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INTRODUCTION 
 

Liver cancer ranks as the third leading cause of cancer-

associated death according to GLOBOCAN 2020 [1]. 

Hepatocellular carcinoma (HCC), which has seriously 

affected human health, is the major primary liver cancer 

[2, 3]. In the past decade, despite great progress in 

surgery and various treatments, such as radiotherapy, 

chemotherapy, transarterial chemoembolization (TACE), 

molecular targeted therapy and minimally invasive 

surgery, the overall 5-year survival rate is only 18%, and 

the long-term prognosis of HCC patients still needs to be 

improved [4–6]. 

 

During the process of tumor initiation, development and 

metastasis, cancer cells gradually form an adaptive 

tumor immune microenvironment and begin to avoid 

programmed death and escape immunity. Pyroptosis, a 
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ABSTRACT 
 

Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer worldwide, with high incidence 
and mortality. Pyroptosis, a form of inflammatory-regulated cell death, is closely associated with oncogenesis. 
Methods: Expression profiles of HCC were downloaded from the TCGA database and validated using the ICGC 
and GEO databases. Consensus clustering analysis was used to determine distinct clusters. The pyroptosis-
related genes (PRGs) included in the pyroptosis-related signature were selected by univariate Cox regression 
and LASSO regression analysis. Kaplan‒Meier and receiver operating characteristic (ROC) analyses were 
performed to estimate the prognostic potential of the model. The characteristics of infiltration of immune cells 
between different groups of HCC were explored. 
Results: Two independent clusters were identified according to PRG expression. Cluster 2 showed upregulated 
expression, poor prognosis, increased immune cell infiltration and worse immunotherapy response than cluster 
1. A prognostic risk signature consisting of five genes (GSDME, NOD1, PLCG1, NLRP6 and NLRC4) was identified. 
In the high-risk score group, HCC patients showed decreased survival rates. In particular, multiple clinico-
pathological characteristics and immune cell infiltration were significantly associated with the risk score. 
Notably, the 5 PRGs in the risk score have been implicated in carcinogenesis, immunological pathways and drug 
sensitivity. 
Conclusions: A prognostic signature comprising five PRGs can be used as a potential prognostic factor for HCC. 
The PRG-related signature provides an in-depth understanding of the association between pyroptosis and 
chemotherapy or immunotherapy for HCC patients. 
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newly identified type of cell death triggered by 

inflammation, exhibits morphological characteristics of 

both necrosis and apoptosis [7, 8]. Under physiological 

conditions, pyroptosis defends against pathogen or 

bacterial infections. However, excessive pyroptosis 

tends to lead to sustained amplified inflammatory 

responses that are involved in various human diseases, 

such as infectious diseases, cardiovascular diseases, 

atherosclerosis, diabetic kidney disease, renal ischemia-

reperfusion injury and neurodegenerative diseases  

[9, 10]. Pyroptosis provides new therapeutic strategies 

for human diseases. More importantly, previous studies 

have elucidated that pyroptosis is of great significance  

to tumor progression, and its anti-cancer effects  

have gradually attracted worldwide attention [11]. 

Morphologically, the main characteristics of pyroptotic 

cells include bubble-like protrusions, cellular swelling, 

and the formation of membrane pores by the gasdermin 

(GSDM) protein family [12]. The formation of GSDM 

pores on the plasma membrane eventually leads to cell 

lysis, releasing many damage-associated molecular 

patterns (DAMPs), such as ATP, interleukin-1 beta (IL-

1β), S100 family proteins, heat shock proteins (HSPs) 

and high mobility group box protein 1 (HMGB1) [12, 

13]. The occurrence of pyroptosis leads to a strong 

inflammatory response in the body, which then affects 

the tumor immune microenvironment [14, 15]. 

Nucleotide-binding domain and leucine-rich repeat-

containing receptors (NLRs) and the GSDM family play 

essential roles in pyroptosis signaling pathways. 

