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INTRODUCTION 
 

Acute myocardial infarction (AMI) has become the 

main cause of hospitalization and death worldwide, 

seriously threatening human health. Previous studies 

have suggested that AMI is a complex syndrome with 

multifactorial disorders. Its risk factors include early 

family history, smoking, hypertension, dyslipidemia, 
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ABSTRACT 
 

Lipid metabolism plays an essential role in the genesis and progress of acute myocardial infarction (AMI). 
Herein, we identified and verified latent lipid-related genes involved in AMI by bioinformatic analysis. Lipid-
related differentially expressed genes (DEGs) involved in AMI were identified using the GSE66360 dataset from 
the Gene Expression Omnibus (GEO) database and R software packages. Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to analyze lipid-
related DEGs. Lipid-related genes were identified by two machine learning techniques: least absolute 
shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination 
(SVM-RFE). The receiver operating characteristic (ROC) curves were used to descript diagnostic accuracy. 
Furthermore, blood samples were collected from AMI patients and healthy individuals, and real-time 
quantitative polymerase chain reaction (RT-qPCR) was used to determine the RNA levels of four lipid-related 
DEGs. Fifty lipid-related DEGs were identified, 28 upregulated and 22 downregulated. Several enrichment 
terms related to lipid metabolism were found by GO and KEGG enrichment analyses. After LASSO and SVM-
RFE screening, four genes (ACSL1, CH25H, GPCPD1, and PLA2G12A) were identified as potential diagnostic 
biomarkers for AMI. Moreover, the RT-qPCR analysis indicated that the expression levels of four DEGs in AMI 
patients and healthy individuals were consistent with bioinformatics analysis results. The validation of clinical 
samples suggested that 4 lipid-related DEGs are expected to be diagnostic markers for AMI and provide new 
targets for lipid therapy of AMI. 
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and diabetes [1–4]. The rupture of vulnerable and lipid-

overloaded coronary atherosclerotic plaques can induce 

the formation of acute thrombus, leading to acute 

occlusion of blood vessels and progressing to AMI [5]. 

Dyslipidemia, especially elevated levels of low-density 

lipoprotein (LDL) cholesterol, is believed to play a key 

role in the pathogenesis of atherosclerosis [6, 7]. 

Atherogenesis begins when residues of LDL 

cholesterol, chylomicron, and very low-density 

lipoprotein (VLDL) cholesterol molecules enter the 

artery intima. Then, lipid radicals are oxidized and 

endocytosed by macrophages, followed by the 

formation of foam cells [6]. Previous studies have 

demonstrated that every 1% reduction in LDL 

cholesterol levels is associated with a 1% reduction in 

AMI risk [8, 9]. Currently, statin therapy has become 

the cornerstone for cholesterol-lowering drug therapy 

for coronary heart disease and AMI patients. Moreover, 

the combination of PCSK9 inhibitors with statins is 

recommended to reduce the risk of major adverse 

cardiovascular events (MACEs) in AMI patients [10]. 

However, the combination of lipid-lowering therapy 

still cannot eliminate the risk of MACEs in AMI 

patients. This might be partly because some lipid-

related genes have not been identified. Therefore, 

identifying new lipid metabolism-related genes 

associated with AMI will help develop new lipid-

lowering drugs to reduce the risk of MACEs in AMI 

patients. 

 

Microarray analysis is an innovative and practical 

method to discern susceptibility genes to deal with 

coronary heart disease [11] and AMI [12]. Never-

theless, microarray analysis using differentially 

expressed genes (DEGs) might have limitations in 

reproducibility and sensitivity [13, 14]. Machine 

learning can enhance the prediction and accuracy of 

these key genes discerned using traditional 

microarrays or next-generation sequencing data [15]. 

