24 
F: GAACCTGGCATACTTAGGAGCA 

R: AGGTCTTTGTATAAGGGCTGGA 

RNMT 
F: ATAGCACTTGAGGATGTTCCTGA 

R: ACTACGCTTCTCCAAACCAAC 

GAPDH 
F: GGAGCGAGATCCCTCCAAAAT 

R: GGCTGTTGTCATACTTCTCATGG 

 

10-fold cross-validation was conducted via the glmnet 

package. The Boruta algorithm was conducted by the 

Boruta package, and the features labeled with 

“Confirmed” were selected. The caret package was used 

to conduct the SVM-RFE. Last, univariate logistic 

regression was performed with the rms package, where 

P < 0.01 was statistically significant. 

 

RF model construction 

 

Compared with the conventional modeling method, RF 

attracted increasing attention due to its high precision 

and accuracy [17, 18]. Here, we attempted to construct 

the diagnosis model via RF. The randomForest package 

in R software was used to develop the RF diagnosis 

model with ntree = 500 and mtry = 3. The importance of 

the genes in the RF model was quantified by mean 

decrease accuracy and mean decrease Gini [16]. 

 

Functional co-expression analyses 

 

The Top 20 functionally co-expressed genes of the 

target gene were queried in the GeneMANIA database 

(http://genemania.org/) with the Max resultant genes = 

20 and the Max resultant attributes = 10. The interaction 

types included physical interactions, co-expression, 

prediction, co-localization, genetic interactions, 

pathways, and shared protein domains. Subsequently, 

the functional enrichment of these genes was 

investigated via the clusterProfile package, where Gene 

Ontology (GO) datasets were selected as the reference. 

 

Cell culture and treatment 

 

CHON-001 cell line was obtained from the American 

Type Culture Collection (Manassas, VA, USA) and 

cultured in DMEM (Gibco; Thermo Fisher Scientific, 

USA) supplemented with 10% FBS (Thermo Fisher 

Scientific, USA) and 1% penicillin-streptomycin at 

37°C with 5% CO2. CHON-001 cells were incubated 

with 10 ng/mL IL-1β (Sigma-Aldrich, China) for 48 

hours to establish the OA cell model [19, 20]. 

 

RT-qPCR 

 

The total RNA of the clinical samples and cells was 

extracted with the TRIzol reagent (Invitrogen, USA). 

The cDNA was synthesized by PrimeScript RT Reagent 

Kit (Takara, China), and the qPCR experiments were 

conducted via SYBR Premix ExTaq kit (Takara, 

China). GAPDH was chosen as the internal reference 

gene, and the 2−ΔΔCt method was used to normalize the 

gene expression levels. The primer sequence of this 

study is shown in Table 2. 

 

Western blotting 

 

The cell and tissue samples were lysed with RIPA lysis 

buffer (Thermo Fisher Scientific, USA) with protease 

inhibitor (Sigma-Aldrich, USA) on ice. The proteins 

were transferred onto nitrocellulose membranes 

(Millipore, USA) after the separation on SDS-PAGE. 

The membranes were washed using TBS 5 times and 

then blocked via 5% skimmed milk for 1 hour. 

Subsequently, the membranes were incubated with 

primary antibodies overnight at 4°C. Antibodies used in 

this study: GAPDH (dilution: 1:1000, AC001, 

ABclonal, China), RNMT (dilution: 1:500, PA5-41778, 

Thermo Fisher Scientific, USA), and RBM24 (dilution: 

1:500, PA5-66881, Thermo Fisher Scientific, USA). 

Subsequently, the membranes were incubated with 

secondary anti-rabbit IgG antibodies for 1 hour. 

MiniChmei Chemiluminescence imager (Sagecreation, 

China) was used to quantify the protein levels. 

http://genemania.org/
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Statistical analyses 

 

The statistical analyses of the present study were based 

on R software (version 3.6.3) and GraphPad Prism 8 

(version 8.4.3). The receiver operating characteristic 

(ROC) curves were plotted and the areas under the 

curve (AUCs) were calculated via the pROC package. 

The gene expression levels detected via RT-qPCR were 

compared with the student’s t-test. Unless otherwise 

specified, P < 0.05 was considered to be statistically 

significant. *P < 0.05; **P < 0.01; ***P < 0.001. 