Noncanonical pathways triggered by caspase 11 in mice 

and caspase 4/5 in humans and canonical pathways 

triggered by caspase-1 are generally two modes  

of pyroptosis [16]. In the canonical pathway, 

inflammasomes play a role in recruiting apoptosis-

associated speck-like protein containing a caspase 

recruitment domain (ASC) to activate caspase-1, 

leading to cytokine secretion and GSDMD cleavage 

[17]. The N-terminus of GSDMD forms pores on the 

membrane to cause the release of inflammatory factors 

and cell lysis [13]. Recent studies suggested that 

caspase-3 could be activated by some stimuli to 

promote the cleavage of GSDME, leading to pore 

formation [18]. NLRs, a family of proteins that play a 

key role in host defense, not only recognize conserved 

pathogen-associated molecular patterns (PAMPs) but 

also identify DAMPs [19]. NLRs can induce 

inflammasome formation [20]. The inflammasome can 

process signals to trigger a cascade of inflammatory 

responses. Thus, there are significant associations 

between NLRs and multiple human diseases related  

to infection and immunity [21]. NLRs exhibit  

diverse molecular functions under both physiological 
and pathological conditions, such as inflammasome 

assembly, signal transduction, transcription activation 

and autophagy [22]. Since these novel links between 

pyroptosis and human diseases may improve our 

understanding of the pathogenesis of diseases and 

promote the development of new ways to prevent and 

treat these diseases, pyroptosis is also receiving 

widespread attention from clinicians [9, 10].  

Recently, numerous studies have demonstrated that 

inflammasome-regulated pyroptosis is closely inter-

linked with the pathogenesis of cancer [23]. For 

example, NLRP6 expression was decreased in gastric 

cancer and obviously associated with Helicobacter 

pylori infection, lymph node metastasis, tumor stage 

and survival rate [24]. Overexpression of NLRP6 

reduced cell growth, decreased invasion and migration, 

and promoted cell apoptosis in gastric cancer cells [24]. 

Moreover, decreased level of NLRP6 was correlated 

with unfavorable prognosis in patients with head and 

neck squamous cell carcinoma (NHSCC), revealing the 

tumor suppressive role of NLRP6 in gastric cancer and 

NHSCC [25]. In addition, the protein level of NLRC4 

was upregulated and linked with unfavorable prognosis 

in glioma patients, demonstrating that NLRC4 is a 

diagnostic biomarker and potential therapeutic target for 

glioma [26]. Furthermore, loss of NLRC4 impeded 

colon cancer liver metastasis accompanied by reduced 

infiltration level of M2 macrophages and IL-1β 

expression in mice with high-fat diet-triggered 

nonalcoholic fatty liver disease (NAFLD) [27]. The 

protein levels of GSDMD were markedly upregulated in 

non-small cell lung cancer (NSCLC), and upregulated 

GSDMD was markedly correlated with invasive 

characteristics and worse prognosis [19, 28]. GSDME 

protein levels were increased in esophageal squamous 

cell carcinoma (ESCC) and positively corresponded to a 

favorable prognosis [29]. Cotreatment with the PLK1 

inhibitor BI2536 and cisplatin triggered caspase-

3/GSDME axis-dependent pyroptosis in ESCC cells 

[29]. The high expression of GSDME in tumors can 

effectively promote the infiltration of different immune 

cells, and correspondingly, the immune cell infiltration 

and immune response in GSDME-deficient tumors tend 

to decrease. This GSDME-dependent pyroptosis, a 

novel nonapoptotic mechanism of eliminating cancer 

cells, is downstream of the activated mitochondria-

mediated caspase pathway [18, 30]. Nevertheless, the 

association between pyroptosis-related genes (PRGs) 

and immunity in HCC remains unclear, and it is vital to 

construct a new prognostic model of PRGs. 

 

In this study, we performed a comprehensive systematic 

analysis of PRGs in HCC using TCGA, ICGC and GEO 

databases. Two independent HCC clusters established by 

consensus clustering analysis were shown to have 

different immune cell infiltration and prognostic survival. 
To further assess the effects of the PRGs in HCC, a five-

PRG risk model, including GSDME, NOD1, PLCG1, 

NLRP6 and NLRC4, was identified to be greatly linked 
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with the overall survival (OS) of HCC patients. We also 

determined the significance of the signature by exploring 

the associations between the risk score and immune cell 

infiltration, clinical features, drug sensitivity and 

immunotherapy response in HCC patients. These results 

provide an in-depth understanding of the prognostic 

power of PRGs and provide immunotherapy strategies 

and treatments for HCC patients. 

 

RESULTS 
 

Expression of pyroptosis-related genes (PRGs) in 

HCC in the TCGA database 

 

The flow chart depicting the analysis procedure for the 

present study is shown in Supplementary Figure 1. 