The most frequently used machine learning techniques 

include the least absolute shrinkage and selection 

operator (LASSO) regression and support vector 

machine recursive feature elimination (SVM-RFE) 

algorithm [16]. Meanwhile, the combined application 

of LASSO regression and SVM-RFE algorithm in 

identifying new lipid-related genes involved in AMI 

has not been conducted. Therefore, in the present 

study, we analyzed the GSE66360 dataset from 

different perspectives: 1) DEGs among lipid-related 

AMI genes were identified using the “limma” R 

package and GO and KEGG pathway enrichment 

analyses. 2) Machine learning methods were applied to 

large-scale screening and diagnostic identification of 

AMI-related molecular markers. 3) Lipid-related gene 

expression levels screened by machine learning were 

validated using clinical cases. 

RESULTS 
 

Identification of lipid-related DEGs in GSE66360 

 

Due to the limitations of chip detection technology, a 

total of 673 lipid-related genes in 49 AMI samples 

and 50 normal samples were used to analyze DEGs. 

After data normalization and removal of batch 

differences, 50 lipid-related genes were identified, 28 

upregulated and 22 downregulated (Table 1). These 

50 lipid-related DEGs can be visualized in the 

volcano plot and heatmap (Figure 1A, 1B). The 

expression pattern between the two groups was 

highlighted based on the box plot (Figure 2). Among 

them, the top three upregulated genes were ACSSL1 

(Acyl-CoA Synthetase Long-Chain Family  

Member 1), PLBD1 (Phospholipase B Domain 

Containing 1), and CH25H (Cholesterol 25-

Hydroxylase). Meanwhile, the top three down-

regulated genes were ELOVL4 (ELOVL Fatty Acid 

Elongase 4), TNFAIP8L2 (TNF Alpha Induced 

Protein 8 Like 2), and CYP2E1 (Cytochrome P450 

Family 2 Subfamily E Member 1). 

 

Correlation analysis of lipid-related DEGs 

 

The 50 lipid-related DEGs in the GSE66360 were 

significantly correlated by the Pearson correlation 

analysis (Figure 3). The positive correlation between the 

PLBD1 and ACSL1 was strongest; and the CYP4F2 had 

the most obvious negative correlation with PTPN13. 

Moreover, the ACSL1 was positively related to 

GPCPD1 and CH25H; the CH25H was positively 

related to GPCPD1 and ACSL1; the PLA2G12A was 

positively related to GPCPD1 while negatively related 

to CH25H. 

 

Functional analyses of lipid-related DEGs 

 

The biological functions of lipid-related DEGs were 

determined by GO and KEGG enrichment analyses 

using R software. The most enriched GO terms were 

fatty acid metabolic, glycerolipid metabolic, and 

phospholipid metabolic processes (biological processes, 

Figure 4A); intrinsic component of endoplasmic 

reticulum membrane, integral component of endo-

plasmic reticulum membrane, and lipid droplet (cellular 

components, Figure 4B); oxidoreductase activity, iron 

ion binding, and acyltransferase activity (molecular 

functions, Figure 4C). The KEGG enrichment analyses 

showed that lipid-related DEGs were involved in the 

arachidonic acid metabolism, glycerophospholipid 

metabolism, chemical carcinogenesis-DNA adducts, 

and the PPAR signaling pathway (Figure 5). The details 

of these analyses can also be found in Supplementary 

Table 1. 
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Table 1. The 50 differentially expressed lipid-related genes in AMI samples compared to healthy samples. 

