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INTRODUCTION 
 

Atrial fibrillation (AF) is a common arrhythmia  

during clinical diagnosis and treatment in cardiology 

departments. Due to the rapid advancement of surgical 

instruments and cardiac drugs, significant progress has 

been achieved in the treatment of AF and its 

complications (tachyarrhythmia, thrombosis, heart 
failure, etc.) [1]. According to a systematic review 

including population studies worldwide, the number of 

AF patients globally was estimated to be 33.5 million 

in 2010 [2–4]. However, our understanding of the 

mechanism of AF occurrence and persistence is still 

inadequate. 

 

Many case–control studies have demonstrated that the 

levels of inflammatory markers such as C-reactive 

protein (CRP), interleukin-6 (IL-6), IL-8, and tumor 

necrosis factor-α (TNF-α) in the AF patient population 

are significantly higher than those in the sinus rhythm 
population [5–10]. Additionally, the CRP level can be 

used to predict new-onset AF [11–13]. These results 

indicate a certain correlation between the inflammatory 

response and the occurrence of AF. Notably, in a canine 
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ABSTRACT 
 

Atrial fibrillation (AF) is a relatively common arrhythmia in clinical practice. Although significant progress has 
been achieved in the treatment of AF and its associated complications, research on AF prevention lags behind, 
mainly due to the lack of a deep understanding of AF pathogenesis. In recent years, as our knowledge has 
grown, the role of the inflammatory/immune response in the occurrence and progression of AF has gradually 
gained attention. In this paper, based on existing gene expression data in the Gene Expression Omnibus 
database, a detailed description of immune infiltration status in AF is presented using a series of analytical 
methods, including differential analysis, Gene Ontology categorization, Kyoto Encyclopedia of Genes and 
Genomes enrichment analysis, and weighted gene coexpression network analysis, and analysis tools such as 
CIBERSORTx and Cytoscape. Several new AF/immune infiltrations–related signature genes were identified, and 
the AF/immune infiltration pathology was classified based on these immune signature genes, thus providing 
novel insights into the pathogenesis of AF based on the inflammatory response. 
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sterile pericarditis model, anti-inflammatory treatment 

significantly reduced the incidence of aseptic 

inflammation-induced AF [14], which may suggest that 

the inflammatory response is the initiating factor in AF. 

 

AF induced by inflammation can stimulate the body to 

generate new inflammatory responses and initiate atrial 

remodeling, resulting in AF maintenance [1]. AF 

patients have higher levels of inflammatory markers 

than previous AF patients who have recovered sinus 

rhythm [15, 16]. After continuous fast atrial pacing in 

dogs (pacing time >1 week), peripheral blood CRP 

levels were significantly increased, the atrial effective 

refractory period was shortened, and AF susceptibility 

was increased [17], indicating that AF may trigger new 

inflammatory responses, which likely result in AF 

persistence [17]. 

 

In summary, although the inflammatory response and 

AF are strongly correlated, the underlying mechanisms 

remain poorly understood. With the widespread 

application of second-generation sequencing technology 

and immune infiltration analysis technology, more 

powerful research tools are available to solve this 

problem. Therefore, this study (Supplementary Figure 

2) was conducted to screen AF/immune infiltration–

related differentially expressed genes (DEGs) based on 

existing gene expression data from the Gene Expression 

Omnibus (GEO) database. On the basis of these DEGs, 

the weighted gene co-expression network analysis 

(WGCNA) algorithm was used to identify key modules. 

Finally, hub genes associated with the AF/inflammatory 

response were further screened, and their possible role 

in the development of AF is discussed. 

 

MATERIALS AND METHODS 
 

Data download 

 

GEOquery [18] was used to download four sets of data: 

GSE115574, GSE41177, GSE79768, and GSE2240. 