 

RESULTS 
 

Identification of the differentially-expressed RBPs 

 

The workflow of this study is illustrated in Figure 1, 

and the R codes used in this study were shown in 

Supplementary File 1. After the genomic difference 

analysis, a sum of 62 differentially-expressed RBPs 

were identified between the control and OA samples of 

the GSE114007 cohort, including 38 up-regulated and 

24 down-regulated genes (Supplementary Table 1). The 

heatmap and the volcano plot used to visualize the 

genomic difference detection results were displayed in 

Figure 2A, 2B, respectively. Functional annotation from 

Metascape revealed that these differentially-expressed 

RBPs were involved in multiple critical cellular 

processes, including ncRNA metabolic process (GO 

term, P < 0.001), mRNA metabolic process (GO term, 

P < 0.001), nucleic acid phosphodiester bond hydrolysis 

(GO term, P < 0.001), mRNA surveillance pathway 

(KEGG term, P < 0.001), regulation of mRNA 

metabolic process (GO term, P < 0.001), metabolism of 

RNA (Reactome term, P < 0.001), DNA methylation or 

demethylation (GO term, P < 0.001), antiviral 

mechanism by IFN-stimulated genes (Reactome term, P 

< 0.001), negative regulation of viral process (GO term, 

P < 0.001), cellular response to oxidative stress (GO 

term, P < 0.001), mRNA processing (WikiPathways 

term, P < 0.001), RNA 3′-end processing (GO term,  

P < 0.01), diseases of programmed cell death 

 

 
 

Figure 1. The workflow of the present study. 
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(Reactome term, P < 0.01), blastocyst development (GO 

term, P < 0.01), cellular response to DNA damage 

stimulus (GO term, P < 0.01), skeletal system 

development (GO term, P < 0.01), protein 

autophosphorylation (GO term, P < 0.01), and 

translation (GO term, P < 0.01), uncovering the 

underlying biological functions of these RBPs in the 

pathogenesis of OA (Figure 2C). 

 

PPI network analyses 

 

To detect the potential interactions of the 62 genes, we 

uploaded these genes into the STRING database to 

construct the PPI network (Figure 3A). Next, the 

importance of these genes in the network was quantified 

using the cytoHubba app in Cytoscape (Supplementary 

Table 2). The Top 20 genes showing the highest degree 

were chosen for further study, including EIF4A3, 

DDX28, KHDRBS3, AEN, CLK3, EIF4E2, RBM24, 

NIP7, ZFP36, NOVA1, CELF2, PABPC4L, CLP1, 

MYEF2, RNMT, PUS1, XAB2, EXO1, FDXACB, and 

RPS27 (Figure 3B). 

 

RBM24 and RNMT were identified as potential 

diagnostic biomarkers to OA 

 

15 of 62 RBPs were determined as significant features 

to evaluate the possibility of OA development via Lasso 

regression (Figure 4A). The parameters of these 15 

features in the Lasso regression model are shown in 

Figure 4B. To render the predictive model more 

concise, we implemented other feature selection 

methods at the same time. SVM-RFE algorithm 

identified 37 variables significantly associated with the 

outcomes (Figure 4C). 47 genes were determined via 

univariate logistic regression with P < 0.01 filtering 

(Supplementary Table 3), and the Boruta algorithm 

helped to identify 37 genes (Figure 4D). Ultimately, 

RNA Guanine-7 Methyltransferase (RNMT) and  

RNA Binding Motif Protein 24 (RBM24) were 

 

 
 

Figure 2. Identification of the differentially-expressed RBPs. (A, B) The volcano plot (A) and the heatmap (B) showed that a total of 

62 differentially-expressed RBPs were detected between the control and OA samples. (C) The functional annotation of the 62 genes via the 
Metascape database. Abbreviations: RBP: RNA-binding protein; OA: osteoarthritis. 
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Figure 3. PPI network construction and analysis. (A) The PPI network of the 62 differentially-expressed RBPs. (B) The Top 20 genes 

ranked by degree in the network. Abbreviation: PPI: protein-protein interaction. 