Gene symbol Log2FC Changes p-value Adjusted p-value 

ACSL1 2.1443758 Up 9.76E-14 6.57E-11 

PLBD1 2.0855158 Up 1.33E-08 1.49E-06 

CH25H 1.561894 Up 1.67E-10 5.63E-08 

PTGS2 1.4727308 Up 1.64E-04 2.56E-03 

CYP4F3 1.4307856 Up 2.77E-07 1.35E-05 

CD36 1.3377248 Up 1.25E-08 1.49E-06 

G0S2 1.3051173 Up 7.36E-06 2.06E-04 

LPCAT2 1.274232 Up 1.13E-07 6.95E-06 

CYP1B1 1.081695 Up 2.57E-07 1.35E-05 

MBOAT2 0.996586 Up 9.09E-08 6.80E-06 

DGAT2 0.9506635 Up 4.65E-07 2.09E-05 

GPCPD1 0.9145163 Up 2.38E-05 5.52E-04 

ABCA1 0.8308084 Up 3.50E-08 2.94E-06 

BMX 0.8267136 Up 9.28E-07 3.90E-05 

PTGS1 0.8263128 Up 8.69E-05 1.46E-03 

MBOAT7 0.8240098 Up 3.66E-06 1.29E-04 

SGMS2 0.8165743 Up 5.71E-04 6.86E-03 

ABHD5 0.7901841 Up 1.44E-09 3.23E-07 

GK3P 0.7584331 Up 1.02E-04 1.68E-03 

ALOX12 0.7568656 Up 4.36E-03 3.45E-02 

TNFRSF21 0.7529465 Up 2.53E-03 2.27E-02 

TBXAS1 0.7461727 Up 3.82E-05 7.34E-04 

CYP27A1 0.6990032 Up 2.48E-06 9.27E-05 

STARD4 0.6983926 Up 3.56E-03 2.89E-02 

ASAH1 0.6750605 Up 4.30E-05 7.82E-04 

CYP4F2 0.6721891 Up 4.74E-06 1.59E-04 

GK 0.6464259 Up 2.46E-04 3.52E-03 

ALOX5AP 0.6346144 Up 1.04E-03 1.13E-02 

SLC44A3 −0.590564 Down 1.18E-03 1.20E-02 

CEPT1 −0.599105 Down 1.17E-03 1.20E-02 

MCEE −0.609681 Down 2.24E-03 2.12E-02 

PLA2G12A −0.612271 Down 6.79E-06 1.99E-04 

PNPLA4 −0.612941 Down 2.48E-03 2.27E-02 

NFYB −0.623073 Down 2.92E-04 4.09E-03 

CROT −0.628778 Down 2.87E-05 6.43E-04 

GGPS1 −0.647568 Down 3.19E-05 6.58E-04 

ARV1 −0.654258 Down 3.44E-05 6.81E-04 

INSIG2 −0.663348 Down 6.01E-03 4.40E-02 

THEM4 −0.748033 Down 2.99E-05 6.49E-04 

PHYH −0.755787 Down 2.36E-03 2.21E-02 
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PIK3C2B −0.764005 Down 4.21E-04 5.45E-03 

PTPN13 −0.771322 Down 3.25E-04 4.47E-03 

AGPAT5 −0.799176 Down 8.56E-05 1.46E-03 

ORMDL2 −0.803203 Down 1.43E-03 1.44E-02 

GDPD3 −0.810763 Down 4.53E-04 5.75E-03 

LCLAT1 −0.828645 Down 7.23E-04 8.25E-03 

HSD11B1 −0.973808 Down 1.14E-07 6.95E-06 

CYP2E1 −1.067542 Down 5.45E-06 1.75E-04 

TNFAIP8L2 −1.222639 Down 8.47E-06 2.19E-04 

ELOVL4 −1.35438 Down 2.82E-07 1.35E-05 

 

 

 
 

Figure 1. Lipid-related differentially expressed genes (DEGs) in AMI and healthy samples. (A) Volcano plot of the 673 lipid-

related DEGs. Red dots represent significantly upregulated genes, and green significantly downregulated genes. (B) Heatmap of the 50 lipid-
related DEGs in AMI and healthy samples. 

 

 
 

Figure 2. Box plot of 50 lipid-related differentially expressed genes (DEGs) in AMI and healthy samples. *p < 0.05; **p < 0.01; 
***p < 0.005. 
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Figure 3. Pearson correlation analysis of the 50 lipid-related differentially expressed genes (DEGs). 

