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ABSTRACT 
 

Background: Epigenetic reprogramming has been reported to play a critical role in the progression of thyroid 
cancer. RNA methylation accounts for more than 60% of all RNA modifications, and N6-methyladenosine (m6A) 
is the most common modification of RNAs in higher organisms. The purpose of this study was to explore the 
related modification mode of m6A regulators construction and its evaluation on the clinical prognosis and 
therapeutic effect of thyroid cancer. 
Methods: The levels of 23 m6A regulators in The Cancer Genome Atlas (TCGA) were analyzed. Differentially 
expressed genes (DEGs) and survival analysis were performed based on TCGA-THCA clinicopathological and 
follow-up information, and the mRNA levels of representative genes were verified using clinical thyroid cancer 
data. In order to detect the effects of m6A regulators and their DEGs, consensus cluster analysis was carried 
out, and the expression of different m6A scores in Tumor Mutation Burden (TMB) and immune double 
antibodies (PD-1 antibody and CTLA4 antibody) were evaluated to predict the correlation between m6A score 
and thyroid cancer tumor immunotherapy response. 
Results: Different expression patterns of m6A regulatory factors were detected in thyroid cancer tumors and 
normal tissues, and several prognoses related m6A genes were obtained. Two different m6A modification 
patterns were determined by consensus cluster analysis. Two different subgroups were established by 
screening overlapping DEGs between two m6A clusters, with cluster A having the best prognosis. According to 
the m6A score extracted from DEGs, thyroid cancer patients can be divided into high and low score subgroups. 
Patients with lower m6A score have longer survival time and better clinical features. The relationship between 
m6A score and Tumor Mutation Burden (TMB) and its correlation with the expression of PD-1 antibody and 
CTLA4 antibody proved that m6A score could be used as a potential predictor of the efficacy of immunotherapy 
in thyroid cancer patients. 
Conclusions: We screened DEGs from cluster m6A and constructed a highly predictive model with prognostic 
value by dividing TCGA-THCA into two different clusters and performing m6A score analysis. This study will help 
clarify the overall impact of m6A modification patterns on thyroid cancer progression and formulate more 
effective immunotherapy strategies. 
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INTRODUCTION 
 

Thyroid cancer is the most common malignant tumor of 

the endocrine system, ranking ninth in the incidence of 

malignant tumors worldwide. Its incidence has 

increased significantly in recent years, with more than 

580,000 new cases worldwide in 2020 [1]. According  

to the pathological classification, thyroid cancer can  

be divided into differentiated, myeloid, poorly 

differentiated, and undifferentiated types. Differentiated 

thyroid cancer accounts for more than 90% of thyroid 

cancer cases and can be further divided into papillary 

thyroid cancer (PTC, approximately 80–85%), follicular 

thyroid cancer (approximately 10–15%), anaplastic 

thyroid cancer (<2%), and poorly differentiated thyroid 

cancer (<2%) [2]. Environmental and genetic factors 

play important roles in the pathogenesis of thyroid 

cancer [3], and genetic changes, such as BRAF and 

RAS mutations or RET/PTC rearrangement leading to 

activation of the oncogenic MAPK pathway, are closely 

related to the occurrence of thyroid cancer [4]. 

Therefore, it is important to analyze the pathogenesis of 

this disease at the molecular level. 

 

An increasing number of studies have shown that post-

transcriptional RNA modifications play an important 

role in the occurrence and development of various 

malignant tumors [5–7]. In the context of tumor 

progression, RNA and histone changes at epigenetic and 

genetic levels have been widely studied, and many 

therapeutic methods have been developed [8–10]. N6-

methyladenine (m6A), a type of RNA modification, 

refers to methylation at the N6 position of the adenine 

base, and it has the highest endogenous abundance and 

widely exists in eukaryotic RNAs [11–13]. In terms of 

molecular mechanisms, m6A participates in almost all 

processes of RNA metabolism, including RNA 

transport, splicing, translation, and degradation, and 

plays a vital role in regulating gene expression [14–16]. 

By regulating the expression of tumor-related genes, 

m6A participates in the regulation of tumor 

proliferation, invasion, and metastasis, and its 

regulation is dynamic and reversible in various patho-

physiological processes [17–19]. 

 

Immunotherapy can improve patient prognosis by 

enhancing antitumor immunity [20]. Immune 

checkpoint inhibitors (ICIs) that target T cells include 

anti-programmed death protein 1 (PD-1), anti-

programmed death ligand 1 (PD-L1) antibodies, and 

anti-cytotoxic T lymphocyte-associated protein 4 

(CTLA4) [21, 22]. Studies on immunogenic tumors, 

such as melanoma, Hodgkin’s lymphoma, and non-

small cell lung cancer, have confirmed that the 

combination of ICIs and other kinds of antitumor drugs 

could expand the benefits to patients [23, 24]. 

Researchers are constantly exploring the clinical 

practice of introducing PD-1/PD-L1 as a biomarker and 

treatment strategy for thyroid cancer [25]. However, not 

all patients respond well to ICI treatment [26]. 

Therefore, the optimization of detection methods and 

selection of treatment regimens are still important 

challenges faced by clinicians [27]. 