According to previous studies, we first analyzed the 

expression of thirty-three PRGs that were of great 

significance in modulating pyroptotic cell death in 

HCC. We evaluated the expression of these PRGs to 

investigate the functions of pyroptosis in HCC  

using the TCGA database. The expression of most 

PRGs, including CASP3, CASP4, CASP6, CASP8, 

CASP9, GPX4, GSDMA, GSDMB, GSDMC, 

GSDMD, GSDME, NLRP1, NLRP7, NOD1, NOD2, 

PJVK, PRKACA, PYCARD, PLCG1, SCAF11 and 

TIRAP, was significantly increased in HCC tissues 

compared with normal tissues (Figure 1A, 1B). 

Conversely, markedly decreased expression of  

AIM2, IL1B, IL6, NLRP3 and NLRP6 was observed 

in HCC tissues compared with normal tissues  

(Figure 1A, 1B). 

 

 
 

Figure 1. Differential expression of 33 PRGs in HCC according to the TCGA database. (A) Heatmap of the differential expression of 
PRGs in HCC samples and normal samples. (B) Box diagram of the differential expression of PRGs in HCC samples and normal samples.  
*p < 0.05, **p < 0.01, ***p < 0.001. 
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To confirm the altered expression of the thirty-three 

PRGs, we also investigated the transcriptional level of 

these PRGs according to the ICGC database. The 

expression of AIM2, IL18, IL1B, IL6, NLRC4, NLRP2, 

NLRP3, NLRP6, NLRP7 and TNF was obviously 

downregulated in HCC tissues (Supplementary Figure 

2A, 2B). However, the expression of CASP3, CASP6, 

CASP8, CASP9, GPX4, GSDMA, GSDMC, GSDMD, 

GSDME, NLRP1, NOD1, PLCG1, PYCARD and 

TIRAP was markedly elevated in HCC tissues compared 

with normal tissues (Supplementary Figure 2A, 2B). 

 

Construction of an interactive network of PRGs and 

signaling pathway analysis 

 

To further investigate the mechanisms of PRGs with 

differential expression in HCC, signaling pathway 

analysis was carried out using the Metascape database. 

Consistent with our speculation, these PRGs were 

strongly and positively associated with pyroptosis (Figure 

2A). Additionally, these PRGs were also remarkably 

involved in various immunity-related pathways, 

including the nucleotide-binding oligomerization domain 

(NOD) pathway, NOD-like receptor signaling pathway, 

response to lipopolysaccharide, NOD1/2 signaling 

pathway, AIM2 inflammasome, negative regulation of 

cytokine production, regulation of cytokine-mediated 

signaling pathway, regulation of inflammatory response 

to antigenic stimulus, neutrophil-mediated immunity, and 

positive regulation of leukocyte differentiation (Figure 

2A). Moreover, PPI networks were generated through the 

Metascape and STRING databases (Figure 2B, 2C). 

Additionally, the core interactions of PRGs are shown in 

Figure 2D. We then assessed the correlations among 

these PRGs. There were positive or negative correlations 

among the thirty-three PRGs according to the TCGA and 

ICGC databases (Figure 2E, 2F). 

 

Consensus clustering analysis of PRGs in HCC 

 

Depending on the diverse expression levels of PRGs, we 

performed consensus clustering analysis. We identified k 

= 2 as the variable clustering stability, suitably dividing 

HCC patients into two subgroups (Figure 3A). 

Considering the transcriptome data of these 2 clusters, 

PCA was conducted (Figure 3B, 3C). The expression of 

these PRGs in the two clusters was further estimated 

(Figure 3D and Supplementary Figure 3). Most PRGs 

were highly expressed in cluster 2 (C2) compared with 

cluster 1 (C1) (Figure 3D and Supplementary Figure 3). 

Additionally, obvious differences in survival between 

the two clusters and worse OS were observed in HCC 

patients in C2 compared with those in C1 (Figure 3E). In 
addition, there were obvious differences in multiple 

clinicopathological parameters between the two clusters, 

including grade, T stage and TNM stage (Table 1). 

Immune cell infiltration in two different clusters 

 

Because PRGs were closely associated with the immune 

response (Figure 2A), we then explored the relationship 

between different clusters and the tumor immune 

microenvironment. The results of the TIMER algorithm 

illuminated that the infiltration scores of six major 

immune cells, including CD4+ T cells, B cells, CD8+ T 

cells, macrophages, neutrophils and dendritic cells, in C1 

were obviously lower than those in C2 (Figure 4A, 4B). 

