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INTRODUCTION 
 

People with HIV (PWH) now have a normal life 
expectancy due to combination antiretroviral therapy 

(cART) and other modern medical advances. Despite the 

normal life expectancy, PWH remain at an elevated risk 

for developing various comorbidities, including the 

emergence of cognitive impairment as seen in HIV-

associated neurocognitive disorder (HAND). HAND 

affects approximately 50% of PWH, irrespective of age 
[1, 2]. When such cognitive impairments emerge early 

(e.g., 3rd or 4th decade of life), the likelihood that they  

are related to HIV infection is generally high because  

the prevalence of other disorders leading to cognitive 
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ABSTRACT 
 

People with HIV (PWH) frequently experience mild cognitive decline, which is typically attributed to HIV-
associated neurocognitive disorder (HAND). However, such declines could also be a sign of early Alzheimer’s 
disease (AD) in older PWH. Distinguishing these two pathologies in PWH is exceedingly difficult, as there is a 
major knowledge gap regarding their neural and neuropsychological bases. In the current study, we begin to 
address this knowledge gap by recording magnetoencephalography (MEG) during a flanker interference task in 
31 biomarker-confirmed patients on the AD spectrum (ADS), 25 older participants with HAND, and 31 
cognitively-normal controls. MEG data was examined in the time-frequency domain using a data-driven 
approach. Our results indicated that the clinical groups (ADS/HAND) performed significantly worse than controls 
on the task and exhibited aberrations in interference-related theta and alpha oscillations, some of which were 
disease-specific. Specifically, patients (ADS/HAND) exhibited weaker interference activity in frontoparietal and 
cingulate cortices compared to controls, while the ADS group exhibited stronger theta interference than those 
with HAND in frontoparietal, occipital, and temporal cortices. These results reveal overlapping and distinct 
patterns of neurophysiological alterations among those with ADS and HAND in attentional processing centers 
and suggest the existence of unique oscillatory markers of each condition. 
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impairment is generally low in this age range. 

Conversely, neurological conditions such as Alzheimer’s 

disease (AD) commonly emerge later in life [3], and thus, 

the underlying cause of the emergence or worsening of 

cognitive impairment in older PWH is far less clear. 

 

Whether related to HAND, AD spectrum (ADS) 

pathologies, or another neurological condition, 

identifying the origin of cognitive impairment in older 

PWH is challenging considering the substantial overlap 

in neurocognitive deficits, including deficits in the 

domains of working memory, attention, and visuospatial 

processing [3–5]. Combining cognitive testing and 

amyloid imaging using positron-emission tomography 

(PET) has become the gold-standard diagnostic approach 

for AD. However, in PWH, imaging studies of beta-

amyloid have revealed normal deposition, irrespective of 

cognitive status, comparable to that seen in healthy 

demographically-matched adults [6–8]. Such differences 

in beta-amyloid deposition suggest AD and HAND have 

at least partially distinct pathological features, and 

amyloid imaging may be a reliable means to distinguish 

the conditions, albeit invasive and cost-prohibitive. 

 

Apart from amyloid PET, many structural neuroimaging 

studies have shown decreases in cortical volume and 

thickness in HAND and ADS populations, particularly 

within the posterior cortices [9, 10]. Functional MRI 

(fMRI) studies have also reported reduced brain 

activation across frontoparietal regions during attentional 

processing in participants on the ADS relative to healthy 

controls [11–13], while similar studies in those with 

HAND have identified aberrant increases in activation 

within the prefrontal, parietal, and occipital cortices [14, 

15]. Thus, structural and functional MRI studies have 

provided potential evidence that neural abnormalities in 

brain structure and function may both overlap and differ 

in ADS and HAND pathologies, but studies directly 

comparing the two groups are currently very rare. 

 

Similar to the existing structural and functional  

MRI literature, there are ample studies using magneto-

encephalography (MEG) in HAND and ADS groups 

individually, but few directly comparing the two 

conditions. MEG enables quantification of multi-spectral 

oscillatory activity including responses in the theta (4-8 

Hz) and alpha (8-14 Hz) bands, which are known to 

critically support attention processing [16–19]. Further, 

recent work has shown that MEG responses are stable 

over at least three years in adults [20, 21] and vary 

systematically with mental/task states [22], both of 

which are critical for the development of neural markers 

of disease. However, less is understood about the impact 

of disease progression on MEG responses. Many of  

the MEG studies examining patients on the ADS and 

those with HAND have focused on resting-state activity 

[23–28], and far fewer MEG studies have used task-

based paradigms to examine disease-specific neural 

aberrations supporting cognitive processes. The limited 

previous MEG studies of selective attention in the 

context of HIV have found altered theta and alpha 

activity, with theta predicting neuropsychological 

outcomes and distinguishing cognitively impaired and 

unimpaired PWH [29]. Though no task-based MEG 

studies of selective attention in ADS exist, recent EEG 

studies have found alpha activity to be altered in ADS 

disorders during attentional processing and recent 

resting-state MEG studies in AD have found consistent 

links between low-frequency activity and attention and 

processing speed [27, 28, 30, 31]. Given the limited 

work in this area, it is not surprising that no studies to 

date have directly examined the potentially shared and 

disease-specific aberrations in neural circuitry serving 

attention in those with HAND versus ADS. AD is not 

often diagnosed in older PWH reporting cognitive 

decline, as the emergence of such impairments are 

typically assumed to be HAND, despite reports of AD in 

older PWH with cognitive dysfunction [32, 33]. 
Therefore, finding noninvasive markers capable of 

dissociating cognitive dysfunction due to HIV or ADS  

is of utmost importance and would help launch the  

field toward new therapeutic approaches for the 

pathologically-specific features of each disorder. 