 

 
 

Figure 4. Feature selection via machine learning algorithms. (A) 15 genes were determined by Lasso regression. (B) The parameters 

of the variables in the Lasso regression model. (C) 37 genes were identified by SVM-RFE algorithm. (D) Boruta algorithm helped to select 37 
genes. (E) RNMT and RBM24 were con-determined by the PPI network analysis and machine learning algorithms. 
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con-determined by the feature selection algorithms and 

PPI network analysis (Figure 4E) and then included in 

the diagnosis model. To clarify the specificity and 

sensitivity of RNMT and RBM24, we then performed 

the ROC analyses in the training cohort. The optimal 

cut-off value for RBM24 was 0.500, where its 

specificity and sensitivity were 0.944 and 0.800, 

respectively (Supplementary Figure 1A). The best cut-

off for RNMT was 2.917, and its specificity and 

sensitivity were 0.778 and 0.900, respectively 

(Supplementary Figure 1B). 
 

Construction and external validation of the RF model 
 

Based on the expressions of RBM24 and RNMT, an RF 

diagnosis model was developed, and the modeling 

parameters are stated above. The RF model exhibited 

high efficacy to distinguish the PA samples from the 

control cases, both in the training dataset (AUC = 1.000, 

95% CI = 1.000–1.000, Figure 5A) and the GSE117999 

dataset (AUC = 0.900, 95% CI = 0.769–1.000, Figure 

5B). The confusion matrices in the training dataset and 

the GSE117999 dataset were displayed in Figure 5C 

and Figure 5D, respectively.  
 

Given the fact that the GSE117999 dataset has not  

been publicly published, we collected 10 control and  

11 OA samples from the local hospital to re-confirm  

the reliability of the model. The baseline 

clinicopathological parameters of the training cohort 

and the local cohort were displayed in Table 3. Since 

the GSE117999 dataset has not been published, the 

 

 
 

Figure 5. The performance of the random forest model in the public datasets. (A, B) The ROC analysis of the diagnosis model in 

the training (A) and external validation (B) datasets. (C, D) The confusion matrices of the model in the training (C) and external validation 
(D) datasets. Abbreviations: ROC: receiver operating characteristic. 
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Table 3. The baseline clinical traits of the training cohort and the local cohort. 

Parameters 
GSE114007 Local cohort 

Control (n = 18) OA (n = 20) Control (n = 10) OA (n = 11) 

Age – – 56 ± 8.2 62 ± 7.4 

Gender 

Male 13 (72.2%) 8 (40.0%) 4 (40.0%) 7 (63.6%) 

Female 5 (27.8%) 12 (60.0%) 6 (60.0%) 4 (36.4%) 

BMI 32.4 ± 8.0 30.7 ± 8.1 29.6 ± 9.1 33.5 ± 7.4 

Kellgren-Lawrence Grade 

I – – – 0 (0.0%) 

II – – – 0 (0.0%) 

III – – – 2 (18.2%) 

IV – – – 9 (81.8%) 

Varus Deformity – – – 10 (90.9%) 

Valgus Deformity – – – 1 (9.1%) 

Abbreviation: BMI: body mass index. The data is presented as n (%) or mean ± standard deviation. 

 

clinical information of the GSE117999 cohort was 

unavailable. The gene expression levels of RBM24 and 

RNMT were measured via RT-qPCR since the 

predictive model was based on the RNA expression 

values. The raw CT values of the genes in the clinical 

samples were exhibited in Supplementary Table 4. 

Compared with the control samples, RBM24 (P < 0.05, 

Figure 6A) and RNMT (P < 0.05, Figure 6B) were both 

down-regulated in the OA samples. The RF model 

could also diagnose OA in the local cohort to some 

extent (AUC = 0.759, 95% CI = 0.568–0.951, Figure 

6C, 6D showed the corresponding confusion matrix. 

The RF model exhibited moderate diagnosis 

performance in the local cohort compared with that in 

the public datasets, and the different gene expression 

detection platforms (RT-qPCR vs. high-throughput 

sequencing) and the relatively small sample size might 

account for this divergence. Other assessment indexes, 

including accuracy, precision, recall, F-measure, 

sensitivity, specificity, positive predictive value, and 

negative predictive value, of the RF model in each 

cohort were shown in Table 4. 