 

 
 

Figure 4. Gene Ontology (GO) enrichment analysis of 50 differentially expressed genes (DEGs). Abbreviations: (A) BP: biological 

process; (B) CC: cellular component; (C) MF: molecular function. 
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Screening key DEGs by LASSO logistic regression 

and SVM-RFE 

 

The LASSO logistic regression identified 15 lipid-related 

genes based on the optimum λ value (Figure 6A), whereas 

the SVM-RFE algorithm identified four genes (Figure 6B). 

Four overlap genes including ACSL1, CH25H, GPCPD1 

(Glycerophosphocholine Phosphodiesterase 1), and 

PLA2G12A (Phospholipase A2 Group XIIA) were 

identified by LASSO and SVM-RFE algorithm as key 

lipid-related DEGs for subsequent analysis (Figure 6C). 

In addition, other 14 genes identified by LASSO 

regression are listed in Supplementary Table 2. 

 

ROC curves between AMI and control groups 

 

The expression of the four lipid-related DEGs between the 

AMI and control samples of the GSE66360 dataset were 

analyzed using R software, and the ROC curves were 

constructed. The area under the curve (AUC), unified with 

specificity and sensitivity, verified the intrinsic validity of 

diagnostic tests [17]. Four lipid-related DEGs had a 

superior diagnostic value for AMI. Among them, the gene 

with the most significant diagnostic value was ACSL1 

(AUC = 0.878). The other genes are: CH25H (AUC = 

0.853), GPCPD1 (AUC = 0.819), and PLA2G12A (AUC 

= 0.747) (Figure 7). These four lipid-related DEGs can be 

considered underlying diagnostic biomarkers for AMI. 

Validation by RT-qPCR 

 

To verify the dependability of the GSE66360 dataset, 

RT-qPCR was used to validate the expression levels 

of the above four lipid-related genes in clinical 

samples. The clinical data of AMI and control groups 

are summarized in Table 2. The RT-qPCR results 

suggested in Figure 8, that the expression level of 

PLA2G12A (p = 2.8e-08) increased in controls 

compared to the AMI group, while ACSL1 (p = 2.4e-

09), CH25H (p = 0.023), and GPCPD1 (p = 1.3e-08) 

were higher in AMI group. Hence, the RT-qPCR 

results performed were consistent with the main 

bioinformatic analysis. 

 

Verification of the potential biomarkers for AMI 

 

Furthermore, we analyzed the gene expression levels 

in the AMI group and healthy individuals using the 

ROC curve to verify the diagnostic value of the four 

screened lipid-related genes as shown in Figure 9. 

The AUC values of ACSL1, CH25H, GPCPD1 and 

PLA2G12A were 0.846 [95% confidence interval  

(CI): 0.764–0.929], 0.632 (95% CI: 0.517–0.747), 

0.830 (95% CI: 0.749–0.912), and 0.822 (95% CI: 

0.744–0.901), respectively. This result showed that 

these lipid-related DEGs are diagnostic biomarkers 

for AMI. 

 

 
 

Figure 5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 50 lipid-related differentially expressed 
genes (DEGs). 
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DISCUSSION 
 

Acute myocardial infarction (AMI) refers to hypoxia 

caused by coronary atherosclerosis stenosis and 

myocardial necrosis caused by acute and persistent 

ischemia [18]. Dyslipidemia is a known risk factor for 

AMI [19], and lipid-lowering therapy is the treatment 

cornerstone. Several convincing studies have shown 

that the combined effect of lowering triglyceride, LDL 

cholesterol, and total cholesterol levels yield higher 

cardiovascular risk than lowering LDL cholesterol 

levels alone [20–22]. The accumulated molecular 

genetic data indicate that many genes are related to 

AMI occurrence, including lipid-related genes [23]. 

However, the lipid-related genes involved in AMI have 

not been completely identified. Thus, it is necessary to 

comprehend the role of lipid-related genes in AMI 

diagnosis and treatment. 