 

In this study, we recorded task-based MEG to examine 

the oscillatory dynamics underlying visual selective 

attention in participants with HAND and those on the 

ADS. Attentional deficits are well-documented in 

those with HAND [15, 34], and engage similar regions 

across the frontoparietal network typically noted as 

having high amyloid deposition in patients on the ADS 

[35]. Given these deficits, all participants completed 

an arrow-based Eriksen flanker [36] selective attention 

task during MEG recording. Based on previous 

literature independently investigating the neural 

processes supporting visual attention in HAND and 

ADS pathologies [15, 29, 31, 37], we predicted that 

our primary findings would center on parieto-occipital 

and prefrontal regions, which are strongly activated 

during selective attention processing. More specifically, 

we hypothesized that those on the ADS would exhibit 

stronger neural interference responses than those in the 

HAND group, and that such differences would occur in 

the theta range within frontoparietal brain regions. 

 

RESULTS 
 

Behavioral analysis 

 
Eighty-seven total participants were enrolled and 

matched group-wise on key demographic variables with 

the exception of age. Thus, age was included as a 
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Table 1. Demographic Information. 

 ADS (n=22) HAND (n=23) Controls (n=30) 

Age (years) 69.41 (4.84) 58.48 (6.05) 65.60 (7.28) 

Sex (% Female) 50% 53.33% 52.17% 

Education (years) 14.68 (2.95) 13.13 (2.01) 16.73 (2.63) 

ADL (% declined) 100% 69.57% 0% 

ADS, Alzheimer’s disease spectrum; HAND, HIV-associated neurocognitive disorder; 
controls, cognitively normal controls; ADL, Activities of daily living. 

 

nuisance covariate in all statistical modeling. Participants 

performing poorly on the task (i.e., accuracy < 60%) 

were excluded from all MEG analyses. This resulted in 

the exclusion of nine participants in the ADS group and 

two in the HAND group. In addition, one control 

participant was also removed due to low quality MEG 

data (i.e., large magnetic artifacts). Thus, the final sample 

included 22 participants on the ADS, 23 with HAND, 

and 30 healthy controls. Full demographic information is 

provided in Table 1. First, we collapsed across both 

clinical groups (ADS + HAND) to examine behavioral 

performance in those with cognitive impairment relative 

to healthy controls. Our results indicated that patients 

were less accurate (F1,72 = 9.53, p = .003) and responded 

slower (F1,72 = 4.44, p = .039) than controls (Figure 1). 

Next, we compared the ADS and HAND groups and 

found no differences in reaction time (p = .442, BF01 = 

1.60) nor accuracy (p = .106 BF01 = 0.90; Figure 1). 

 

 
 

Figure 1. Flanker attention task and behavioral metrics. (A) A fixation cross was presented for 1,500 (± 50) ms followed by a row of 5 
arrows for 2,500 ms. Participants were instructed to indicate whether the middle arrow was pointing to the left (right index finger) or right 
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(right middle finger) via button press. (B) Residuals of reaction time and accuracy accounting for the effect of age for each condition are given 
on the y-axis and group on the x-axis. Cognitively impaired participants (ADS/HAND groups) were less accurate and slower to respond than 
cognitively normal adults. However, those on the ADS generally performed similar to participants with HAND. *p<.05. 

 

MEG sensor-level analyses 

 

Similar to previous MEG studies utilizing the flanker task 

[29, 38], we identified two significant clusters of neural 

oscillatory activity via the sensor-level spectrograms 

(Figure 2). Specifically, we observed early increases in 

theta activity (3-6 Hz; 0-350 ms) followed by later, 

robust decreases in the alpha band (8–16 Hz) extending 

 

 
 

Figure 2. Sensor-level spectrograms and whole-brain averages. A time-frequency spectrogram illustrating task-specific 
oscillatory activity averaged across all trials, conditions, and participants (top). Time (ms) is on the x-axis and frequency (Hz) is 
presented on the y-axis. The color bar above the spectrogram indicates the percent change in amplitude from baseline. Robust 
increases in theta (3-6 Hz; 0-350 ms) and decreases in alpha activity (8-16 Hz; 200-600 ms) were found in occipito-parietal sensors 
(MEG1932). Both oscillatory responses significantly differed from baseline (p < .001, corrected). Stimulus onset (0 ms) is indicated by 
the dotted green line. Each brain image depicts the grand average across all participants of both, incongruent, and congruent trial 
conditions for each neural response (bottom). Strong theta oscillations were generated by neuronal populations in the bilater al primary 
visual cortices, while alpha oscillations were distributed across the lateral occipital cortices bilaterally. The color scale bar per neural 
response appears to the right in amplitude per voxel. 
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from 200 to 600 ms. Both oscillatory responses were 

strongest in posterior sensors near the parietal  

and occipital cortices (both p’s < .001, corrected). Note 

that the alpha response extended slightly beyond 600 

ms, but given the earliest average reaction time we 

limited the imaging window to this latency to avoid 

capturing the motor response elicited by the button 

press. 