 

In this study, we integrated transcriptomic and genomic 

data of 506 thyroid cancer samples from The Cancer 

Genome Atlas (TCGA) database to evaluate m6A 

modification patterns and comprehensively assess its 

relationship with the infiltration characteristics of tumor 

microenvironment (TME) cells. Through non-negative 

matrix factorization clustering, three different m6A 

modification patterns were identified, and three groups 

of different genes were screened according to different 

m6A genotypes. A quantitative “m6A score” system 

was further established to define different m6A 

modification patterns. The findings suggest that m6A 

plays an integral role in the formation of the tumor 

microenvironment and may serve an important function 

in the treatment and prognosis of thyroid cancer. 

 

RESULTS 
 

Genetic variation of m6A regulators in thyroid 

cancer 

 

Figure 1A showed the protein-protein interaction (PPI) 

network of 23 m6A regulators, including eight writers, 

13 readers, and two erasers. Different colors used to 

distinguish the functions of the regulators using the 

STRING database. Further analysis (Figure 1B) revealed 

CNV mutations in m6A regulators. YTHDC2, 

YTHDF2, RBM15, LRPPRC, METTL14 and FMR1 

showed CNV frequency gain, in contrast, IGF2BP2, 

ZC3H13 and METTL16 showed CNV frequency loss. 

The CNV changes of 23 m6A regulators on 

chromosomes were shown in Figure 1C. As shown in 

Figure 1D mutation frequency analysis, 6 m6A related 

genes were mutated among 7 of 487 samples (1.44%). 

Figure 1E showed the expression of 23 m6A 

methylation regulators in the thyroid cancer tissues and 

normal tissues. In the heatmap, red indicated high 

expression and blue indicated low expression. It was 

observed that 23 m6A regulators had different 

expression characteristics in tumor and normal tissues. 

To determine whether these genetic variations affect the 

expression of m6A regulators in patients with thyroid 

cancer, we studied the mRNA expression levels of 

regulators in tumor and normal samples. The differential 

expression of m6A gene in thyroid cancer was analyzed 

using TCGA database. In block diagram Figure 1F, red 

represented thyroid cancer tissue and blue represented 

normal tissue. It could be seen from the figure 
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that most m6A genes differentially expressed in cancer 

and normal tissues. Pearson correlation analysis showed 

the correlation among the 23 m6A genes. In Figure 1G, 

red and blue indicated the positive and negative 

correlations, respectively. As shown in the figure, 

VIRMA was highly correlated with YTHDF3, 

METTL14, and ZC3H13, with correlation coefficients 

of 0.92, 0.89, and 0.87, respectively. YTHDC1 was also 

highly correlated with METTL14 with a correlation 

coefficient of 0.89. Table 1 showed the expression level 

of 23 m6A regulators in thyroid cancer tissues and 

normal tissues. 

 

Relationship between m6A related genes and 

prognosis of thyroid cancer 

 

As shown in Figure 2A, TCGA database was used for 

m6A survival analysis, and nine m6A genes related to 

the prognosis of thyroid cancer patients were screened. 

In Table 2, HR was the risk value, HR>1 means the risk 

 

 
 

Figure 1. Genetic variation of m6A regulators in thyroid cancer. (A) The protein-protein interaction (PPI) network of 23 m6A 
regulators. (B) The mutation frequency. (C) The location of the change of m6A regulator CNV on chromosome. (D) m6A waterfall plot. The 
right vertical coordinate represents m6A regulators, and the left vertical coordinate represents the mutation rate of m6A regulators in 
thyroid cancer. (E) Pearson correlation analysis shows the correlation of 23 m6A methylation modification regulators in thyroid cancer. (F) 
m6A methylation regulators expression in thyroid cancer. The figure shows the expression of 23 m6A regulators in thyroid cancer tumors 
and normal specimens. (G) The difference of mRNA expression levels of 23 m6A regulators between normal and thyroid cancer samples. 
The asterisk indicates statistical p value (*P < 0.05, **P < 0.01, ***P < 0.001). 
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Table 1. The expression levels of 23 m6A regulators in TCGA-THCA and normal tissues. 