 

Herein, we retrieved data of AMI patients (GSE66360) 

and subjected it to differential genes analysis, and 

identified lipid-related DEGs associated with AMI. 

Lipid-related DEGs were then subjected to GO and 

KEGG enrichment analyses. LASSO regression is a 

machine learning method that recognizes variables by 

looking for a λ value for a minimal classification error 

[24]. SVM-RFE is another machine learning method 

that finds optimal variables through subtracting SVM-

generated feature vectors [25]. We used these two 

algorithms to screen characteristic variables and created 

an optimal classification model. Four lipid-related genes 

(ASCL1, CH25H, GPCPD1, and PLA2G12A) were 

identified based on these two methods, which 

significantly impact AMI diagnosis. Moreover, the 

findings of CH25H were controversial compared with 

previous studies and should be interpreted with caution. 

Nevertheless, the p values of these four lipid-related 

genes were < 0.05, verified by RT-qPCR and consistent 

with our bioinformatic analysis results. 

 

ACSL1 is a key rate-limiting enzyme in lipid 

metabolism [26], catalyzing the energy production of 

fatty acids or the production of phospholipids, 

cholesterol esters, and triglycerides [27]. Previous 

studies have shown that heart-specific overexpression of 

ACSL1 in mice increases triglyceride accumulation in 

cardiomyocytes [28]. Li et al. demonstrated that 

inhibiting ACSL1 expression in the heart can reduce 

lipid metabolism and promote the regeneration of 

cardiomyocytes [29]. A cohort study has shown that the 

expression level of ACSL1 in peripheral blood 

leukocytes of AMI patients was higher than that of 

 

 
 

Figure 6. Identification of key lipid-related DEGs by machine learning methods. (A) Least absolute shrinkage and selection 

operator (LASSO) logistic regression screening of key lipid-related DEGs. (B) Support vector machine-recursive feature elimination (SVM-RFE) 
algorithm screening of key lipid-related DEGs. (C) Venn diagram of the intersection of diagnostic markers obtained by the two algorithms. 
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healthy controls, and this high expression was a risk 

factor for AMI [30]. A recent study confirmed that the 

overexpression of ACSL1 can reduce fatty acid β-

oxidation and increase plasma triglyceride levels by 

regulating the PPARγ pathway, which is one of the 

mechanisms that can promote the pathogenesis of AMI 

[31]. These results supported the findings of our 

bioinformatic analysis and suggested that ACSL1 plays 

a pathological role in AMI through lipid metabolism 

and might be a promising AMI biomarker. Moreover, 

PLA2G12A is a secreted phospholipase A2, but its 

physiological function is largely unclear. In humans, 

there is a suggestive association between a PLA2G12A 

polymorphism and response to anti-vascular endothelial 

growth factor therapy in patients with exudative age-

related macular degeneration [32]. Alexandros et al. 

showed that PLA2G12A is highly expressed in aortic 

endothelial cells in vivo and may inhibit atherosclerosis 

by reducing the adhesion properties of vascular 

endothelial cells, which confirmed PLA2G12A as a 

candidate gene for atherosclerosis protection [33]. This 

was consistent with our findings that PLA2G12A was 

downregulated in AMI samples and was a protective 

gene, possibly by reducing vascular adhesion to 

decrease AMI incidence. 

 

CH25H regulates cholesterol and lipid metabolism by 

converting cholesterol to 25-HC, and plays an important 

role in regulating cellular inflammatory states and 

cholesterol biosynthesis in endothelial cells and 

monocytes [34]. CH25H and 25-HC were traditionally 

regarded as key regulators to maintain cholesterol 

homeostasis by inhibiting sterol regulator-binding 

protein (SREBP) and liver X receptor (LXR) [35]. 