 

MEG source-level analyses 

 

To identify the cortical regions generating these 

oscillatory responses, each significant time-frequency 

bin was imaged with a frequency-resolved beamformer 

for both conditions combined (e.g., incongruent and 

congruent) and each condition independently. The 

subsequent images were averaged across all participants 

per time-frequency response for incongruent and 

congruent conditions separately, as well as for both 

conditions together (Figure 2). These images indicated 

that the robust increases in theta activity were generated 

by populations of neurons in the bilateral visual cortices, 

while the strong decreases in alpha were distributed 

across lateral occipital regions bilaterally and right 

superior parietal cortices. 

 

Given our hypotheses, we computed flanker interference 

maps (incongruent – congruent) per time-frequency 

response and subjected these maps to ANCOVAs with 

age as a nuisance covariate to identify oscillatory 

differences between patients (ADS + HAND) and 

controls. Patients exhibited weaker theta interference 

effects compared to controls in the left inferior frontal 

gyrus and left superior parietal cortex (Figure 3; all  

 

 
 

Figure 3. Participants with ADS or HAND exhibited aberrant theta interference activit y during attentional processing 
compared to healthy controls. Whole-brain group difference maps of theta interference activity are displayed accompanied by 
violin plots for the peak voxel in each significant cluster. Group differences (p < .001, corrected)  were revealed in left inferior frontal 
(left) and left superior parietal cortices (right). Residuals of amplitude values controlling for age are presented below eac h 
corresponding brain slice. 
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ps < .001, corrected). Post-hoc testing revealed that both 

ADS and HAND groups exhibited a weaker interference 

effect than controls in the left superior parietal cortex (all 

ps < .001), and that the ADS and HAND groups did not 

differ from each other (BF01 = 3.24). In the left inferior 

frontal cortex, the HAND group had a stronger theta 

interference effect than controls (p = .03), while 

participants on the ADS exhibited similar theta 

interference responses as both controls (BF01 = 2.46) and 

HAND (BF01 = .24) participants. In regard to alpha 

oscillations, controls exhibited stronger alpha 

interference effects in the right anterior cingulate cortex 

compared to patients (p < .001, corrected). Post-hoc 

testing indicated that both the ADS (p = .006) and HAND 

(p = .043) groups individually differed from controls but 

did not differ from each other in alpha interference 

activity (BF01 = 3.05). 

 

To identify disease specific oscillatory aberrations (i.e., 

ADS vs. HAND), we utilized a whole-brain exploratory 

approach on the theta and alpha interference maps. Our 

key findings indicated that those in the ADS group 

exhibited stronger theta interference effects compared to 

participants in the HAND group (p < .001, corrected; 

Figure 4) across multiple cortical regions, including the 

left middle temporal gyrus, right superior parietal 

cortex, left middle occipital area, left lingual gyrus, and 

right dorsolateral prefrontal cortex. Alpha interference 

activity did not statistically differ by group in any 

region. 

 

 
 

Figure 4. Participants in the ADS group exhibited stronger theta interference activity compared to those in the HAND group 
during attentional processing. Whole-brain group comparison maps of theta interference activity are shown. Images for each 
significant cluster of activity are accompanied by the violin plots of the amplitude values for the peak voxel. Group differences (p < .001, 
corrected) were identified in the left middle temporal gyrus (top left), right superior parietal cortex (top right), left middle occipital cortex 
(bottom left), right lingual gyrus (bottom middle), and right dorsolateral prefrontal cortex (bottom right). Residuals of amplitude values 
controlling for age are given with each corresponding brain slice. 
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DISCUSSION 
 

There is currently an immense knowledge gap regarding 

the neural dysfunction and cognitive symptoms common 

among and differentiating between ADS and HAND 

pathologies. In this study, we utilized MEG to dissect 

the neural dynamics engaged during attentional 

processing in patients with HAND, those on the ADS 

spectrum, and cognitively normal controls. Our results 

indicated that both ADS and HAND groups exhibited 

region-specific differences relative to controls in theta 

and alpha interference responses across regions serving 

attention processing (e.g., frontoparietal and anterior 

cingulate cortices). Moreover, our exploratory analyses 

revealed disease-specific differences in theta interference 

activity across multiple cortical regions, such that those 

on the ADS exhibited stronger interference activity than 

the HAND group. The implications of these findings are 

considered below in detail. 