Gene Normal (median) Tumor (median) logFC p-value P symbol 

IGF2BP2 11.94091936 40.50527386 1.762195844 8.41E-24 *** 

RBM15 9.226988352 6.034930992 −0.612522561 4.87E-22 *** 

YTHDC1 57.38977318 41.05247029 −0.483324635 2.95E-15 *** 

METTL14 18.33430627 13.11828989 −0.482966017 8.53E-15 *** 

FTO 18.36648365 13.08475892 −0.489188098 1.49E-12 *** 

ZC3H13 37.88995144 27.22970004 −0.476634201 5.57E-11 *** 

IGF2BP3 0.490382364 0.892929291 0.864638841 6.10E-11 *** 

HNRNPA2B1 320.5051508 261.1527411 −0.295453696 6.37E-10 *** 

WTAP 59.99919573 47.90170005 −0.324866303 5.25E-09 *** 

ALKBH5 134.8081736 113.6898924 −0.245803975 6.41E-08 *** 

IGF2BP1 0.048973371 0.047495885 −0.044194993 6.42E-08 *** 

YTHDC2 11.11029344 8.93724255 −0.313995238 4.15E-07 *** 

YTHDF3 42.34521438 34.01845178 −0.31588145 4.54E-07 *** 

KIAA1429 19.19407034 15.63908256 −0.295504803 5.78E-07 *** 

METTL3 24.46770127 20.21351981 −0.275558005 2.83E-06 *** 

YTHDF1 78.59670676 67.79570638 −0.213274956 4.28E-06 *** 

LRPPRC 40.77588123 35.37785033 −0.204869668 0.000151512 *** 

METTL16 20.69897985 18.64734899 −0.150589123 0.0046163 ** 

RBMX 112.698666 102.968029 −0.13027398 0.014140605 * 

YTHDF2 58.75080248 55.69420552 −0.077081322 0.088825874 ns 

HNRNPC 153.0058443 159.6669495 0.06147895 0.101208289 ns 

FMR1 33.60589753 34.29579162 0.029317122 0.798681961 ns 

RBM15B 38.27544113 38.53053764 0.009583312 0.825583473 ns 

ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. 
 

increases, HR<1 means the risk decreases, and HR.95L 

and HR.95h were the risk fluctuation ranges. According to 

the relationship between m6A related genes and prognosis, 

Figure 2B showed the prognosis network, which reflects 

the comprehensive situation of m6A regulator interaction, 

regulator connection, and prognostic significance for 

thyroid cancer patients. We found that not only m6A 

regulators in the same functional category showed a 

significant correlation in expression, but also among 

writers, readers, and erasers. As shown in Figure 2C, 

the protein expression of m6A molecules related to 

prognosis in thyroid cancer tissues was analyzed using  

a human protein map (https://www.proteinatlas.org/). 

Immunohistochemical images showed the expression 

levels of RBM15, VIRMA, YTHDC2, YTHDF2, 

METTL14, and IGF2BP2 proteins in tumor tissues. 

 

Determination of m6A modification mode 

 

The category discovery tool “sense clusterplus” was 

used to uniformly cluster the data of patients with 

thyroid cancer based on the m6A methylation regulator. 

Figure 3A and Supplementary Figure 1A–1J showed 

that, between k = 2 and 9, the most stable clustering 

results can be obtained when k = 2. PCA (Figure 3B) 

showed that this classification method could effectively 

distinguish samples. In Figure 3C, thermographic 

analysis was used to display the distribution of different 

clinical features in the two m6A grouped samples. In 

Figure 3D, histograms and bubble diagrams were drawn 

using GO enrichment analysis to observe the functional 

types, mainly involving differential genes. It could be 

seen from the figure that the functions mainly focus on 

cell cycle regulation and cell mitosis. In the block 

diagram Figure 3E, the abscissa represented the m6A 

related gene, and the ordinate represents the gene 

expression level. Some m6A molecules in the figure are 

differentially expressed in genotype, among which m6A 

regulator is highly expressed in genotype A. Figure 3F 

showed that Kaplan Meier survival curve based on m6A 

grouping has no significant difference among groups 

(P = 0.934). 

https://www.proteinatlas.org/
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Construction of m6A gene subgroup 

 

Although the consistent clustering algorithm based on 

m6A regulator expression divided thyroid cancer 

patients into two m6A modified phenotypic patterns, the 

potential genetic changes and expression barriers of 

these phenotypes were still unclear. Therefore, we 

applied the empirical Bayesian method to screen 

overlapping differentially expressed genes (DEGs) 

between two m6A clusters and conducted unsupervised 

consistent cluster analysis to obtain two different m6A 

gene feature subsets, which were defined as gene 

clusters A and B (Figure 4A and Supplementary Figure 

2A–2J). Figure 4B showed the PCA results. A heatmap 

Figure 4C was drawn according to the genotype, in 

which the abscissa represented the sample, the ordinate 

represents the gene, and blue and yellow represent the 

genome. The number of patients with clinical 

characteristics was higher in this group. As could be 

seen from the figure, the two component types had 

different expressions. Figure 4D showed the survival 

curves of patients with thyroid cancer. The results 

showed a significant difference between the two 

subtypes of m6A gene clusters A and B (P = 0.023). In 

the block diagram Figure 4E, the abscissa represented 

the m6A related gene, and the ordinate represents the 

 

 
 

Figure 2. Relationship between m6A related genes and prognosis of thyroid cancer. (A) In the survival curve, the abscissa is the 

survival time (years) and the ordinate is the survival rate. (B) The m6A prognosis network shows the expression and interaction of 23 m6A 
regulators in thyroid cancer. (C) Human protein Atlas (https://www.proteinatlas.org/) is used to analyze the protein expression of some 
m6A molecules related to prognosis in thyroid cancer tissue. 

https://www.proteinatlas.org/
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Table 2. Survival analysis of 23 m6A regulators in thyroid cancer. 