Elizabeth et al. showed that 25-HC production promotes 

the formation of macrophage foam cells and increases 

susceptibility to atherosclerosis, thereby increasing AMI 

risk [36]. However, the pro-inflammatory role of 

CH25H in atherosclerosis remains controversial. Other 

studies have shown that CH25H is involved in 

macrophages’ functional endothelium and anti-

inflammatory phenotype and that CH25H ablation 

increases susceptibility to atherosclerosis [37]. Our 

current study suggested that CH25H was upregulated in 

AMI samples, consistent with the Elizabeth et al. results. 

This contradiction might be partly due to different 

 

 
 

Figure 7. ROC curve analysis. ROC curve of ACSL1 (A), CH25H (B), GPCPD1 (C), PLA2G12A (D) in GSE66360 dataset. 
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Table 2. Clinical characteristic between control and AMI group. 

Characteristic Control (n = 50) AMI (n = 50) p 

Male [n (%)]a 35 (70.0) 34 (68.0) 0.829 

Age (years)a 55.16 ± 7.22 56.52 ± 6.79 0.673 

BMI (kg/m²)a 20.98 ± 2.74 23.69 ± 3.20 0.305 

Smoking [n (%)]b 11 (22.0) 23 (46.0) 0.011 

Alcohol [n (%)]b 13 (26.0) 21 (42.0) 0.091 

Hypertension [n (%)]b 15 (30.0) 30 (60.0) 0.003 

Type 2 Diabetes [n (%)]b 10 (20.0) 19 (38.0) 0.047 

CK (U/L)a 125.84 ± 9.35 1162.1 ± 576.30 6.20E-9 

CK-MB (U/L)a 15.5 ± 3.06 130.35 ± 19.76 1.14E-11 

ApoA1 (g/L)a 1.38 ± 0.30 0.96 ± 0.19 0.045 

ApoB (g/L)a 0.82 ± 0.19 1.01 ± 0.29 0.037 

TC (mmol/L)a 3.96 ± 0.80 4.12 ± 1.14 0.029 

TG (mmol/L)a 1.29 ± 0.41 1.50 ± 0.66 0.023 

HDL-C (mmol/L)a 1.63 ± 0.47 1.10 ± 0.29 0.030 

LDL-C (mmol/L)a 2.25 ± 0.94 3.57 ± 1.26 0.003 

Creatinine (μmol/L)a 86.14 ± 13.07 88.98 ± 17.49 0.039 

Troponin T (μg/L)a 0.04 ± 0.03 3.22 ± 1.19 2.87E-5 

Abbreviations: BMI: Body mass index; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; 
Apo: Apolipoprotein; TC: Total cholesterol; TG: Triglyceride; CK: creatine kinase; CK-MB: creatine kinase-myocardial band. 
aMean ± SD determined by t-test. bThe rate or constituent ratio between the different groups was analyzed by the χ2 test. 

 

 
 

Figure 8. RT-qPCR analysis. The mRNA expression levels of ACSL1 (A), CH25H (B), GPCPD1 (C), PLA2G12A (D) in clinical samples. 
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experimental conditions requiring further study. 

Additionally, GPCPD1 is a key enzyme in choline and 

phospholipid metabolism. GPCPD1 has also been 

reported to be involved in the complex network of 

enzymatic reactions regulating choline metabolism [38]. 

It can cleave glycerophosphocholine to form glycerol-3-

phosphate and choline [39]. GPCPD1 has been reported 

to promote cell migration, metastasis, adhesion, and 

diffusion in breast, endometrial, and ovarian cancers. 

However, its biological role in cardiovascular disease 

remains unclear. Hence, more studies are needed to 

further verify our current findings. 

 

In the current research, several correlations between 

four key lipid-related DEGs were also noticed. 

Correlation analysis indicated that the ACSL1, CH25H, 

GPCPD1, and PLA2G12A genes may influence the 

occurrence of AMI by synergistically regulating 

the same lipid metabolic pathway. Meanwhile, the 

functional analyses were also performed to evaluate the 

potential biological functions of lipid-related DEGs. 

The GO enrichment analysis showed that these genes 

were closely related to fatty acid metabolism. 