 

Given that previous MEG studies of selective attention 

using the Flanker [36] task in healthy adults have 

highlighted the importance of theta and alpha neural 

oscillations [38], we fully anticipated the robust theta 

and alpha responses that were observed across the entire 

sample. One prior MEG study reported aberrant theta 

and stronger baseline alpha activity in the prefrontal 

cortices of participants with HAND, which distinguished 

cognitively impaired from unimpaired PWH and 

controls [29]. Other studies of attention processing in 

patients on the AD spectrum revealed decreased theta 

[39, 40] and alpha [30, 31] responses during attention 

and visuospatial processing. Thus, while the current 

findings are novel, the overlap in aberrant attention-

related oscillatory activity in each frequency band across 

frontoparietal hubs in the ADS and HAND groups 

relative to controls is not entirely surprising. Briefly, the 

cognitively impaired groups (ADS + HAND) exhibited 

weaker theta interference effects compared to controls in 

the parietal cortex, along with stronger interference 

activity in the frontal cortex. Both of these neural 

regions are critical to attention function and these group 

differences may reflect both early and downstream 

effects, whereby aberrations early in the dorsal attention 

processing stream (e.g., parietal cortex) are offset by 

compensatory neural responses in frontal cortices to 

allocate additional attentional resources to maintain 

adequate task performance. Increases in theta activity 

have been linked to both the initial organization [16, 19] 

and hierarchical processing of attention [19, 41, 42], and 

thus theta interference responses during attentional 

processing may be an indicator of both primary and 

higher order processes, which in the current study  

were potentially both aberrant (i.e., early parietal 

activity) and compensatory (i.e., late frontal activity) 

across both HAND and ADS disease pathologies. 

Moreover, decreased alpha interference responses in the 

cognitively impaired groups (ADS + HAND) relative to 

controls were observed in the anterior cingulate cortex. 

Alpha activity has been linked to the allocation of 

attentional resources and the anterior cingulate cortices 

are known to be critical for top-down cognitive control 

[18, 19, 43]. Thus, such altered alpha interference 

responses during selective attention may suggest 

common dysfunction across both HAND and ADS in the 

higher-order subprocesses of attention allocation. The 

degree to which these alpha aberrations were offset by 

compensatory processing in the theta spectral range is 

unknown and should be a focus of future work. 

 

Beyond the general differences between patients and 

controls, we found disease-specific theta alterations in 

several brain regions including the prefrontal, parietal, 

occipital, and temporal cortices. Theta aberrations have 

been highlighted in previous studies as markers of 

cognitive impairment separately in AD and HAND [27, 

29, 40, 44, 45]. These disease-specific differences in 

theta oscillatory activity may suggest more fine-scale 

neurophysiological differences in temporal segmentation 

and higher order allocation of attentional resources, 

which could be secondary to regional amyloid 

accumulation in those on the ADS relative to HAND, as 

multiple studies have shown normal amyloid levels in 

patients with HAND [6, 8]. Further, aberrations in theta 

activity have also been linked to tau accumulation [46] 

in ADS cases, which is known to follow major amyloid 

accumulation. Although the cause of neural and 

cognitive deficits in HAND is uncertain, persistent 

neuroinflammation, mitochondrial dysfunction, and 

accelerated aging are all thought to play a major role 

[47–53], which separately or together may lead to 

altered theta oscillatory dynamics in attention circuitry. 

Regardless, our results suggest that theta oscillations are 

differentially affected across a network of brain regions 

in ADS compared to HAND, with the latter group 

exhibiting sharply decreased theta neural interference 

effects. 

 

As briefly noted above, these disease-specific theta 

abnormalities were distributed across key brain areas 

serving attentional allocation and processing. Potentially 

the most interesting regions exhibiting disease-specific 

theta deficits were the right superior parietal and 

dorsolateral prefrontal cortices. Such right frontoparietal 

cortices are well-known for their role in the allocation 

and coordination of attentional resources [54–56], with 

parietal cortices thought to aid in attentional shifting [57] 

and prefrontal regions directing the higher order control 

of attention [58]. Disease-specific theta aberrations were 
also observed in the left middle occipital cortex and 

lingual gyrus, which are thought to direct and amplify 

visuospatial attention [59]. Considering the specific 
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functions of these regions during attention processing, the 

presence of disease-specific deficits in theta oscillatory 

activity within these circuits is not entirely surprising  

[29, 30, 39, 40, 44]. In addition to the frontoparietal and 

visual cortices, we found neural responses in temporal 

regions distinguishing ADS and HAND. Theta 

oscillations occurring in temporal regions have 

previously been associated with top-down cognitive 

control and binding [60, 61]. Aberrant occipitotemporal 

structure and function have been attributed to visual 

attention deficits in AD [37, 62] and PWH [63, 64]. Thus, 

differences in the occipitotemporal regions may suggest 

deficient early binding of relevant stimulus information 

and may, in turn, create complications in the later higher 

order control of allocating attentional resources such as in 

disease-specific aberrations detected in the frontoparietal 

regions. However, the neurobiological origins of these 

deficits may differ between those with HAND and ADS, 

as only ADS pathology has been linked to amyloid 

deposition whereas as HAND has been attributed to a 

family of interconnected causes (e.g., inflammation, 

mitochondrial redox environment, etc.) [6, 8, 47–53]. 