Gene HR HR.95L HR.95H p-value P symbol 

IGF2BP1 1.550281322 0.829728968 2.896574989 1.87E-05 *** 

IGF2BP3 1.024058896 0.978769378 1.071444047 3.23E-05 *** 

FTO 1.093703115 0.990086791 1.208163279 0.000963146 *** 

METTL14 1.056388222 0.934489434 1.194188009 0.0013232 ** 

ALKBH5 1.012323505 0.998468838 1.026370418 0.001987976 ** 

RBM15 1.355310563 1.028093504 1.786672822 0.004829401 ** 

IGF2BP2 0.977475317 0.952836017 1.002751763 0.008285184 ** 

YTHDF1 1.018635523 0.998828253 1.038835581 0.009836063 ** 

YTHDF3 1.038398012 1.000004621 1.078265448 0.010888568 * 

YTHDF2 1.01763239 0.981140235 1.05548182 0.018658739 * 

YTHDC2 1.157047747 0.9788176 1.367731321 0.024447184 * 

VIRMA 1.085846511 0.982094849 1.200558831 0.030185204 * 

FMR1 0.986686411 0.948506148 1.026403547 0.062856084 ns 

LRPPRC 1.014983114 0.984097928 1.046837609 0.079568495 ns 

METTL3 1.003110125 0.933186276 1.078273384 0.090903573 ns 

HNRNPC 0.997300779 0.985766742 1.008969771 0.094004403 ns 

ZC3H13 0.995183256 0.952081924 1.040235812 0.10464568 ns 

RBMX 0.99999406 0.983459992 1.016806101 0.108771912 ns 

YTHDC1 1.009506738 0.971320357 1.049194373 0.119336858 ns 

METTL16 1.01375848 0.936714379 1.097139404 0.130851476 ns 

HNRNPA2B1 1.000157356 0.99294754 1.007419524 0.131226368 ns 

WTAP 1.005355791 0.96790777 1.044252664 0.134656417 ns 

RBM15B 1.009332968 0.964093249 1.056695543 0.140563803 ns 

ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. 

 

gene expression level. It could be seen from the figure 

that some m6A molecules were differentially expressed 

between genotypes. 

 

Construction of m6A score system 

 

PCA was used to obtain the m6A score of each sample 

based on the prognosis gene, and the best cut-off value 

was selected to divide the patients into high and low 

scores and to draw the survival curve. As shown in 

Figure 5A, there was a significant difference between 

the high and low scores of m6A, indicating that the 

prognosis of patients with low m6A was relatively good. 

The abscissa of histogram Figure 5B was m6A high 

score group and low score group, and the ordinate was 

the percentage of survival status within 5 years. As 

shown in the figure, the survival rate of the patients in 

the low group was relatively high. On the basis of the  

5-year survival rate, patients with thyroid cancer were 

divided into survival and death groups. The m6A scores 

of the two groups of patients were compared. Block 

diagram Figure 5C showed that the m6A scores of 

deceased patients were higher than those of survivors. In 

Figure 5D, it could be seen that there was a significant 

difference in m6A scores between the two groups of 

m6A subtypes, with the highest score in m6A subtype a. 

There was no significant difference in m6A scores 

between the genotypes. Figure 5E was constructed based 

on m6A clustering, genotype, m6A score and survival 

status. The figure showed the distribution of different 

genotypes among the other genotypes. 

 

m6A score predicts the benefits of immunotherapy 

 

Figure 6A showed that the m6A score was negatively 

correlated with most immune cells. According to the 

m6A score, two waterfall figures (Figure 6B) were 

drawn. Red indicates that the m6A score was high and 

blue indicates that the m6A score was low. By 

comparing the two figures, it could be seen that the 
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mutation frequency of each gene in the high and low-

rating groups was usually different, and the mutation 

frequency of the thyroid cancer tumor marker BRAF 

gene was higher in the low-rating group. Figure 6C 

showed a significance test between the m6A score and 

TMB to illustrate the relationship between TMB and 

m6A scores in patients with thyroid cancer. Correlation 

analysis showed a significant negative correlation 

between m6A score and TMB (R = −0.15, 

P = 0.00095). We conducted a survival analysis of the 

tumor mutation load. The results in Figure 6D showed 

that the survival rate of patients with low TMB was 

significantly higher than that of those with high TMB. 

Combined with TMB and m6A scores, the results in 

Figure 6E showed that the survival rate of patients with 

low TMB and low m6A scores was significantly higher 

than that of patients with high TMB and high m6A 

scores. To detect difference in PD-L1 expression in 

m6A score and support related immunotherapy, we 

detected the expression of PD-L1 and CTLA-4 in 

different m6A score groups. The results showed that the 

expression of PD-L1 and CTLA-4 in the low m6A score 

group was significantly higher than that in the high 

score group (Figure 6F, 6G). In Figure 6H, the abscissa 

was the m6A score and the ordinate was the 

immunotherapy score. Different expression levels of 

CTLA4 and PD-1 antibodies were detected in the 

positive (POS) and negative (NEG) groups. It could be 

seen that the immunotherapy scores of the low m6A 

scoring group were generally higher, indicating that the 

 

 
 

Figure 3. Determination of m6A modification mode. (A) According to the expression similarity of m6A RNA methylation regulator, 

506 thyroid cancer patients in TCGA cohort were divided into m6A Cluster A and B. (B) PCA analysis shows that m6A related genes can 
distinguish the two groups of m6A genotyped samples. (C) The Heatmap shows an unsupervised cluster of 23 m6A regulators in TCGA-
THCA. (D) GO enrichment analysis was performed on the difference genes screened by comparison between the two groups of m6A cluster 
to observe the functions of these genes. The ordinates of the histogram and bubble diagram represent the name of GO, which can be 
divided into three categories: BP (biological process), CC (Cell Component), and MF (Molecular function). (E) The expression of 23 m6A 
regulators in the two groups of m6A cluster. The asterisk indicates statistical P value (*P < 0.05; **P < 0.01; ***P < 0.001). (F) Survival analysis 
for RFS among two m6Aclusters. Kaplan–Meier curves and log-rank P values are shown in the graph, and the numbers at risk are shown at 
the bottom. 
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low m6A scoring group was superior to the high m6A 

scoring group in terms of immunotherapy benefits 

(P < 0.05). 