 

RBM24 and RNMT were associated with genesis 

of OA 

 

The ROC analyses revealed the predictive ability of 

RBM24 and RNMT to OA in the training dataset 

(RNMT, AUC = 0.906; RBM24, AUC = 0.889; Figure 

7A), the GSE117999 dataset (RNMT, AUC = 0.840; 

RBM24, AUC = 0.590; Figure 7B), and the local cohort 

(RNMT, AUC = 0.855; RBM24, AUC = 0.736; Figure 

7C). We observed that except for RBM24 in the 

GSE117999 cohort, the variables in these cohorts all 

exhibited high diagnosis values (AUC > 0.7). At the 

same time, the mean decrease accuracy and mean 

decrease Gini of RNMT were superior to those of 

RBM24 (Figure 7D), suggesting that RNMT was a 

relatively more reliable biomarker than RBM24. At last, 

we constructed the OA model in vitro and detected the 

RNA and protein levels of RNMT and RBM24. RT-

qPCR and Western Blotting indicated that RNMT (P < 

0.05) and RBM24 (P < 0.01) were both down-regulated 

in the OA model group, as shown in Figure 7E, 7F 

respectively. This evidence demonstrated that RBM24 

and RNMT both serve as critical biomarkers for OA and 

are associated with OA development. 

 

The functional annotation of RBM24 and RNMT 

 

The Top 20 genes most relevant to RBM24 and RNMT 

were illustrated in Figure 8A and Figure 8B, 

respectively. Gene Ontology (GO) analysis indicated 

that RBM24 and its associated genes were mainly 

enriched in muscle development and differentiation and 

RNA metabolism, splicing, and processing (Figure 8C), 

and RNMT and its correlated genes mainly participated 

in RNA synthesis and modification, ATPase activity, 

and serine/threonine kinase activity (Figure 8D). These 

results might provide clues to elucidate the roles 

RBM24 and RNMT play in OA. 
 

DISCUSSION 
 

Currently, the diagnosis of OA mainly depends on the 

clinical presentations and imaging examination, often 
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Table 4. The predictive performance of the RF model in each cohort. 

Cohort Accuracy Precision Recall F-measure Sensitivity Specificity 
Positive 

predictive 
value 

Negative 
predictive 

value 

GSE114007 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

GSE117999 0.900 0.833 1.000 0.909 1.000 0.800 0.833 1.000 

Local Cohort 0.762 0.750 0.818 0.783 0.818 0.700 0.750 0.778 

 

leading to delayed diagnosis and missing the optimal 

time to intervene [21]. Therefore, many efforts have 

been devoted to seeking reliable diagnosis biomarkers 

in recent years, and some novel molecules as OA 

diagnosis markers have been reported, such as ATF3 

[22], Apolipoprotein D [23], and CXCL13 [24]. The 

rapid development of genomic sequencing technology 

and big-data analysis methods represented by machine 

learning generates new opportunities to disclose novel 

biomarkers and to develop novel diagnostic tools, and 

 

 
 

Figure 6. The performance of the random forest model in the local cohort. (A, B) The qPCR experiments indicated that RNMT and 

RBM24 were both down-regulated in the knee cartilage tissue extracted from OA patients. (C, D) The ROC analysis (C) and the confusion 
matrix (D) of the random forest model in the local cohort. 
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many achievements have been obtained in OA [25–27]. 

Nevertheless, the reports about OA diagnosis models 

based on machine algorithms are relatively rare at the 

moment. 

 

As important posttranscriptional regulators, RBPs are 

capable of modulating RNA metabolism and thus 

affect the expression levels of proteins [28]. The huge 

effects of RBPs on gene expression enlighten the 

investigators to study the roles RBPs play in OA, and 

some RBPs, such as GNL3 [29], SND1 [30], and 

ZFP36L1 [31], have been verified as critical regulators 

in the pathogenesis of OA. However, the number of 

RBP-related research in OA is still limited for the 

moment. 

 

Herein, the present study collected 1525 RBPs from 

previous reports and detected their expression levels in 

the knee cartilage tissue isolated from control and OA 

subjects. A sum of 62 differentially-expressed RBPs 

were identified, RNMT and RBM24 of which were 

determined as the significant biomarkers for OA 

through multiple machine learning algorithms and 

bioinformatical analyses. To achieve better predictive 

performance, we constructed an RF model using the 

expression values of RNMT and RBM24. Importantly, 

the RF model has been externally validated in another 

public dataset and the clinical samples collected from 

the local hospital. Besides, the in vitro OA model was 

constructed in CHON-001 cells, which were treated 

with IL-1β to mimic OA. The RNA and protein levels 

of RNMT and RBM24 significantly decreased in the 

OA model group, suggesting RNMT and RBM24 might 

be important regulators in the development of OA. 