GSE2240 was used as the verification dataset. Probes 

corresponded to genes, and the median value of the 

probes for the same gene was used for analysis. The 

GSE115574, GSE41177, and GSE79768 datasets were 

pooled. Batch differences (Supplementary Figure 1) 

were eliminated using the ComBat function of the sva 

package [19], and then the gene expression levels were 

homogenized using the limma package [20]. 

 

Immune cell infiltration 
 

The gene expression data of the samples were uploaded 

to CIBERSORTx (https://cibersortx.stanford.edu/)). 

Bulk-mode batch correction and absolute mode were 

selected to analyze the level of immune infiltration, and 

the absolute score indicating the level of infiltration was 

obtained for each sample. The median absolute score of 

all samples was calculated. An absolute score greater 

than or equal to the median value indicated high 

infiltration, and an absolute score less than the median 

indicated low infiltration. 

 

Analysis of DEGs 

 

The limma [20] package was used to analyze DEGs in a 

high-infiltration group, a low-infiltration group, an AF 

group, and a sinus rhythm (SR) group, and the 

intersections of the DEGs of pairs of groups were 

obtained. P<0.01 was considered indicative of a 

significant difference. 

 

Enrichment analysis 

 

The clusterProfiler [21] package of R was used for 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analysis of 

DEGs. 

 

WGCNA 

 

We used WGCNA to construct a weighted co-

expression network of DEGs. Based on traits of interest, 

the module with the smallest P value and the highest 

correlation was selected as the key module. 

 

Screening of hub genes 

 

Genes that were most relevant to a trait (gene 

significance (GS) ≥0.3) and a module (module 

membership (MM) ≥0.7) among the key WGCNA 

modules were selected as the hub genes in the modules. 

All the genes in the key modules were input into the 

STRING website (https://string-db.org/). The protein–

protein interaction (PPI) network was obtained and then 

plotted using Cytoscape software. Genes with a high 

degree of gene connectivity (≥30) were selected as key 

genes in the PPI network. The final set of hub genes 

was obtained by taking the intersection of the WGCNA 

key module genes and PPI network key genes. 

 

Analysis of clinical characteristics of hub genes 

 

The age and sex information of each sample was used 

for grouping. The expression levels of the hub genes in 

different groups were analyzed. The median age was set 

as the dichotomizing line. 

 

Hub gene validation 

 

The expression levels of the hub genes were verified in 

GSE165838. 

https://cibersortx.stanford.edu/
https://string-db.org/
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Unsupervised clustering analysis 

 

Based on the expression levels of the hub genes, the best 

number of classifications was determined by determining 

the best sum of squared error (SSE) inflection point, and 

the samples were classified using k-means clustering 

combined with t-distributed stochastic neighbor 

embedding dimensionality reduction. Differences in 

immune infiltration and the expression levels of hub 

genes between different types were investigated. 

 

Data availability statement 

 

The original contributions presented in the study are 

included in the article/supplementary material, and further 

inquiries can be directed to the corresponding author/s. 

 

RESULTS 
 

Data set selection and content introduction 

 

The AF and SR datasets of GSE115574, GSE41177, 

GSE79768, and GSE2240 were downloaded from the 

GEO database (Table 1). GSE2240 was used as the 

verification dataset. The other three datasets were 

combined to obtain the expression data of 21,502 genes 

in 123 samples, including 74 AF and 49 SR samples. 

 

The difference of immune cell infiltration is shown 

 

According to the gene expression data, the immune cell 

infiltration level was analyzed using CIBERSORTx. 

We marked the differences of immune cells between the 

two groups, and the results are shown in the Figure 1A. 

Each square represents the infiltration level of immune 

cells in the sample. 

 

Differential analysis strategy and differential analysis 

results 

 

P<0.01 was used as the threshold to define a DEG. A 

total of 2379 DEGs were identified in the 74 AF 

samples and the 49 SR samples, 1213 of which were 

upregulated, while 1167 were downregulated (Figure 

1B, 1C). A total of 2607 DEGs were related to immune 

infiltration, 1432 of which were upregulated, while 

1184 were downregulated (Figure 1D, 1E). The 

intersection of these two groups included 586 DEGs. 