 

Clinical evaluation of m6A score 

 

The relationship between the m6A scores and clinical 

characteristics was shown in Figure 7. Figure 7A 

showed that among patients older than 65 years, the 

prognosis of patients with low m6A score was better 

than that of patients with high score. Figure 7B showed 

that, in both male and female patients, the prognosis of 

patients with low m6A scores was better than that of 

patients with high scores. Figure 7C showed that among 

patients with different tumor stages, the prognosis of 

patients with low m6A scores was better than that of 

patients with high score. Figure 7D showed that 

regardless of the T stage, the prognosis of patients with 

low m6A scores was better than that of patients with 

high scores. Figure 7E showed that the prognosis of 

patients with low m6A scores was better than that of 

patients with high scores, regardless of N stage. Figure 

7E showed that the prognosis of patients with low m6A 

scores was better than that of patients with high score in 

the M1 stage. 
 

DISCUSSION 
 

In this study, we comprehensively evaluated the m6A 

modification mode of thyroid cancer in TCGA database, 

constructed a gene cluster model based on the 

differentially expressed genes (DEGs) screened by m6A 

typing, and built a quantitative m6A modification mode 

scoring system through m6A typing. 

 

To explore the prognostic biomarkers of thyroid 

cancer, it is necessary to elucidate the molecular 

mechanisms of thyroid cancer progression. Epigenetic 

 

 
 

Figure 4. Construction of m6A gene subgroup. (A) By screening the overlapping DEGs between two m6A clusters and conducting 
unsupervised consensus cluster analysis, the samples are classified into two types according to the internal correlation. The types 1 and 2 
correspond to gene cluster-A and gene cluster-B respectively. (B) PCA analysis shows that m6A related DEGs can distinguish two groups of 
m6A cluster samples. (C) Heatmap is drawn for m6A cluster of the two groups according to different types. The abscissa in the figure 
represents samples and the ordinate represents m6A related genes. (D) Kaplan-Meier curve is used to evaluate the survival of phenotypic 
m6A related gene characteristics, and the results show that the prognosis of genotype A is significantly better than that of genotype B 
(P = 0.023). (E) Expression of 23 m6A regulators in three gene clusters. The top and bottom of the box represent the quartile range of 
values, the lines in the box represent the median, and the colored dots represent outliers. The asterisk indicates the statistical p value 
(*P < 0.05; **P < 0.01; ***P < 0.001). 
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reprogramming has been reported to be the key to 

tumor progression [28–30]; however, the role of 

mRNA post-transcriptional modification in thyroid 

cancer remains unclear. In recent years, N6 

methyladenine (m6A) modification, a new type of RNA 

methylation, has become a research hotspot [31–36]. 

m6A modification refers to methylation modification at 

the N6 position of the adenine base. It is a type of RNA 

modification with the highest endogenous abundance 

and is involved in almost all RNA metabolic processes, 

including RNA transport, splicing, translation, and 

degradation. The level of m6A modification is 

dynamically regulated by the methylation enzyme coder 

(Writer) and demethylase eraser (Eraser), and the 

methylation modification information is read by 

combining it with the binding protein reader, as well as 

the fine regulation of downstream RNA transcription 

and translation processes. By regulating the expression 

of tumor-related genes, m6A plays a significant role in 

the processes of tumor development, such as 

proliferation, invasion, and metastasis [37]. Various 

m6A regulators may form complex network structures 

and interact to affect tumor progression [38]. However, 

the role of m6A modification and its regulators in the 

malignant progression of thyroid cancer remains 

unclear. 

 

As epigenetic regulators, m6A regulators mainly 

function in the post-transcriptional modification of 

target genes. To analyze the downstream genes of the 

m6A regulator, we focused on the DEGs in the 

intersection set of the two thyroid cancer subgroups of 

m6A and screened prognostic risk genes using 

univariate Cox regression analysis. Based on these 

genes, consensus clustering analysis was performed to 

build a risk prediction model. The prognosis analysis 

clearly showed that the prognosis of patients in group B 

was significantly better than that of patients in group A, 

 

 
 

Figure 5. Construction of m6A score system. (A) Survival curve shows that the prognosis of thyroid cancer patients in m6A low rating 