 

Before closing, it is important to articulate the 

limitations of the current study. Foremost, only the ADS 

group consisted of participants who all underwent 

amyloid PET imaging. Although studies to date have 

broadly shown amyloid PET negativity in HAND [6–8], 

future studies should include amyloid PET for the entire 

sample, which would enable new avenues for the 

multimodal integration of PET and MEG when directly 

comparing ADS and HAND neuropathology. In 

addition, our sample size was only moderate and while 

being adequately powered for comparisons involving our 

three core groups (i.e., ADS, HAND, and cognitively-

normal controls), we were underpowered to evaluate sex 

differences in the cognitive and neurophysiological 

parameters of interest. Examining sex differences in 

ADS and HAND is critical to advancing the field and 

should be a focus of future studies. Along the same lines, 

we were underpowered to probe differences among 

HAND subtypes (e.g., HIV-associated dementia versus 

mild neurocognitive disorder) and this should be a focus 

of future work in this area. Another limitation is that we 

did not consider other biological metrics that may be 

disease-specific, such as blood-based indicators of 

neuroinflammation and/or the mitochondrial redox 

environment. Although the cause of HAND remains 

uncertain, neuroinflammation is a leading concern [47, 

65] and neuroimmunological factors are also thought to 

contribute to ADS pathogenesis [66, 67]. Thus, future 

studies should integrate inflammatory marker panels and 

other blood-based assessments to identify disease-
specific biological, neurophysiological, and interactive 

processes that lead to cognitive decline. Additionally, 

impairment in AD and HAND extends across numerous 

cognitive domains beyond attention, including motor 

control and working memory [3, 15, 68, 69]. Thus, 

investigating the neural dynamics underlying other 

cognitive domains may be of particular interest as a 

future direction. Alpha and theta activity are also known 

to support working memory, motor processing, and 

emotion regulation [70–74], which are cognitive 

functions known to be aberrant in both AD and HAND 

independently [27, 29, 40, 44]. 

 

In conclusion, the current study examined the 

commonalities and differences in neurophysiological 

processing underlying cognitive dysfunction in persons 

with HAND and those on the ADS. Our primary 

findings included theta and alpha interference effects in 

frontoparietal regions that differentiated cognitively-

impaired participants (i.e., those with ADS and HAND) 

from cognitively normal controls. In addition, we 

identified disease-specific theta interference responses 

in key attention processing areas that distinguished 

patients on the ADS from those with HAND. In sum, 

the current study is the first to probe the commonalities 

and differences in the neural dynamics serving attention 

in ADS and HAND, and our most important findings 

suggest that some neural oscillatory deficits are 

common across the two conditions, while others are 

likely specific to the neuropathology of each disorder. 

 

MATERIALS AND METHODS 
 

Participants 

 

Thirty-one amyloid-positive patients on the Alzheimer’s 

disease spectrum with amnestic mild cognitive 

impairment (aMCI) or mild probable AD, as determined 

by a fellowship-trained neurologist specializing in 

memory disorders, were enrolled in this study. Twenty-

five cognitively-impaired PWH who were receiving 

effective cART and were virally suppressed at the time 

of the study also participated in this study. In addition, a 

control group of 31 older adults with normal cognition 

were enrolled to serve as reference sample for the 

standard, task-dependent neural dynamics implicated in 

healthy aging. All participants were between the ages of 

51 and 79 years at the time of enrollment and were 

recruited through two different projects (R01-

MH116782-S1 and R01-MH118013-S1). The groups 

were matched on key demographic variables with the 

exception of age, as the HAND group was slightly 

younger than healthy controls and ADS patients. Note 

that age was included as a nuisance covariate in all 

statistical modeling. Exclusion criteria included any 

medical illness affecting CNS function, any neurological 
disorder (other than AD/aMCI/HAND), history of head 

trauma, and current substance use disorder. Written 

informed consent was obtained from each participant 
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and their informant (if applicable) following a detailed 

description of the study. In cases where capacity to 

consent was questionable, educated assent was obtained 

from the research participant, in addition to informed 

consent from a legally-authorized representative. 

 

Neuropsychological testing 

 

All participants underwent a battery of 

neuropsychological assessments (Table 2), with raw 

scores for each participant being converted to 

demographically-adjusted z-scores using published 

normative data [75–77]. This battery, which was 

developed in collaboration with a clinical neuro-

psychologist specializing in cognitive disorders, 

assessed multiple functional domains known to be 

impaired in patients with HAND and those on the AD 

spectrum. Specifically, the cohort of PWH were assessed 

on the following cognitive domains per the Frascati 

criteria [68] learning, memory, attention and executive 

function, motor, and processing speed. The ADS cohort 

completed a neuropsychological assessment that assessed 

commonly impaired cognitive domains in AD: learning, 

memory, attention and executive function, language, and 

processing speed. In addition, we measured premorbid 

function and functional impairment in all participants, 

along with general cognitive status in the AD group. 

Controls completed one of these two batteries depending 

on which project they were drawn from. Using these 

assessments and activities of daily living (ADL) [78], 

PWH were diagnosed with HAND according to the 

Frascati guidelines, including subgroups with 

asymptomatic neurocognitive impairment (ANI; 16 

patients or 69.57% of final sample; i.e., having at least 

two cognitive domains one SD below the standardized 

mean with no functional declines), mild neurocognitive 

disorder (MND; two patients or 8.70% of final sample; 

i.e., at least two cognitive domains one SD below the 

standardized mean, with ADL deficits), or HIV-

associated dementia (HAD; five patients or 21.74% of 

final sample; i.e., having at least two cognitive domains 

two SDs below the standardized mean, with ADL 

deficits). Healthy controls were cognitively normal and 

did not meet the above criteria for neuropsychological 

impairment. For patients on the ADS, instrumental 

activities of daily living (IADLs) were measured (with an 

informant) using the Functional Activities Questionnaire 

(FAQ) [79]. In addition to the neuropsychological 

battery, general cognitive status was measured using the 

Montreal Cognitive Assessment (MoCA) [80] and the 

Mini-Mental State Examination (MMSE) [81]. 