 

We firstly reported that RNMT and RBM24 acted as 

potential biomarkers for OA and conducted the 

preliminary verification in the OA cell model and 

clinical samples. RNMT, a regulatory factor for  

7-methylguanosine mRNA capping, exerts inhibitory 

effects against 5′-exonucleases and promotes RNAs’ 

export and translation [32]. It is worth mentioning that 

the polarity of RNMT ligands is low, rendering the 

compounds targeting this molecule easier to cross the 

 

 
 

Figure 7. RNMT and RBM24 were associated with genesis of OA. (A–C) The diagnosis value of RNMT and RBM24 in the training 

cohort (A), the GSE117999 cohort (B), and the local cohort (C). (D) The mean decrease accuracy (up) and the mean decrease Gini (bottom) 
of RNMT and RBM24 in the random forest model. (E, F) The qPCR experiments (E) and Western Blotting (F) displayed that RNMT and 
RBM24 were both down-regulated in the CHON-001 cells treated with 10 ng/mL IL-1β. 
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plasma membrane [33]. Alison et al., reported that 

RNMT was an essential mediator for T cell activation 

[34]; meanwhile, many studies have demonstrated that 

T cells exhibit high numbers in OA samples compared 

with the control samples [35], but their correlations 

need to be further clarified. RBM24, a highly 

conserved RBP, is an important regulator for cell 

differentiation and cellular homeostasis [36]. RBM24 

was reported to be recruited in stress granules, which 

were formed in cells under stress, and to protect its 

target RNAs [37], which might be the underlying 

biological function of RBM24 in OA development. 

However, more direct experimental evidence 

supporting these assumptions in OA is demanded in 

future studies. 

 

The shortcomings of this study should be stated. First, 

although the RF model was validated in the clinical 

samples from the local hospital, a prospective, large-

scale, and multi-center clinical trial would be helpful to 

better clarify its usefulness. Additionally, the roles of 

RNMT, RBM24, and the RF model in OA’s early 

detection or prognosis prediction are unknown, which is 

the research direction in the future. Second, more 

experimental exploration should be performed to 

elucidate the biological functions and underlying 

mechanisms of RNMT and RBM24 in OA. Third, 

although CHON-001 cells treated with IL-1β were 

widely used for in vitro OA model construction, it 

should be emphasized that CHON-001 cells were 

isolated from the cartilage tissue of an embryo (age 

18 weeks) and exhibited a fibroblast-like morphology, 

leading to different characteristics compared with 

primary chondrocytes. For instance, adult chondrocytes 

rarely divide throughout life, but CHON-001 cells are 

proliferative cells. This is the limitation of the 

methodology in this study. 

 

In conclusion, an RF model based on RNMT and 

RBM24 was established to diagnose OA, which was 

externally validated in public datasets, local clinical 

samples, and in vitro cell experiments. 

 

 
 

Figure 8. The functionally-associated genes and GO enrichment. (A, B) The Top 20 genes associated with RBM24 (A) and RNMT (B). 

GO functional annotation of the associated genes of RBM24 (C) and RNMT (D). Abbreviation: GO: gene ontology. 
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SUPPLEMENTARY MATERIALS 
 

Please browse Full Text version to see the data of Supplementary File 1. 

 

Supplementary File 1. The R codes used in this study. 
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Supplementary Figure 
 

 
 

Supplementary Figure 1. The optimal cut-off values and their corresponding specificity and sensitivity of RBM24 (A) and RNMT (B). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The genomic difference of the RBPs between control and OA samples. 