Furthermore, the KEGG enrichment analysis revealed 

that the lipid-related genes were primarily associated 

with the PPAR signaling pathway. PPAR is activated by 

fatty acids and their derivatives, thereby creating a lipid 

signaling network between the cell surface and the 

nucleus [40]. As lipid sensors and master regulators, 

PPAR controls the expression of genes that function in 

lipid metabolism [41]. The PPAR signaling pathway, a 

crossing regulator of lipid signaling and inflammation, 

[40] was enriched, indicating that it plays a crucial role 

in lipid metabolism response to AMI. A previous study 

has found that the downregulation of PPARγ contributes 

to the activation and aggregation, eventually forming 

micro-thromboses, finally leading to myocardial 

dysfunction [42]. These results indicated that these 

lipid-related genes might affect AMI occurrence 

through the PPAR signaling pathway. However, further 

research is required to confirm the correlations between 

these key genes. 

 

However, our current study also has some limitations. 

First, we used the dataset from circulating endothelial 

cells to perform the bioinformatics analysis, and used 

 

 
 

Figure 9. ROC curve analysis. ROC curve of ACSL1 (A), CH25H (B), GPCPD1 (C), PLA2G12A (D) in clinical samples. 
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the peripheral blood mononuclear cells from myocardial 

infarction and normal people for verification. Although 

there was some sample heterogeneity, our research, like 

other studies using GSE66360 dataset [43–45], obtained 

a satisfactory result, which fully supported our 

conclusion. However, more studies are needed to 

further confirm our findings. Second, the included 

clinical samples were relatively small. Therefore, our 

conclusions must be verified by a larger AMI cohort. 

Third, lipid-related DEGs were only confirmed in 

clinical samples, and their potential functions were not 

demonstrated in AMI cells or animal models. Hence, 

more in vivo and in vitro studies are needed to clarify 

the underlying mechanisms of these key genes in AMI. 

 

In summary, four lipid-related genes involved in AMI 

were confirmed by bioinformatics analysis and machine 

learning methods. These genes might influence AMI 

occurrence by regulating lipid metabolism. Our current 

findings might help understand the mechanisms of lipid 

metabolism-related genes in AMI and develop future 

lipid-lowering treatment strategies for AMI. 

 

MATERIALS AND METHODS 
 

Lipid-related gene dataset 

 

The workflow diagram of this research was shown in 

Supplementary Figure 1. A total of 742 lipid-related 

genes were retrieved from Gene Set Enrichment 

Analysis (https://www.gsea-msigdb.org/gsea/index.jsp) 

(Supplementary Table 3). The AMI dataset (GSE66360) 

was downloaded from the GEO website 

(https://www.ncbi.nlm.nih.gov/geo/). The GSE66360 

dataset including a total of 99 circulating endothelial 

cell samples that collected from 49 AMI and 50 control 

subjects, and this dataset was based on the GPL570 

platform (Affymetrix Human Genome U133 Plus 2.0 

Array). A total of 21629 genes were detected in the 

GSE66360 dataset. 

 

Identification of lipid-related DEGs 

 

The “limma” R package was used to identify lipid-

related DEGs between AMI patients and normal 

participants. The threshold values were p < 0.05 and 

|log fold change (FC)| > 0.585 [46–48]. Heatmaps, 

volcano plots, and boxplot charts were plotted using 

“heatmap” and “ggplot2” R packages. 

 

Functional enrichment analysis of lipid-related genes 

 

The GO and KEGG pathway enrichment analyses were 

conducted using the “enrichplot” R package. Cell 

composition, biological processes, and molecular 

functions were included in the GO analysis. 