group is significantly better than that in high rating group (P < 0.01). (B) Histogram shows the proportion of patients who survived or died 
within 5 years in the low or high m6A group. Comparison of survival and death: 98% and 2% in the low m6A score group, and 86% and 15% 
in the high m6A score group, respectively. (C) The abscissa in the boxplot represents the survival and death groups, and the ordinate is the 
m6A score. It can be seen that the m6A score in the death group is significantly higher than that in the survival group (P = 0.046). (D) There 
is a significant difference in m6A score between m6A cluster A and B (P = 0.026), while m6A score shows no significant difference between 
genotypes (P = 0.39). (E) Alluvial diagram is drawn based on m6A cluster, genotype, m6A score and patient survival status, which shows the 
distribution of different genotypes. 
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Figure 6. m6A score predicts the benefits of immunotherapy. (A) The correlation between m6A score and immune cells can be 
observed by immune correlation analysis. (B) In the waterfall plot, the abscissa is the sample, the ordinate is the mutation related gene, 
different colors represent different mutation types, and different base changes are shown below the graph. (C) Correlation analysis of 
m6Ascore and TMB value in thyroid cancer was performed through Spearman correlation analysis. (D) The survival curve shows that 
patients with low TMB had significantly better survival than those with high TMB (P < 0.001). (E) TMB and m6A score were compared in the 
survival curve, and the results shows that the survival rate of patients with low TMB and low m6A score is significantly higher than that of 
patients with high TMB and high m6A score (P < 0.001). (F) Box plot of PD-L1 expression in the low and high m6Ascore groups. The P value 
is shown in box plot. (G) Box plot of CTLA4 expression in the low and high m6Ascore groups. The P value is shown in box plot. (H) The 
expression levels of CTLA4 antibody and PD-1 antibody in high m6A score group and low m6A score group were compared. 
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indicating the accuracy of the risk-prediction model for 

prognosis judgment. 

 

Recent studies have revealed the interaction between 

TME immune cell infiltration and m6A modification, 

which cannot be fully explained by the RNA 

degradation mechanism [39–43]. Lan et al. found that, 

compared with oxaliplatin (OX)-sensitive patients, OX-

resistant patients had more intensive macrophage 

infiltration in colorectal cancer tissues. Similarly, the 

total m6A RNA content and expression of METTL3, a 

key methyltransferase, increased in colorectal cancer 

tissues of OX-resistant patients. In addition, M2-

polarized tumor-associated macrophages can induce OX 

resistance by improving METTL3-mediated m6A 

modification [44]. An increasing number of studies 

have shown that m6A regulatory factors play important 

roles in inflammation, tumor immunity, and antitumor 

therapy. However, the relationship between m6A 

methylation regulators and various clinicopathological 

features of thyroid cancer is not completely clear [45]. 

In addition, tumorigenesis is often characterized by the 

interaction of multiple tumor regulators in a highly 

coordinated manner to promote tumor progression. 

Owing to the limitations of conditions and technologies, 

previous studies have mainly focused on a single m6A 

regulator or a single immune cell type, and there are 

only a few studies on multiple m6A regulators that 

simultaneously mediate tumor development and TME 

invasion characteristics. Therefore, a comprehensive 

investigation of the infiltration characteristics of TME 

cells mediated by multiple m6A regulators will deepen 

our understanding of cancer immune regulation [46]. At 

present, accumulated bioinformatics data provide rich 

resources for the comprehensive analysis of m6A 

regulatory factors and TME immune regulation  

[47–49]. The use of bioinformatics analysis to identify 

different m6A decoration patterns in tumor and TME 

infiltrating cells is crucial to determine their role in 

antitumor immunity and to guide the formulation of 

antitumor immunotherapy strategies [50]. 

 

In order to further quantitatively explain the 

characteristics of m6A, we established a quantitative

 

 
 

Figure 7. Clinical evaluation of m6A score. Survival analysis of different m6Ascore groups among thyroid cancer patients with Age (A), 

Gender (B), tumor Stage (C), T stage (D), N stage (E), and M stage (F). 
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scoring system called “m6A score” to define different 

m6A modification modes, which will also provide a 

more accurate guide for immunotherapeutic strategies. 

We calculated the m6A score based on the expression 

of prognosis-related risk genes in the tumor dataset 

and divided the scores into high- and low-scoring 

groups according to the survival data. The high m6A 

score group was found to be significantly related to 

poor prognosis in thyroid cancer. In addition, the m6A 

score was negatively correlated with 23 immune-

related cells. Therefore, the potential mechanism 

through which m6A methylation promotes thyroid 

cancer progression may play a role in regulating 

immune cell infiltration. In this study, we found that 

the m6A score was significantly negatively correlated 

with tumor mutation burden (TMB) in both groups, 

and TMB combined with the m6A score could better 

predict the prognosis of patients and the effect of 

immunotherapy. This conclusion regarding the 

correlation between thyroid cancer and TMB is 

consistent with that of other studies, which also 

confirms the predictive effect of the m6A score. 

CTLA-4 and PD-1 are the most effective T cell 

immune checkpoint molecules that play a negative 

immunoregulatory role. A variety of ICIs have been 

approved for marketing for immunotherapy of clinical 

tumors, and immunotherapy for thyroid cancer has 

entered the clinical research stage. In this study, we 

explored the correlation of PD-L1 and CTLA-4 with 

m6A scores and confirmed that there were significant 

differences in the expression of the two checkpoints 

between the two m6A score groups. Therefore, this 

study shows that the m6A modification mode may have 

an impact on immune cell infiltration and the 

immunotherapy of thyroid cancer. Furthermore, through 

specific analysis of the prognosis, clinical 

characteristics, and TNM staging of patients with 

thyroid cancer, the m6A score was found to have a good 

prognostic significance in different subgroups. These 

results demonstrate the potential of the m6A score as an 

independent prognostic marker for thyroid cancer. 