 

Supplementary Table 2. The importance of the genes in the PPI network. 

node_name MCC DMNC MNC Degree EPC 
Bottle 

Neck 

Ec 

Centricity 
Closeness Radiality Betweenness Stress 

Clustering 

Coefficient 

RNASE1 1 0 1 1 4.847 1 0.2 19.71667 3.77049 0 0 0 

PPARGC1B 1 0 1 1 3.284 1 0.16667 18.68333 3.60656 0 0 0 

PLD6 5 0.30898 3 4 14.959 1 0.2 24.65 4.29508 8.83413 34 0.33333 

RIOK3 7 0.46346 3 4 15.012 1 0.2 24.61667 4.31148 4.0303 10 0.5 

SBDS 6 0.30898 3 5 17.239 1 0.25 27.5 4.62295 32.16725 132 0.2 

TDRKH 5 0.30898 3 4 15.913 2 0.25 26.08333 4.5082 14.6171 68 0.33333 

MEX3D 4 0.30779 2 4 15.241 3 0.25 26.58333 4.57377 188.86849 586 0.16667 

ENOX1 1 0 1 1 5.764 1 0.2 20.95 4 0 0 0 

RPS27 22 0.29157 8 8 21.191 4 0.2 30.28333 4.78689 57.34252 228 0.35714 

IPO13 5 0.30898 3 4 14.444 3 0.2 27.2 4.62295 34.32918 166 0.33333 

PRDX1 4 0 1 4 11.589 4 0.2 26.95 4.59016 147.75238 372 0 

PEG10 3 0.30779 2 3 8.566 1 0.2 22.11667 4.01639 45.47489 140 0.33333 

DNMT3B 7 0.2842 4 5 16.202 2 0.25 27.83333 4.67213 57.32172 260 0.3 

PELO 5 0.30779 2 5 18.033 1 0.2 27.7 4.62295 18.74944 84 0.2 

FAM98A 12 0.47366 4 4 17.613 1 0.2 27.45 4.63934 0.7 4 0.83333 

TDRD5 28 0.45378 5 7 21.877 3 0.2 29.45 4.7377 51.78556 218 0.38095 

PATL1 52 0.40246 7 7 24.155 1 0.25 30.75 4.90164 20.30137 132 0.52381 

PARS2 26 0.56839 4 6 19.344 1 0.2 26.86667 4.4918 14.7224 54 0.4 

CTU1 32 0.42794 6 6 21.549 1 0.2 28.2 4.63934 7.53108 52 0.6 

RNMT 12 0.2842 4 10 25.452 4 0.25 32.25 4.93443 165.03031 636 0.11111 

NXT1 12 0.32413 5 7 20.419 1 0.2 29.78333 4.77049 80.40835 338 0.2381 

NXT2 4 0.30898 3 3 10.828 1 0.16667 22.15 4 1.65476 10 0.66667 

CTIF 9 0.2842 4 7 19.976 2 0.2 29.53333 4.7541 80.61883 390 0.14286 

RPP40 11 0.32413 5 6 19.265 2 0.2 27.45 4.55738 33.51416 124 0.33333 

CPSF4L 19 0.45378 5 6 23.226 1 0.25 30.58333 4.91803 9.97532 78 0.46667 

EZH2 10 0.2842 4 8 21.669 2 0.25 30.75 4.86885 155.14999 572 0.14286 

CLP1 34 0.31026 9 11 28.098 3 0.25 33.58333 5.04918 119.79573 576 0.23636 

ERN1 9 0.25931 5 6 20.189 1 0.2 27.53333 4.55738 31.67548 112 0.26667 

TIPARP 7 0.2842 4 5 18.085 2 0.25 28 4.65574 27.03146 102 0.3 

SPEN 6 0.30898 3 5 17.382 2 0.25 27.5 4.62295 29.50759 94 0.2 

IFIT1 3 0 1 3 9.69 1 0.2 24.36667 4.32787 26.23653 62 0 

YTHDC1 10 0.25931 5 7 23.735 1 0.25 31.33333 4.95082 44.47497 218 0.2381 

MYEF2 42 0.27149 11 11 27.945 1 0.25 32.91667 4.96721 76.29101 368 0.29091 

ERN2 4 0.30898 3 3 14.205 1 0.2 24.95 4.39344 0.58333 4 0.66667 

ZFP36 23 0.23866 9 12 27.219 9 0.25 33.66667 5.01639 240.56739 718 0.15152 