 

GO and KEGG enrichment analysis 

 

Pathway enrichment analysis of the 586 shared DEGs 

was performed (Figure 2, P_FDR<0.05). As shown in 

Figure 2, the GO categories of biological process (BP) 

and cell component (CC) and the KEGG pathways are 

shown only with the 20 most significant results. Most 

were related to immune responses (e.g., the regulation 

of the innate immune response), immune cells (e.g., T 

cell activation, leukocyte migration), and immune 

activities (e.g., chemokine signaling, immunoglobulin 

binding). 

 

Construction of WGCNA co-expression network 

 

WGCNA was performed on the 586 shared DEGs (The 

soft-threshold β=6. The minimum module size is 10. 

We merged similar modules, mergeCutHeight=0.25. 

We use Person correlation when we associate features 

with modules.). A scale-free network was constructed 

(R2=0.8850) (Figure 3A). Hierarchical clustering was 

performed to divide the network into modules. A total 

of 10 modules were obtained. In the figure, gray 

indicates no modules included (Figure 3B). The 

numbers of genes in each module are shown in Table 2. 

For several key T cell-related immune modules (P<0.05 

with a correlation) (Figure 3C), gamma delta cells had a 

strong correlation with each module. The turquoise 

module, representing the smallest P value and the 

highest correlation, was selected as the key module and 

contained a total of 172 genes. 

 

Screening methods and results display of hub genes 

 

The 172 genes in the turquoise module were input into 

the STRING website to construct a PPI network. A total 

of 29 genes with a connectivity of ≥30 were selected as 

hub genes (Figure 4A). A total of 31 genes with MM 

≥0.7 and GS ≥0.3 were selected as hub genes in the 

turquoise module (Figure 4B). Ten key genes were 

obtained after the intersection of key genes of the PPI 

and key genes of the turquoise module: CTSS, NCF2, 

MNDA, CCR2, TYROBP, LAPTM5, IGSF6, PTPRC, 

AIF1, and ITGAL (Figure 4C). 

 

Correlation analysis between hub genes and clinical 

features 

 

Among the 123 samples, 64 samples from GSE41177 

and GSE79768 contained sex and age information. The 

median age (57 years) was used as the dichotomizing 

line for age grouping. Figure 5A shows that hub genes 

had no significant differences in expression between 

age groups. Figure 5B shows the expression of hub 

genes in different sexes. The expression levels of CTSS, 

IGSF6, CCR2, and PPTRC were significantly higher in 

females than in males. 

 

Hub genes validation 
 

The Seurat function was used to analyze GSE165838, 

and the expression distribution of 10 hub genes in the 

scRNA dataset was visualized (Figure 6). 
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Table 1. AF and SR datasets from the GEO database. 

Dataset Platform Atrial fibrillation Sinus rhythm 

GSE115574 GPL570 28 31 

GSE41177 GPL570 32 6 

GSE79768 GPL570 14 12 

GSE2240 GPL96 10 20 

 

Unsupervised clustering of hub genes 

 

As shown in Figure 7A, we first determined the 

inflection point of SSE (i.e., the sum of the squares of 

the distances of all the points to the cluster center to 

which the points belonged). We searched for the optimal 

number of clusters K. When K=4, the SSE declined 

slowly, and all 123 samples were therefore classified 

into four categories by k-means clustering. Cluster 1 

(blue), cluster 2 (red), cluster 3 (green), and cluster 4 

(gray) had 27, 53, 17, and 26 samples, respectively 

(Figure 7A). The expression of the hub genes differed 

between clusters (Figure 7B). Therefore, the hub genes 

had important significance in disease classification. We 

next looked at the difference in immune infiltration of 

different types (Figure 7B). Cluster 1 and cluster 2 were 

significantly different from cluster 3 and cluster 4. We 

also examined the expression of hub genes in different 

types (Figure 7D) and found that the expression levels of 

all hub genes were ranked as cluster 1 < cluster 2 < 

cluster 4 < cluster 3. 