 

In this study, we reviewed and sorted the catalog of 23 

m6A regulatory factors and included a series of newly 

identified m6A regulatory factors to optimize the 

accuracy of the m6A modification mode. Owing to the 

lack of appropriate ICI-based thyroid cancer datasets, 

we hope to further verify and improve the effect of m6A 

scores in combination with different immunotherapy 

schemes for other malignant tumors. A limitation of this 

study is that the m6A modification mode and m6A 

score were determined using retrospective data, and no 

prospective cohort study of patients with thyroid cancer 
undergoing immunotherapy is available to verify the 

results of this study. In addition, not all patients with 

lower m6A scores can benefit from ICIs treatment; 

therefore, more clinicopathological data need to be 

included in the prediction model to improve the 

accuracy of evaluation. 
 

CONCLUSION 
 

In conclusion, this study demonstrated that m6A 

modification plays an important role in the 

tumorigenesis of thyroid cancer based on a large cohort. 

The m6A score can accurately predict the prognosis and 

clinical characteristics of patients with thyroid cancer, 

providing new insights and directions for exploring the 

potential pathogenesis of thyroid cancer and 

determining new targets for patient treatment. 
 

METHODS 
 

Data acquisition 
 

We searched for public gene expression data and 

complete clinical annotations in The Cancer Genome 

Atlas (TCGA; https://cancergenome.nih.gov/) database. 

Patients without survival information or incomplete 

clinical data were excluded from further evaluation. In 

this study, 506 patients with thyroid cancer were 

collected from TCGA database for further analysis. 

Table 3 showed the clinicopathological characteristics of 

TC patients. For those from Affymetrix®, we 

downloaded the original “CEL” file and used affy and 

simplified software packages to perform background 

adjustment and quantile standardization using a robust 

multi-array averaging method. For microarray data from 

other platforms, the standardized matrix file was 

download directly. For the data-set from TCGA, the 

RNA sequencing data (FPKM value) of gene expression 

were downloaded from Genomic Data Commons (GDC, 

https://portal.gdc.cancer.gov/) using the R software 

package TCGAbiolinks, and then the FPKM value was 

converted into a transcript of one thousand base million 

(TPM) value. The “ComBat” algorithm of sva software 

package is used to correct the batch effect caused by non-

biotechnology deviation. Somatic mutation data were 

obtained from TCGA database and analyzed using copy 

number variation (CNV). Immunohistochemical images 

of thyroid cancer were obtained from The Human 

Protein Atlas database (https://www.proteinatlas.org/). R 

software (version 4.0.3) and the R Bioconductor 

software package were used to analyze the data. The 

data used in this study conformed to the requirements of 

the official data published by TCGA and are publicly 

available. 
 

Expression analysis of m6A regulatory factor 
 

The interaction information of 23 m6A regulatory 

factors was obtained from String Database

https://cancergenome.nih.gov/
https://portal.gdc.cancer.gov/
https://www.proteinatlas.org/
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Table 3. Clinicopathological characteristics of TC patients. 

Clinicopathological parameters Total (n = 506) (%) 

Age 

 Median (IQR) 47 (35–58) 

 Range (Min, Max) 15–89 

  <65 430 (85.0%) 

  ≥65 76 (15.0%) 

Gender 

 Male 136 (26.9%) 

 Female 370 (73.1%) 

Clinical T-stage 

 T1 144 (28.5%) 

 T2 167 (33.0%) 

 T3 170 (33.6%) 

 T4 23 (4.5%) 

 Unknow 2 (0.4%) 

Clinical N-stage 

 N0 230 (45.4%) 

 N1 226 (44.7%) 

 Unknow 50 (9.9%) 

Clinical M-stage 

 M0 283 (55.9%) 

 M1 9 (1.8%) 

 Unknow 214 (42.3%) 

TNM stage 

 I 285 (56.3%) 

 II 52 (10.3%) 

 III 112 (22.1%) 

 IV 55 (10.9%) 

 Unknow 2 (0.4%) 

 

(https://string-db.org), and the protein-protein 

interaction (PPI) network was constructed according to 

their expression relationship. The cut off standard was 

0.7 interaction score (high confidence). The mRNA 

levels of 23 m6A regulators were analyzed using TPM 

data obtained from TCGA database. These 23 

regulatory factors include eight encoder writers 

(METTL3, METTL14, METTL16, WTAP, 

KIAA1429/VIRMA, ZC3H13, RBM15, and RBM15B), 

13 reader readers (YTHDC1, YTHDC2, YTHDF1, 

YTHDF2, YTHDF3, HNRNPA2B1, HNRNPC, 

IGFBP1, IGFBP2, IGFBP3, FMR1, LRPPRC, and 

RBMX) and two code cancellers erasers (ALKBH5 and 

FTO). The difference in expression between the normal 

group and the tumor group was detected using the R 

package limma (P < 0.05), with statistical significance. 

 

Survival and correlation analysis 

 

The survival data of patients with thyroid cancer were 

obtained from their clinical data. Survival analysis was 

performed using R packet limma, survival, and 

surviviner. The survival curve was tested using Kaplan-

Meier and log-rank tests. Pearson or Spearman 

correlation analysis was used for correlation analysis. R 

packet corrplot was used to draw the correlation heatmap, 

and R packet igrap, psych, reseape2, and RColorBrewer 

were used to draw the prognosis network map. 