The percentage abundance of infiltrated immune cells in 

each HCC patient is shown with different colors and 

immune cell types (Figure 4C). We also investigated the 

influence of different clusters on the expression levels of 

well-known important immune checkpoint genes and 

observed that the expressions of CD274, PDCD1, 

PDCD1LG2, CTLA4, LAG3, HAVCR2 and TIGIT 

were markedly downregulated in C1 compared with C2 

(Figure 4D). More importantly, the TIDE score was 

lower in C1 than in C2, suggesting a better response to 

immunotherapy in C1 (Figure 4E). 

 

Furthermore, the relationships between patient clusters 

and immune cell infiltration were also confirmed by the 

CIBERSORT algorithm. The infiltration abundances of 

activated CD4+ memory T cells, resting memory CD4+ 

T cells, regulatory T cells (Tregs), M0 macrophages, 

resting NK cells, activated mast cells, naïve B cells, 

memory B cells, neutrophils and resting mast cells in 

C1 and C2 were obvious different (Supplementary 

Figure 4A, 4B). The percentage abundance of infiltrated 

immune cells in each HCC patient is indicated with 

different colors and immune cell types according to the 

CIBERSORT algorithm (Supplementary Figure 4C). 

 

Molecular and functional enrichment analyses of the 

differences in two clusters of PRGs 

 

To further elucidate the molecular mechanism underlying 

the difference between C1 and C2, we then investigated 

the alteration of gene expression between these two 

clusters. As shown in Figure 5A, 5B, 486 genes were 

significantly upregulated and 6643 genes were 

downregulated in C1 compared with C2. Next, GO and 

KEGG analyses were performed to explore the different 

signaling pathways between C1 and C2 using 

upregulated or downregulated genes. The top 5 enriched 

KEGG pathways for upregulated genes were complement 

and coagulation cascades, metabolism of xenobiotics by 

cytochrome P450, drug metabolism-cytochrome P450, 

retinol metabolism and bile secretion (Figure 5C). The 

top 5 enriched pathways for upregulated genes were 

small molecule catabolic process, fatty acid metabolic 
process, carboxylic acid catabolic process, organic acid 

catabolic process and carboxylic acid biosynthetic 

process (Figure 5D). The top 5 enriched KEGG pathways 
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Figure 2. Functional analysis of 33 PRGs in HCC. (A) The enriched signaling pathways of 33 PRGs were obtained from the Metascape 
database. (B) A PPI network was constructed using the STRING database. (C) A gene-gene interactive network was constructed using the 
Metascape database. (D) The hub genes were selected from the PPI network using the Metascape database. (E, F) Heatmaps demonstrating 
the correlations among 33 PRGs with Spearman analysis in the TCGA and ICGC databases. 
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for downregulated genes were endocytosis, Salmonella 

infection, human cytomegalovirus infection, human T-

cell leukemia virus 1 infection and chemokine signaling 

pathway (Figure 5E). Additionally, the top 5 enriched 

GO terms for downregulated gene pathways were T-cell 

activation, covalent chromatin modification, regulation 

of cell–cell adhesion, actin filament organization, and 

positive regulation of cell adhesion (Figure 5F). These 

 

 
 

Figure 3. Identification of distinct clusters of PRGs in HCC. (A, B) Two clusters were defined by consensus clustering analysis.  
(C) Cumulative distribution curves for k = 2-6. (D) Heatmap showing the expression pattern of PRGs in the two clusters. (E) KM analysis 
showed the OS for the two clusters of HCC patients. 
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Table 1. Relationships between various clinicopathological characteristics 
and the two clusters in HCC. 

 Characteristic C1 C2 P_value 

Status 
Alive 196 45  

Dead 97 33 0.168 

Age 
Mean (SD) 59.5 (13.7) 59.3 (12.7)  

Median [Min, Max] 61 [16,90] 62 [20,85] 0.89 

Sex 
Male 203 47  

Female 90 31 0.169 

Race 

White 142 42  

Asian 127 31  

Black 12 5  

American Indian 2  0.567 

pT-stage 

T1 157 24  

T2 63 29  

T3 34 11  

T3a 22 7  

T3b 4 2  

T4 10 3  

TX 1   

T2a  1  

T2b  1 0.017 

pN-stage 

N0 202 50  

N1 3 1  

NX 88 26 0.794 

pM-stage 

M0 214 52  

M1 4   

MX 75 26 0.249 

pTNM-stage 

I 147 24  

II 58 28  

III 3   

IIIA 49 16  

IIIB 5 3  

IIIC 6 3  

IV 2   

IVA 1   

IVB 2  0.007 

Grade 

G1 51 4  

G2 141 36  

G3 89 33  

G4 7 5 0.008 

 

data imply that the difference between C1 and C2 is 

linked with metabolism- and immunity-associated 

signaling pathways. 