www.aging-us.com 210 AGING 

NOVA1 95 0.3733 11 12 28.321 2 0.33333 34.16667 5.08197 166.62022 676 0.33333 

CLK3 31 0.25938 10 13 28.181 2 0.25 34.58333 5.08197 236.89318 858 0.17949 

RBM20 50 0.47549 6 6 22.614 1 0.25 29.91667 4.85246 11.90253 72 0.66667 

KHDRBS3 149 0.38288 14 15 30.382 2 0.33333 36.33333 5.19672 255.50036 1018 0.32381 

MEX3B 13 0.28529 6 7 22.503 1 0.25 29.5 4.77049 39.68178 198 0.28571 

DDX25 51 0.47549 6 7 23.388 1 0.2 30.36667 4.83607 18.70413 110 0.47619 

EIF4E2 88 0.29378 13 13 30.084 1 0.25 34.91667 5.11475 116.73785 632 0.29487 

PAIP2B 4 0 1 4 15.943 1 0.2 26.61667 4.54098 23.74821 88 0 

CELF2 54 0.33919 10 12 27.883 4 0.25 33.41667 5 133.31217 520 0.25758 

CD3EAP 1 0 1 1 5.89 1 0.2 21.28333 4.04918 0 0 0 

ZCCHC5 3 0 1 3 5.698 2 0.2 20.56667 3.77049 122.75362 364 0 

APOBEC3H 1 0 1 1 2.304 1 0.16667 15.35 2.78689 0 0 0 

ZC3H12A 8 0.30898 3 7 18.743 3 0.25 29.5 4.7541 164.1295 490 0.14286 

ERI2 6 0.30779 2 6 21.132 1 0.2 29.86667 4.81967 38.27614 164 0.13333 

DDX28 168 0.27914 18 18 31.26 7 0.25 38.08333 5.2623 260.52881 1046 0.24837 

EXO1 15 0.28529 6 9 24.219 4 0.25 32.25 4.98361 202.10351 666 0.19444 

OAS1 3 0.30779 2 3 11.445 2 0.2 24.95 4.40984 16.05 48 0.33333 

PABPC4L 128 0.45891 10 12 28.914 1 0.25 34 5.04918 108.82034 496 0.34848 

RBM24 90 0.30655 13 13 29.633 2 0.25 34.75 5.09836 136.56635 586 0.30769 

PUS1 59 0.38186 9 10 25.75 3 0.2 32.03333 4.90164 79.96712 330 0.35556 

XAB2 28 0.32073 8 10 26.788 4 0.25 33.08333 5.03279 192.58545 738 0.24444 

ZMAT3 6 0.30779 2 6 21.248 1 0.25 29.41667 4.78689 48.69737 194 0.13333 

MARS2 44 0.43905 7 7 21.926 1 0.2 29.53333 4.7541 26.50462 116 0.57143 

EIF4A3 231 0.26149 23 24 32.539 8 0.25 41.75 5.42623 753.02289 2586 0.19565 

FDXACB1 49 0.4082 8 9 24.676 1 0.2 31.03333 4.83607 62.82318 266 0.38889 

NIP7 68 0.30655 13 13 28.032 2 0.2 34.61667 5.06557 168.88007 710 0.30769 

AEN 68 0.32197 12 14 29.865 2 0.2 35.61667 5.13115 276.14754 1026 0.25275 

 

 

Supplementary Table 3. The univariate logistic regression of the 62 differentially-expressed RBPs. 

Gene OR (95% CI) P value 

NXT1 0.002 (0–0.052) 0.006 

PELO 0 (0–0.028) 0.019 

FAM98A 134.891 (12.223–7503.703) 0.002 

YTHDC1 0.009 (0–0.084) 0.001 

SPEN 0.005 (0–0.066) 0.002 

MEX3D 15.761 (3.807–267.657) 0.006 

CTIF 0.001 (0–0.041) 0.012 

PAIP2B 0.036 (0.002–0.209) 0.005 

PARS2 13.52 (3.664–114.511) 0.002 

TIPARP 0.121 (0.025–0.338) 0.001 

RNMT 0.035 (0.001–0.21) 0.006 

ZMAT3 27.999 (4.929–515.098) 0.003 
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NOVA1 24.972 (4.49–481.767) 0.005 