 

m6A cluster 

 

Based on the expression of 23 m6A molecules, 

unsupervised cluster analysis was used to identify 

different m6A modification patterns and classify the 

patients for analysis. All samples were divided into 2–9 

to groups in turn. The most appropriate m6A clustering 

method was selected based on high clustering 

consistency, low coefficient of variation and lack of 

significant increase in the consistent cumulative 

distribution function (CDF) curve. The number and 

stability of clusters were determined using the 

consistent clustering algorithm. We use the R package 

ConsenseClusterPlus to perform the above steps and 

repeated them 1000 times to ensure the stability of the 

classification. To judge the fitness of classification, we 

drew the principal component analysis (PCA) diagram 

https://string-db.org/
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of m6A typing using R packet limma and ggplot2. Chi 

square test or Fisher exact test was used to analyze the 

clinicopathological characteristics and clustering, and 

the R package pheatmap was used to draw the heatmap. 

The Kaplan-Meier method was used to analyze the 

survival curve of the groups, and the log-rank test was 

used to determine the significance of the differences 

(P < 0.05). The overlapping differentially expressed 

genes (DEGs) among m6A groups were analyzed using 

Bayesian statistics of the R packet limma, and the 

P value was adjusted according to the error detection 

rate (FDR), with P < 0.001 as the screening standard. 

The R package clusterProfiler was used for GO 

enrichment analysis to explore the potential biological 

functions and pathways, and the potential biological 

functions and pathways (p < 0.05) were screened. 

 

Gene cluster 

 

Single factor Cox regression analysis was carried out 

for DEGs with R-pack limma and survival, and 

prognosis related DEGs with P < 0.05 were screened. R 

package ConsensusClusterPlus was used to classify 

patients and identify gene clusters according to the 

expression of DEGs related to prognosis. All samples 

were divided into 2–9 groups in turn, and the most 

appropriate gene cluster typing method was selected. 

Chi square test or Fisher exact test was used to analyze 

the clinicopathological characteristics and clustering, 

and the R package pheatmap was used to draw the heat 

map. Survival analysis of gene clusters was carried out 

with the R package survival and surviviner, P < 0.05 was 

considered statistically significant. The expression of 23 

m6A genes in different gene clusters was analyzed using 

the R packages limma, reshape2, and ggpubr. 

 

m6A score 

 

To quantify the m6A modification pattern of a single 

tumor, we built a scoring system to evaluate the m6A 

modification pattern of TC patients, namely, the m6A 

score. We used a univariate Cox regression model to 

extract the DEGs with significant prognosis for 

principal component analysis and selected principal 

component 1 and principal component 2 as 

characteristic scores. The m6A score was defined as 

m6AScore = Σ (PC1i + PC2i), where i is the 

expression of m6A phenotype-related genes. Survival 

analysis was conducted with R package survival and 

surviviner to evaluate the prognostic value of the m6A 

score, and patients were divided into high- and low-

rating groups according to their scores. The 

relationship between m6A typing, genotyping, m6A 
scoring group, and survival rate was studied using the 

R packages ggalleuvial, ggplot2, and dplyr, and the 

Alluvial diagram was drawn to show the results. The 

difference in m6A score in m6A classification and 

genotyping was compared using the R packages limma 

and ggpubr, P < 0.05 was considered statistically 

significant. 
 

Immunophenoscore (IPS) analysis 
 

The Cancer Immune Atlas database (TCIA; 

https://tcia.at/home). The next generation sequencing 

(NGS) data of more than 9500 tumor samples from 20 

solid cancers were collected from the Cancer Genome 

Map (TCGA) and other databases, and the immune 

phenotype score (IPS) of tumor samples can be 

detected, which can predict the response of tumors to 

cytotoxic T lymphocyte antigen-4 (CTLA-4) and 

programmed cell death protein 1 (PD-1) blockers. We 

obtained 507 IPS of RC samples through the TCIA 

database, divided RC samples into high expression 

group and low expression group according to the 

median m6A score, and analyzed the relationship 

between m6A score and IPSs using the chi square test to 

further clarify the correlation between m6A score and 

immunotherapy response. Combined with the clinical 

data of patients, the survival curves of patients with 

different m6A scores under different clinical and 

pathological characteristics were drawn using R packet 

survival and surviviner. 
 

Statistical analysis 
 

All statistical analyses were performed using the R 

software (version 4.0.3). Chi-square or Fisher’s exact 

test was used to classify variables, and Wilcoxon or 

Kruskal Wallis test was used to compare gene 

expression between different samples. Pearson or 

Spearman correlation analysis was used to evaluate the 

correlations between the two variables. We used a 

univariate Cox regression model to calculate the risk 

ratio (HR) of the related genes. Statistical significance 

was set at P < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Consensus clustering analysis of m6A modification clusters. (A–H) Consensus matrices of the patients 

with sarcoma for k = 2–9. (I) Cumulative distribution function (CDF) of consensus clustering analysis. (J) Relative change in area under the 
CDF curve of consensus clustering analysis. 
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Supplementary Figure 2. Consensus clustering analysis of m6A gene clusters. (A–H) Consensus matrices of the patients with 

sarcoma for k = 2–9. (I) CDF of consensus clustering analysis. (J) Relative change in area under the CDF curve of consensus clustering 
analysis. 