 

Genetic mutation and drug sensitivity prediction of 

the two clusters in HCC 

 

We then generated the mutation profiles of HCC 

patients in C1 and C2 using the TCGA database. In C1, 

the top five genes with high mutation rates were 

CTNNB1, TTN, TP53, MUC16 and PCLO (Figure 6A). 

In contrast, TP53, TTN, MUC16, CSMD3 and PCLO 

were the most common mutation cohorts of genes 

altered in C2 (Figure 6B). In addition, missense was the 

primary type of mutation, and SNP was the major 
variant in both C1 and C2 (Figure 6A, 6B). The results 

of SNV class revealed that the most common type of the 

two risk groups was C > T (Figure 6A, 6B). 
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We also evaluated the difference in sensitivity to 

chemotherapeutic drugs in these two clusters. There was 

a significant difference in the IC50 values of sorafenib, 

sunitinib, paclitaxel, gefitinib, etoposide, 5-fluorouracil, 

docetaxel, doxorubicin, vinblastine and gemcitabine 

between the two clusters, suggesting that C1 was more 

resistant to these drugs (Figure 6C). 

 

Identification and construction of a PRG-related 

prognostic signature in the TCGA database 

 

We carried out univariate Cox regression analysis of 33 

pyroptosis regulators to select PRGs with prognostic 

value. Seven hub genes, including CASP3, CASP4, 

GSDME, NLRC4, NLRP6, NOD1 and PLCG1, were 

selected with a cutoff of p < 0.05 (Figure 7A). 

Consistently, the altered expression of CASP3, CASP4, 

GSDME, NLRC4, NLRP6, NOD1 and PLCG1 also 

corresponded with favorable or unfavorable OS in HCC 

patients according to the KM analysis (Figure 7B). These 

seven candidate genes were considered as prognostic 

factors in HCC. 

 

LASSO Cox regression analysis based on the optimum 

λ value was then performed to build a prognostic 

model for the candidate PRGs to address collinearity. 

The risk score was calculated as follows: risk score = 

(0.1974 × GSDME) + (0.1926 × NLRC4) + (-0.1947 × 

NLRP6) + (0.0581 × NOD1) + (0.0272 × PLCG1) 

(Figure 7C, 7D). The risk score, survival outcome and 

5 PRG gene expression of each HCC patient in TCGA 

database are vividly shown (Figure 7E). Of note, KM 

curve analysis results revealed that HCC patients in 

the high-risk group had unfavorable OS compared 

with those in the low-risk group (Figure 7F). ROC 

analysis was applied to verify the sensitivity and 

specificity of the prognostic model. The areas under 

the ROC curve (AUCs) were 0.699 for 1-year survival, 

0.649 for 3-year survival and 0.66 for 5-year survival 

(Figure 7G). 

 

 
 

Figure 4. Evaluation of immune cell infiltration abundance in different clusters of HCC samples by the TIMER algorithm.  
(A, B) Heatmap and box diagram showing the differential infiltration abundance of six types of immune cells in C1 and C2. (C) Bar plot 
demonstrating the composition of a great variety of immune cells in every HCC patient from C1 and C2 analyzed by the TIMER algorithm.  
(D) Box plots indicating the altered expression of immune checkpoint genes in C1 and C2. (E) Box plots showing the TIDE scores in the two 
clusters. ***p < 0.001. 
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Figure 5. (A) Volcano plot displaying the upregulated and downregulated genes in C2 compared with C1. (B) A clustering heatmap showing 

the changed expression of genes in two clusters after the deep filtration of genes with p < 0.05 and |log2 (fold change)|> 1.5 as thresholds. 
(C, D) KEGG and GO analyses were applied to explore the different signaling pathways for the upregulated genes. (E, F) KEGG and GO 
analyses were applied to explore the different signaling pathways for the downregulated genes. 
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Confirmation of the PRG-related prognostic 

signature in the ICGC database 

 