Screening of lipid-related genes through SVM-RFE 

and LASSO logistic regression 

 

The “glmnet” R package was used to perform LASSO 

logistic regression which the response type set as 

binomial and alpha set as 1 to identify lipid-related 

genes [49]. LASSO regression is a regularized penalty 

regression method, combining ridge regression and 

subset selection. It applies ordinary least squares, but the 

sum of absolute values of the regression coefficients is 

less than the predetermined constant value [50]. LASSO 

logistic regression is a generalization of the binomial 

distribution of the LASSO output variable. Herein, we 

used LASSO to screen lipid-related genes. Moreover, 

SVM-RFE is a machine learning method based on 

support vector machines that identify optimal variables 

by removing SVM-generated feature vectors [51], and 

the thresholds were set as follows: halve.above = 100 

and k = 5. The “E1071” R package was used to establish 

the SVM module to sift lipid-related genes. Then, the 

intersections of lipid-related genes sifted by LASSO and 

SVM-RFE were applied to AMI diagnostic analysis, and 

the ROC curves were plotted. 

 

Clinical validation samples 

 

From September 2021 to May 2022, 50 AMI patients 

(AMI group) and healthy participants (control group) 

were recruited from the Hunan Provincial People’s 

Hospital. The blood samples were collected from AMI 

patients within hours of admission with chest pain and 

before using antiplatelet or anticoagulant to eliminate 

the influence of possible changes in blood status after 

pharmacological intervention. All AMI patients 

underwent percutaneous coronary intervention (PCI) 

within 12 h of the chest pain onset. The AMI patients 

were diagnosed based on the 2018 guidelines for 

diagnosing AMI patients [52]. A total of 50 healthy 

individuals were enrolled in the hospital physical 

examination center in the same period. The exclusion 

criteria were: (i) active inflammation; (ii) patients 

receiving thrombolysis and with other underlying heart 

diseases (e.g., severe valvular abnormalities, 

cardiomyopathy, or congenital heart disease); and (iii) 

patients who had hepatic and/or renal dysfunction, 

tumors, and autoimmune diseases. All participants 

provided written informed consent before the beginning 

of the study. This research was approved by the Ethics 

Committee of the Hunan Provincial People’s Hospital 

(approval number: [2021]-41). 

 

Real-time quantitative polymerase chain reaction 

(RT-qPCR) 

 

Peripheral blood was obtained from blood samples of 

patients using RNeasy™ Mini Kit (QIAGEN, Frankfurt, 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.ncbi.nlm.nih.gov/geo/
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Germany) to extract total RNA. Total RNA was reverse 

transcribed into cDNA using the PrimeScript RT 

reagent kit (Takara Bio, Japan). RT-qPCR was 

performed with a LightCycler 480 II Real-time PCR 

instrument (Roche, Switzerland) using the TransStart 

Top Green qPCR SuperMix (AQ131-03, Transgen, 

Beijing, China). 

 

Statistical analysis 

 

All bioinformatics and Pearson’s correlation analyses 

were performed using R software (version 4.6.0, 

http://www.R-project.org). SPSS software (version 22.0) 

was used to analyze clinical data. Clinical characteristic 

data were analyzed using Student’s t-test and χ2 test. R 

and Grap Pad Prism software were used for ROC curve 

analysis. A p < 0.05 was considered statistically 

significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. A flow chart for analysis. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 3. 

 

Supplementary Table 1. Functional annotation of the DEGs. 

 

Supplementary Table 2. Key genes identified by LASSO and SVM-RFE. 

Names Total GENES 

LASSO SVM-RFE 4 ACSL1 

  CH25H 

  PLA2G12A 

  GPCPD1 

LASSO 15 ACSL1 

  CH25H 

  HSD11B1 

  CYP1B1 

  BMX 

  PLA2G12A 

  GPCPD1 

  CROT 

  ARV1 

  TBXAS1 

  GK3P 

  LCLAT1 

  ALOX5AP 

  ORMDL2 

  STARD4 

SVM-RFE 4 GPCPD1 

  ACSL1 

  CH25H 

  PLA2G12A 

 

 

Supplementary Table 3. Summary of 742 lipid-related genes. 

 

 