 

DISCUSSION 
 

T lymphocytes play a central role in cell-mediated 

immunity. A large number of studies have shown that T 

cells are closely related to the occurrence of many types 

of cardiovascular diseases [22, 23], but their roles in AF 

pathogenesis have not been well established. Therefore, 

this study focused on T cells. Notably, however, the 

results of our analysis show that most DEGs are not 

strongly associated with T cells. Therefore, the hub 

genes identified in this study not only affect T cell 

function but may also have other functions. Because of 

the complexity and diversity of inflammatory responses 

during the occurrence and development of AF, we 

believe that AF samples should be classified using hub 

genes because these genes can more accurately guide 

 

 
 

Figure 1. (A) Results of the immune infiltration analysis (p>0.05, *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001). (B) Volcano plot of 
DEGs in AF and SR. (C) Heat map for the expression of the 2379 DEGs in AF. (D) Volcano plot of DEGs in immune infiltration. (E) Heat map for 
the expression of the 2607 DEGs in immune infiltration. 
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exploration of the pathogenesis of AF and the 

development of relevant immunotherapy methods. 

 

Of the 10 hub genes discovered in this study, MNDA, 

TYROBP, LAPTM5, IGSF6, AIF1, and ITGAL have 

never been reported to be associated with AF. We have 

now elaborated the possible mechanisms by which these 

genes are associated with AF. 

 

CTSS encodes cathepsin S (CTSS), which is mainly 

involved in the pathogenesis of a variety of cardio-

vascular diseases by mediating the degradation of 

extracellular matrix (ECM) proteins [24]. Under 

ischemic and high-fat diet (HFD) loads, CTSS 

participates in cardiovascular remodeling and the 

formation of atherosclerosis by mediating transforming 

growth factor-beta (TGF-β) and peroxisome proliferator- 

activated receptor gamma (PPAR-γ) or activating the 

p38 mitogen-activated protein kinase (MAPK) pathway 

[25–27]. Cardiovascular remodeling, especially atrial 

reconstruction, is an important basis for the formation 

and maintenance of AF. Therefore, CTSS likely 

 

 
 

Figure 2. (A) GO_BP enrichment results for DEGs. (B) GO_CC enrichment results for DEGs. (C) GO_MF enrichment results for DEGs. (D) KEGG 
enrichment results for DEGs. 
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Figure 3. (A) Threshold selection for WGCNA network construction (β=6). (B) WGCNA network module classification (mergeCutHeight=0.25. 
The minimum module size is 10.). (C) Association between module eigenvectors and T cells. The first rows in each block are the correlation 
coefficients. Red indicates a positive correlation, and blue indicates a negative correlation. P values are provided in parentheses in the  
second row. 
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Table 2. WGCNA module statistics. 

Module Number of genes 

Pink 15 

Red 16 

Brown 35 

Black 16 

Turquoise 172 

Yellow 30 

Blue 73 

Green 27 

Magenta 14 

Gray 188 

 

 
 

Figure 4. (A) PPI network of the turquoise module. The gene node size in the network reflects the degree of nodes, with a higher degree of 

gene connectivity corresponding to a larger font with which the gene is written. Green represents genes with a connectivity degree ≥30  
(a total of 29 genes). (B) The key genes in the turquoise module. (C) Venn diagram of the key genes. 
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promotes the proliferation and differentiation of 

fibroblasts by influencing TGF-β and other related 

pathways, resulting in atrial reconstruction. However, 

this hypothesis still requires further experimental 

verification. 