 

Florbetapir 18F positron emission tomography 

 

Combined PET/CT data using 18F-florbetapir (Amyvid™, 

Eli Lilly) and a GE Discovery MI digital scanner 

(Waukesha, WI) were collected following the standard 

procedures described by the Society of Nuclear 

Medicine and Molecular Imaging (3D acquisition; single 

intravenous slow-bolus < 10 mL; dose = 370 MBq; 

waiting period = 30-50 min; acquisition = 10 min) [82]. 

Images were attenuation corrected using the CT data, 

reconstructed in MIMNeuro (slice thickness = 2 mm) 

[83], converted to voxel standardized uptake values 

based on body weight (SUVbw), and normalized into 

MNI space. Each scan was over-read by a fellowship-

trained neuroradiologist blinded to group assignment and 

assessed as being “amyloid-positive” or “amyloid-

negative” using established clinical criteria [83]. At this 

stage, patients who were amyloid-negative were 

excluded from the AD spectrum group. 

 

MEG experimental paradigm and behavioral analysis 

 

During MEG recording, participants were seated in a 

nonmagnetic chair within a magnetically-shielded room 

and were monitored by study staff using a real-time 

audio-video feed from inside of the shielded room. 

Participants’ hands rested on a shelf attached to the 

chair and their right hand was positioned over a 

response glove that included a button for each of the 

second through fifth digits, although participants only 

used the buttons for the second and third digit (i.e., 

index and middle finger). Each participant performed 

200 total trials of an arrow-based Eriksen flanker task 

(Figure 1) [36, 38]. Each trial began with a fixation 

cross that was presented for a variable duration of 1,450 

to 1,550 milliseconds (ms), followed by a row of 5 

arrows for 2,500 ms. Participants indicated whether the 

middle arrow was pointing to the left (right index 

finger) or right (right middle finger) as soon as possible 

following the onset of the target. Trials were 

pseudorandomized and equally divided between 

congruent and incongruent conditions, with left and 

right arrows being equally represented in each of the 

conditions. Trials with a reaction time 2.5 standard 

deviations (SDs) above or below each participant’s 

mean were excluded prior to averaging. Two by two 

ANCOVAs, controlling for the effect of age, were used 

to probe for group and condition differences in reaction 

time and accuracy. We first compared the behavioral 

metrics in healthy controls to those of patients (HAND 

+ ADS) to identify commonalities across the diseases 

and then followed-up with ADS versus HAND 

comparisons to isolate disease specific deficits. 

 

MEG data acquisition 

 

MEG data acquisition, structural coregistration, 
preprocessing, and sensor-/source-level analyses 

followed a pipeline similar to a number of previous 

manuscripts from our laboratory [84–86]. All recordings 
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Table 2. Neuropsychological domains and tests by cohort. 

Aging cohort of PWH AD spectrum cohort 

Domain Assessment 
HAND 

(n=23) 

Controls 

(n=14) 
Domain Assessment 

ADS  

(n=22) 

Controls 

(n=16) 

Learning HVLT-R Learning Trials 1-31 -1.60 (1.01) 0.24 (0.72) 

Learning 

HVLT-R Learning Trials 

1-31 
-1.71 (1.39) -1.13 (1.65) 

Memory 

HVLT-R Delayed Recall1 -1.61 (0.97) 0.25 (0.88) 
WMS-IV Logical Memory 

I Recall1 -1.23 (1.49) -0.54 (1.63) 

HVLT-R Recognition 

Discriminability Index1 
-0.90 (1.12) 0.50 (0.58) 

Memory 

HVLT-R Delayed Recall1 -2.44 (1.33) -1.72 (1.55) 

Executive 

Function 

Phonemic verbal fluency1 -0.53 (0.93) 0.14 (1.21) 
HVLT-R Recognition 

Discriminability Index1 
-2.44 (1.23) -1.24 (1.68) 

Semantic verbal fluency1 -0.17 (1.02) 0.44 (1.09) 
WMS-IV Logical Memory 

II Delayed Recall1 
-1.85 (1.43) -1.02 (1.76) 

Trail Making Test Part B1 -0.17 (0.74) 0.61 (0.81) 
WMS-IV Logical Memory 

II Recognition1 
-0.54 (1.00) -0.36 (1.04) 

Comalli Stroop Test Interference 

Trial1 
-1.36 (1.63) 0.02 (1.30) 

Attention 

and 

Executive 

Function 

WAIS-IV Digit Span 

Forward, Backward, and 

Sequencing1 

-0.74 (1.26) -0.28 (1.21) 

Attention 
WAIS-III Symbol Search1 -0.36 (0.77) 1.33 (0.73) Trail Making Test Part B1 -0.88 (1.52) -0.40 (1.31) 

Comalli Stroop Test Word Trial1 -1.24 (1.29) 0.13 (0.84) 

Language 

Boston Naming Test1 -0.32 (1.34) 0.01 (1.31) 