A similar calculation was applied to the data from the 

ICGC database to verify the availability of the prognostic 

signature. The risk score was calculated as follows: risk 

score = (0.2485 × GSDME) + (-0.5484 × NLRC4) +  

(-0.9524 × NLRP6) + (0.1684 × NOD1) + (-0.3558 × 

PLCG1) (Supplementary Figure 5). We also divided the 

HCC patients into high-risk and low-risk subgroups in 

the ICGC database. HCC patients with high risk had a 

reduced survival time and a higher risk of mortality 

 

 
 

Figure 6. Mutational landscape and drug sensitivity of two clusters. (A) The landscape of mutation profiles in C1. (B) The landscape 

of mutation profiles in C2. Variant classification, variant types and SNV classification are shown. (C) Comparison of drug sensitivity in the two 
clusters. ***p < 0.001. 
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(Supplementary Figure 5A). The HCC patients in the 

high-risk subgroup had poor prognosis compared with 

those in the low-risk subgroup based on KM analysis, 

indicating good accuracy of this prognostic signature 

(Supplementary Figure 5B). The AUC values were  

0.635 for 1-year survival, 0.687 for 2-year survival and 

0.724 for 3-year survival (Supplementary Figure 5C). 

Collectively, these data suggested that the pyroptosis-

related prognostic signature model could distinguish 

favorable prognoses in HCC patients. 

 

 
 

Figure 7. Construction of a five-PRG signature model in the TCGA-HCC cohort. (A) Forest plot of univariate Cox regression to select 
the genes with prognostic potential. (B) KM analysis revealed the prognostic value of CASP3, CASP4, GSDME, NLRC4, NLRP6, NOD1 and 
PLCG1 with the log-rank test. (C, D) A prognostic model containing 5 PRGs was built using LASSO Cox regression analysis. (E) The risk score 
and OS status of each case. (F) KM analysis for OS between the low-risk group and high-risk group. (G) The AUC of time-dependent ROC 
curves was shown. 
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Independent prognostic potential of the PRG 

signature according to various clinicopathological 

parameters 

 

To further certify the prognostic value of the  

5-PRG signature, the association between various 

clinicopathological parameters and risk score was 

explored. The high-risk score of the 5-PRG signature 

was obviously associated with worse OS in young (< 60 

years), old (> 60 years), female, male, early stage (T1 + 

T2), advanced stage (T3 + T4), early grade (G1 and 

G2), advanced grade (G3), M0, N0, TNM stage I+II and 

TNM stage III HCC patients (Figure 8). Together, these 

data suggest that the 5-FRG signature can predict OS 

 

 
 

Figure 8. Prognostic potential of the risk score with different clinical parameters. KM analysis of OS between two subgroups 

stratified by age < 60, age > 60, male, female, T1 + T2, T3 + T4, G1, G2, G3, M0, N0, TNM I+II and TNM III with the log-rank test according to 
the TCGA database. 



www.aging-us.com 1424 AGING 

among each stratum of age, sex, stage and grade and 

further prove the good stratification ability of the 5-

PRG prognostic model. 

 

Univariate and multivariate Cox regression analyses 

and construction of the nomogram 

 

To further assess the prognostic value of the PRG-

related prognostic signature in HCC patients, we 

performed univariate and multivariate Cox regression 

analyses (Figure 9A, 9B). Following univariate Cox 

regression analysis, GSDME, NLRC4, NLRP6, NOD1, 

PLCG1, T stage and M stage were clearly related to OS 

(Figure 9A). Following the results of multivariate Cox 

regression analysis, T stage and grade had obvious 

correlations with OS (Figure 9B). A nomogram model 

integrating T stage and grade was further constructed to 

predict the OS of HCC patients based on multivariate 

regression analysis (Figure 9C). The calibration plots of 

the nomogram illuminated good agreement between the 

nomogram-predicted and actual 1-, 3- and 5-year 

survival rates (Figure 9D). 

 

Immune cell infiltration analysis of the risk model 

 

We then estimated the relationship between the immune 

cell infiltration and the risk score in HCC. The 

infiltrated levels of six major immune cell types were 

investigated utilizing the TIMER method. The risk 

score was strongly linked with the infiltrated levels of B 

cells, neutrophils, macrophages, CD4+ T cells, CD8+ T 

cells and dendritic cells (Figure 9E). In addition to the 

risk score, GSDME, NOD1, PLCG1 and NLRC4 were 

also significantly positively correlated with the 

infiltration abundances of these immune cells, whereas 

NLRP6 was negatively linked with the infiltrated 

abundances of B cells, CD4+ T cells and dendritic cells 

(Figure 9F). 