RIOK3 0.057 (0.005–0.249) 0.003 

EZH2 15.864 (3.791–141.354) 0.002 

PLD6 0.076 (0.011–0.279) 0.001 

ZFP36 0.238 (0.067–0.519) 0.005 

PRDX1 292.35 (12.659–47754.741) 0.006 

AEN 12.52 (3.305–88.927) 0.002 

CTU1 17.521 (3.864–151.39) 0.002 

RBM24 0.296 (0.108–0.571) 0.003 

PATL1 0.057 (0.006–0.258) 0.002 

RPS27 0.138 (0.029–0.397) 0.002 

EIF4A3 0.036 (0.002–0.224) 0.004 

CLK3 0.096 (0.015–0.343) 0.003 

NIP7 12.205 (3.244–83.971) 0.002 

IPO13 18.338 (3.702–210.704) 0.004 

APOBEC3H 0.466 (0.268–0.702) 0.001 

ZCCHC5 4.805 (2.009–17.163) 0.003 

EIF4E2 7.687 (2.502–39.611) 0.003 

ZC3H12A 0.16 (0.037–0.439) 0.003 

NXT2 16.012 (3.44–161.178) 0.004 

ERI2 11.737 (3.025–76.228) 0.002 

RPP40 5.531 (2.115–21.847) 0.003 

CELF2 2.978 (1.585–7.319) 0.004 

FDXACB1 5.437 (2.051–22.03) 0.005 

CLP1 8.75 (2.711–47.714) 0.002 

ENOX1 3.793 (1.712–11.693) 0.005 

DNMT3B 3.709 (1.684–10.989) 0.005 

DDX25 2.652 (1.454–6.348) 0.009 

PABPC4L 3.705 (1.654–11.053) 0.006 

MEX3B 1.771 (1.235–2.781) 0.005 

TDRKH 3.744 (1.628–11.302) 0.006 

CD3EAP 3.398 (1.557–9.86) 0.008 

XAB2 0.167 (0.028–0.53) 0.016 

PEG10 0.403 (0.184–0.732) 0.009 

ERN1 0.212 (0.051–0.576) 0.011 

RNASE1 1.36 (1.105–1.754) 0.008 

PUS1 3.407 (1.496–10.302) 0.011 

MARS2 2.67 (1.377–6.502) 0.012 

KHDRBS3 2.311 (1.303–4.897) 0.012 

CPSF4L 0.562 (0.354–0.838) 0.008 

OAS1 1.567 (1.147–2.292) 0.009 

RBM20 0.632 (0.426–0.869) 0.01 

DDX28 4.343 (1.635–19.791) 0.018 
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IFIT1 17.749 (3.721–199.691) 0.003 

SBDS 0.453 (0.225–0.789) 0.012 

MYEF2 1.534 (1.131–2.201) 0.01 

ERN2 1.643 (1.148–2.514) 0.012 

PPARGC1B 1.601 (1.129–2.542) 0.019 

EXO1 1.997 (1.195–3.84) 0.018 

TDRD5 1.81 (1.157–3.322) 0.023 

 

Supplementary Table 4. The CT values of the genes in the clinical samples. 

Subject ID Group 
CT value 

GAPDH RBM24 RNMT 

2022003 Control 14.74525716 18.07840008 20.03488368 

2022012 Control 15.84250541 19.18721133 20.05887191 

2022008 Control 16.64254397 19.61031053 21.15128554 

2022023 Control 15.23590747 20.84740272 19.82626215 

2022009 Control 15.01622463 18.46975354 20.61515179 

2022002 Control 17.17888197 19.33891721 19.07583418 

2022014 Control 14.80743867 17.74364263 21.10228253 

2022016 Control 15.99036566 19.33979752 18.0255821 

2022018 Control 16.13291468 17.63390788 17.37191675 

2022028 Control 15.83299278 19.12467119 19.24682853 

OA2022001 OA 17.26160472 21.12238607 21.00300764 

OA2022002 OA 16.02803631 20.22529893 22.95781598 

OA2022005 OA 15.80973734 20.8112529 21.41373541 

OA2022006 OA 15.76713681 18.36677247 19.90915417 

OA2022007 OA 15.84871631 21.0072574 22.34982956 

OA2022008 OA 14.30135821 20.64377909 22.01430636 

OA2022013 OA 15.28747625 21.83092286 20.52466488 

OA2022014 OA 16.54314623 21.64015343 21.78957776 

OA2022015 OA 15.3648146 23.39388081 21.22732165 

OA2022017 OA 16.39616359 20.8044486 21.23231182 

OA2022018 OA 17.36021479 20.80605607 21.2718392 

 