Processing 

Speed 

WAIS-III Digit Symbol Coding1 -0.25 (0.70) 1.67 (0.74) Phonemic verbal fluency1 -0.70 (1.04) -0.75 (1.22) 

Trail Making Test Part A1 -0.23 (0.83) 0.46 (1.00) Semantic verbal fluency1 -1.66 (1.59) -1.09 (2.02) 

Comalli Stroop Test Color Trial1 -0.87 (1.05) 0.13 (0.84) Processing 

Speed 

WAIS-IV Digit Symbol 

Coding1 
-0.50 (1.57) 0.16 (1.37) 

Motor 

Grooved Pegboard – Dominant Hand1 -1.18 (1.09) 0.20 (0.95) Trail Making Test Part A1 -1.21 (1.59) -0.64 (1.57) 

Grooved Pegboard – Non-Dominant 

Hand1 
-1.27 (0.91) 0.16 (0.70) 

Functional 

Impairment 

Functional Activities 

Questionnaire (FAQ)2 12.23 (5.79) 0.19 (0.40) 

Functional 

Impairment 

Modified version of the Lawton and 

Brody Instrumental Activities of 

Daily Living Scale Total Declines2 

1.65 (1.97) 1.00 (1.84) 

General 

Cognitive 

Status 

Montreal Cognitive 

Assessment (MoCA)2 
20.86 (4.02) 22.78 (4.41) 

Mini-mental State 

Examination (MMSE)2 24.95 (3.34) 29.50 (0.73) 

Premorbid 

Function 
WRAT-4 Word Reading1 -0.64 (0.86) 0.72 (1.05) 

Premorbid 

Function 
WRAT-4 Word Reading1 0.35 (0.91) 1.11 (0.80) 

Mean demographically corrected z-scores and standard deviations of neuropsychological performance on the assessments 
included in each study battery by group. Assessments that are shared across both cohorts are in bold. PWH, People with HIV; 
ADS, Alzheimer’s disease spectrum; HVLT-R, Hopkins Verbal Learning Test – Revised; WMS-IV, Wechsler Memory Scale, 4th 
Edition; WAIS-III, Wechsler Adult Intelligence Scale, 3rd Edition; WAIS-IV, Wechsler Adult Intelligence Scale, 4th Edition; WRAT-
4, Wide Range Achievement Test. 
1z-score. 
2Raw score. 

 

took place in a one-layer magnetically-shielded room 

with active shielding engaged for environmental noise 

compensation. A 306-sensor Elekta/MEGIN MEG 

system (Helsinki, Finland), equipped with 204 planar 

gradiometers and 102 magnetometers, was used to 

sample neuromagnetic responses continuously at 1 kHz 

with an acquisition bandwidth of 0.1–330 Hz. Each 

MEG dataset was individually corrected for head motion 

and subjected to noise reduction using the signal space 

separation method with a temporal extension (MaxFilter 

v2.2; correlation limit: 0.950; correlation window 

duration: 6 s) [87]. Only the gradiometer data was used 

in further analyses. 

Structural MRI processing and MEG coregistration 

 

Prior to MEG acquisition, four coils were attached to 

the participants’ heads and localized, together with the 

three fiducial points and scalp surface, using a 3-D 

digitizer (Fastrak 3SF0002, Polhemus Navigator 

Sciences, Colchester, VT, USA). Once positioned in the 

MEG, the coils produced an electrical current with a 

unique frequency label and an accompanying 

measurable magnetic field, which allowed each coil to 

be localized in reference to the MEG sensor array 

throughout the recording. Since coil locations were also 

known in head coordinates, all MEG measurements 



www.aging-us.com 534 AGING 

could be transformed into a common coordinate system. 

With this coordinate system, each participant’s MEG 

data were co-registered with structural T1-weighted 

MRI data using BESA MRI (Version 2.0) prior to 

source-space analysis. Structural MRI data were aligned 

parallel to the anterior and posterior commissures and 

transformed into standardized space. Following source 

analysis (i.e., beamforming), each participant’s 4.0 × 

4.0 × 4.0 mm functional images were also transformed 

into standardized space using the transform that was 

previously applied to the structural MRI volume and 

spatially resampled. 

 

MEG preprocessing, time–frequency transformation 

and sensor-level statistics 

 

Cardiac and blink artifacts were identified in the raw 

MEG data and removed with signal-space projection 

(SSP), which was subsequently accounted for during 

source reconstruction [88]. The continuous magnetic 

time series was then bandpass filtered between 0.5 and 

200 Hz, plus a 60 Hz notch filter, and divided into 

2000 ms epochs, with the baseline extending from -

450 to -50 ms prior to the onset of the stimulus. 

Epochs containing artifacts were rejected per 

participant using a fixed 3 MAD cutoff threshold. 

Briefly, in MEG, the raw signal amplitude is strongly 

affected by the distance between the brain and the 

MEG sensors, as the magnetic field strength falls off 

sharply as the distance from the current source 

increases. To account for this source of variance across 

participants, as well as other sources of variance, we 

used a 3 MAD threshold based on the within-subject 

signal distribution for both amplitude and gradient to 

reject artifacts. Across all participants, the average 

amplitude threshold for rejecting artifacts was 1042.51 

(SD = 331.89) fT/cm and the average gradient 

threshold was 207.83 (SD = 122.86) fT/(cm*ms). 