 

Neutrophil cytosolic factor 2 (NCF2), also known as 

NOXA2, is a subunit of NADPH oxidase. The function 

of this oxidase is to produce O2- using NADPH as a 

substrate. The change in the NCF2 expression level 

significantly affects the level of reactive oxygen species 

(ROS), which is related to the occurrence and 

progression of cardiovascular diseases [28]. In addition, 
NCF2 is mainly expressed in neutrophils, an important 

site for ROS production. Existing evidence suggests a 

significant causal relationship between neutrophil 

activity and the onset of AF [29]. A mouse-based study 

showed that fibrosis in AF relies heavily on neutrophil 

activation [30]. The production of ROS can activate 

metalloproteinases, a key enzyme family involved  

in fibrosis [31]. Whether NCF2 participates in the 

occurrence and progression of AF relying on the 

aforementioned mechanisms remains to be further 

explored. 

 

 
 

Figure 5. (A) Hub gene expression in different age groups. (B) Hub gene expression in different sexes. 
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Figure 6. Hub gene expression validation. (A) Visualized cell cluster map of 30,573 single cells. (B) Heat map of 10 hub genes.  
(C) Expression distribution of 10 hub genes in the visual cell cluster. (D, E) Violin map of 10 hub genes showing the expression distribution of 
genes in different cell types. 
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Figure 7. (A) K-means clustering classification. (B) Expression levels of different types of hub genes. (C) Differences in immune infiltration 
between different types. (D) Expression levels of hub genes in different types. 
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CCR2 encodes C-C motif chemokine receptor 2 (CCR2), 

which occurs ubiquitously on the surface of mononuclear 

macrophages. It binds CC motif chemokine ligand 2 

(CCL2) and plays a major role in the recruitment of 

mononuclear macrophages to inflammatory sites [32]. 

The accumulation of macrophages is involved in TGF-β-

mediated myocardial fibrosis. As a source of profibrotic-

associated factors, macrophages can promote fibroblast 

proliferation and activation. Activated fibroblasts in turn 

promote structural remodeling of the atria by expressing 

fibrosis-related substances in large quantities [33, 34]. 

Macrophages also play an important role in electrical 

remodeling of the atria, which is mainly accomplished by 

their secretion of TNF-α. In summary, macrophages are 

involved in both the structural and electrical remodeling 

processes of the atria during the course of AF. 

 

Myeloid nuclear differentiation antigen (MNDA) was 

first found to be expressed in macrophages and 

fibroblasts in inflammatory areas but not in non-

inflammatory areas. MNDA is highly expressed in 

macrophages in atherosclerotic plaques [35], but whether 

it is directly involved in the occurrence and progression 

of AF remains unknown. Given the role of macrophages 

in the occurrence and progression of AF, the inclusion of 

MNDA as a hub gene is presumably because MNDA is a 

characteristic marker of macrophages in inflammatory 

regions. 

 

TYRO protein tyrosine kinase-binding protein 

(TYROBP) plays an important role in the pathogenesis of 

Alzheimer’s disease (AD). TYROBP seems to enhance 

the phagocytic activity of microglia, while timely 

clearing of apoptotic neurons and related metabolites is 

important for maintaining normal brain function. 

TYROBP can also mediate the anti-inflammatory 

response, thereby maintaining the immune balance 

function in the process of neuroinflammation. Triggering 

chronic inflammation results in neurodegenerative 

diseases, thereby increasing the risk of AD [36]. 

Interestingly, a series of clinical studies demonstrated 

that AF patients have a significantly increased risk of 

AD, but the cause of this phenomenon remains 

controversial [37–42]. Microglia in the brain rarely 

require peripheral supplementation in adulthood [43]. 

However, if microglial depletion occurs in the central 

nervous system under some special circumstances (e.g., 

inflammation, infection, injury, etc.), bone marrow–

derived microglia are added [44]. AF patients may have 

chronic embolism or hemorrhage (macro- or micro), 

hypoperfusion, oxidative stress, and proinflammatory 

conditions [41]. Would this cause not only neuronal 

injury but also the depletion of microglia in the central 
nervous system? Is the change in the hub gene TYROBP 

also a hallmark of this pathological process? These 

questions remain to be further explored. 