Across all groups, an average of 165.77 (SD = 16.39) 

out of 200 possible trials per participant were used for 

further analysis in this experiment, including an 

average of 83.23 (SD = 8.53) out of 100 trials per 

participant in the incongruent condition and 82.54 (SD 

= 8.65) out of 100 trials per participant in the 

congruent condition. Importantly, our comparisons 

between groups and conditions were not affected by 

differences in the number of accepted trials per group, 

as this metric did not significantly differ as a function 

of condition (p = .255) or group (p = .142). 

 

Complex demodulation [89, 90] was used to transform 

the artifact-free epochs into the time-frequency domain 

and the resulting spectral power estimations were 
averaged per sensor to generate time-frequency plots of 

mean spectral density. The time-frequency analysis was 

performed with a frequency-step of 1 Hz and a time-

step of 50 ms between 4 and 50 Hz. These sensor-level 

data were then normalized by each respective bin’s 

baseline power for visualization purposes, calculated as 

the mean power during the -450 to -50 ms baseline 

period. 

 

The specific time-frequency windows used for source 

imaging were determined by statistical analysis of the 

sensor-level spectrograms across all participants and 

both conditions using the entire array of gradiometers. 

Each data point in each sensor-level spectrogram was 

initially evaluated using a mass univariate approach 

based on the general linear model. To reduce the risk of 

false positive results while maintaining reasonable 

sensitivity, a two-stage procedure was followed to 

control for Type 1 error. In the first stage, paired sample 

t-tests against baseline were conducted on each data 

point and the output spectrogram of t-values was 

thresholded at p < .05 to define time-frequency bins 

containing potentially significant oscillatory deviations 

across all participants. In stage two, the time-frequency 

bins that survived the threshold were clustered with 

temporally and/or spectrally neighboring bins (per 

sensor) that were also above the threshold (p < .05), and 

a cluster value was derived by summing all of the t-

values of all data points in the cluster. Nonparametric 

permutation testing was then used to derive a 

distribution of cluster values and the significance level 

of the observed clusters (from stage one) were tested 

directly using this distribution [91, 92]. For each 

comparison, 10,000 permutations were computed to 

build a distribution of cluster values. Based on these 

analyses, time-frequency windows within significant 

clusters (p < .001) were identified and used to guide 

source-level analysis. Cluster-based permutation testing 

was performed in BESA Statistics (v2.1). 

 

MEG source imaging 

 

Cortical sources were imaged through an extension of the 

linearly constrained minimum variance vector 

beamformer [93–95], which employs spatial filters in the 

frequency domain to calculate source power for the entire 

brain volume. The single images were derived from the 

cross spectral densities of all combinations of MEG 

gradiometers averaged over the time-frequency range of 

interest, and the solution of the forward problem for each 

location on a grid specified by input voxel space. In 

principle, the beamformer operator generates a spatial 

filter for each grid point that passes signals without 

attenuation from the given neural region, while 

suppressing activity in all other brain areas. The filter 

properties arise from the forward solution (lead field) for 
each location on a volumetric grid specified by input 

voxel space, and from the MEG covariance matrix. For 

each voxel, a set of beamformer weights is determined, 
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which amounts to each MEG sensor being allocated a 

sensitivity weighting for activity in the particular voxel. 

This set of beamformer weights is the spatial filter unique 

to the given voxel and this procedure is iterated until such 

a filter is computed for each voxel in the brain. Activity 

in each voxel is then determined independently and 

sequentially to produce a volumetric map of electrical 

activity with relatively high spatial resolution. In short, 

this method outputs a power value for each voxel in the 

brain, determined by a weighted combination of sensor-

level time–frequency activity. Following convention, the 

source power in these images was normalized per 

participant using a prestimulus noise period (i.e., 

baseline) of equal duration and bandwidth [94]. MEG 

preprocessing and imaging used the Brain Electrical 

Source Analysis (version 7.0) software. 

 

Statistical analysis 
 

3D maps of brain activity were averaged across all 

participants to qualitatively assess the anatomical 

basis of the significant oscillatory responses identified 

through the sensor-level analysis. Whole-brain flanker 

interference maps were then computed by subtracting 

the congruent condition image from the incongruent 

condition image for each time-frequency response per 

participant. Using the resulting interference maps, we 

employed an ANCOVA approach with age as a 

nuisance covariate. Our goals were to identify both 

similarities and differences in aberrant regional neural 

oscillatory activity during selective attention 

processing between the two clinical groups. Our first 

level analyses collapsed across patient groups (ADS + 

HAND) and aimed to identify regions where neural 

oscillatory responses differed between patients and 

controls. Brain regions where significant group 

differences were found were then probed to identify 

disease specific effects (i.e., ADS versus HAND). 

Bayes Factors (BF01) were also computed to evaluate 

the probability of the null for non-significant group 

comparisons between ADS and HAND. Our second 

level analyses were more exploratory and compared 

the ADS and HAND groups directly at the whole-

brain level for each oscillatory response. All statistical 

maps used an initial uncorrected significance 

threshold of p < .001 with a volume threshold of  

320 mm3. 
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