Allograft inflammatory factor 1 (AIF1) plays an 

important role in the occurrence and progression of 

atherosclerosis by stimulating the migration and 

proliferation of human smooth muscle cells and 

promoting the activation of macrophages [45]. AIF1 can 

induce the expression of fibrosis-related factors in 

normal fibroblasts [46]. AIF1 also induces monocytes to 

secrete IL-6 and enhance the chemotaxis of fibroblasts 

[47], thereby causing fibrosis. Given the important role 

of fibrosis in the occurrence and progression of AF, 

further exploring the potential mechanism of this gene 

during the occurrence and progression of AF would 

provide valuable data. 

 

As a member of the protein tyrosine phosphatase (PTP) 

family, protein tyrosine phosphatase receptor type C 

(PTPRC) is also known as CD45 [48]. CD45 plays a role 

in regulating leukocyte adhesion, cytokine signaling, and 

immune receptor signaling (e.g., Fc, NK, Toll-like 

receptors) [48]. Accumulating evidence indicates that 

atrial tissue in AF patients is infiltrated with a large 

number of CD45+ cells [49–51]. Most of these CD45+ 

immune cells are CD68+ macrophages [52]. Given the 

important role of macrophages in the pathogenesis of AF, 

it makes sense that PPTRC would be a signature gene of 

AF. Integrin subunit alpha L (ITGAL), also known as 

CD11a, mainly functions through CD11a/CD18 

integrins. It plays a role in the process of interleukocyte 

adhesion [53]. The role of CD11a in the pathogenesis of 

AF is unknown, but another integrin, CD11b/CD18, 

plays an important role in the pathogenesis of AF (ref?). 

The role of polymorphonuclear neutrophils (PMNs) in 

AF is mainly mediated by CD11b/CD18. The MPO 

released by PMNs directly activates more PMNs through 

the CD11b/CD18/MAPK pathway58, and the MPO 

released by PMNs furthermore acts directly on 

endothelial cells through cell junctions mediated by 

CD11b/CD18 integrins [54]. MPO can catalyze the 

oxidation of chloride to form hypochlorous acid, thereby 

activating MMP to participate in the atrial fibrosis 

process [29]. Whether CD11a/CD18 integrins play a 

similar role requires further investigation. 

 

As a lysosome-related transmembrane receptor, 

lysosomal-associated protein transmembrane 5 

(LAPTM5) is involved in the occurrence and 

progression of some neoplastic diseases [55]. 

Immunoglobulin superfamily member 6 (IGSF6) has 

been reported to be associated with inflammatory bowel 

disease [56]. Whether these two hub genes are involved 

in AF needs to be further explored. 

 

CONCLUSIONS 
 

In this study, we identified the hub genes associated 

with AF/immune infiltration through a series of 
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analytical methods and tools, including CTSS, NCF2, 

MNDA, CCR2, TYROBP, LAPTM5, IGSF6, PTPRC, 

AIF1, and ITGAL. The expression levels of these 

genes did not differ between samples from AF 

patients at different ages. However, the mRNA levels 

of CTSS, IGSF6, CCR2, and PTPRC were 

significantly higher in males than in females. We 

subsequently verified the above hub genes in an 

external dataset and then confirmed differences in 

AF/immune infiltration based on the screened hub 

genes. This study is the first to classify AF into four 

types using immune infiltration differences. Due to 

the small amount of sample data that could be 

included in this study, our results may not represent 

the full clinical picture of AF/immune infiltration. In 

addition, due to the difficulty of acquiring human 

atrial specimens, we cannot conduct biological 

validation on the results. Taken together, the findings 

of this study provide new insight into the pathogenesis 

and progression of AF from the perspective of 

immune infiltration. 
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Supplementary Figure 1. The sample distribution.  
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Supplementary Figure 2. Flowchart.  

 