 

Expression of 5 hub PRGs 

 

The expression of the five-gene signature was obviously 

elevated in HCC tissues compared with normal tissues 

(Figure 10A). The expression of this signature was 

much higher in metastatic tissues (Figure 10A). Next, 

the transcriptional levels of these five hub genes were 

separately examined based on the HCCDB database. 

Increased expression of GSDME and PLCG1, and 

decreased expression of NLRC4 were found in HCC 

tissues in most GEO datasets (Supplementary Figure 6). 

Moreover, NOD1 expression was increased and NLRP6 

expression was decreased in three different datasets 

(Supplementary Figure 6). 
 

The protein expression level of these genes was 

examined according to the CPTAC database. The 

protein levels of GSDME and PLCG1 were higher, 

while the protein level of NLRC4 was lower in HCC 

than in normal tissues (Figure 10B). IHC results were 

obtained from the HPA database to further estimate the 

protein expression levels of GSDME, NLRC4, PLCG1 

and NLRP6. The protein levels of GSDME and PLCG1 

were upregulated in HCC, which was consistent with 

the CPTAC data. In contrast, the protein levels of 

NLRC4 and NLRP6 were downregulated in HCC 

compared with normal liver tissues (Figure 10C). 

 

We further examined these gene expressions using 

single-cell RNA-sequence data. Elevated expression 

levels of GSDME, NOD1 and PLCG1 in HCC tissues 

were observed (Figure 10D). Interestingly, these four 

PRGs were expressed not only in liver cancer cells  

but also in some immune cells, which may be one 

reason for the immune cell infiltration of the risk score 

(Figure 10D). 

 

Genetic mutation and drug sensitivity of 5 PRGs in 

HCC 

 

We then explored the genetic mutation profiles of these 

five PRGs using the cBioPortal online tool. The PLCG1 

gene had the highest mutation frequency (2%), followed 

by GSDME (1.1%), NLRP6 (1.1%), NLRC4 (1.1%) 

and NOD1 (0.3%) (Supplementary Figure 7A, 7B). The 

mutation was the primary type for these 5 genes 

(Supplementary Figure 7B). We also investigated the 

correlations between the five PRGs and several 

tumorigenesis-associated pathways, including the cell 

cycle, apoptosis, DNA damage response, EMT, 

hormone ER, hormone AR, RAS/MAPK, PI3K/AKT, 

RTK and TSC/mTOR pathways. The 5 hub PRGs were 

essentially linked with the inhibition or activation of 

these signaling pathways (Supplementary Figure 7C). 

 

We then evaluated whether the 5 PRGs affected the 

sensitivity of chemotherapy drugs using the GDSC 

database (Figure 11). According to the median expression 

of these 5 PRGs, HCC patients were separated into high-

expression and low-expression groups. The IC50 values 

of all these chemotherapeutic drugs were significantly 

different between the high-expression group and the low-

expression group (Figure 11). These data illustrate that 

HCC patients with increased expression of 5 PRGs are 

more sensitive to common chemotherapeutic agents. 

 

DISCUSSION 
 

Liver cancer is the third leading cause of cancer-related 

death in the world, and its high incidence rate and 

mortality seriously threaten human health [1]. The HCC 

patients do not have obvious diagnostic symptoms at the 

early stage, so the opportunity for surgery may have 
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Figure 9. Univariate and multivariate Cox regression analyses for risk score and construction of a nomogram. (A, B) Univariate 

Cox regression and multivariate Cox regression analyses of five PRGs and clinical features. (C) A nomogram containing the prognostic 
signature and different clinicopathological parameters was constructed. (D) Calibration curve of the actual 1-, 3-, and 5-year OS.  
(E) Association between the risk score and the infiltration abundances of six immune cells. (F) Heatmap depicting the correlations between 
the risk score and five PRGs and the infiltrated abundances of six types of immune cells. *p < 0.05, **p < 0.01. 
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Figure 10. Expression of the prognostic signature and PRGs in HCC samples and normal liver samples. (A) The expression of the 

prognostic signature in HCC was examined using the TMNplot database. (B) The protein levels of GSDME, NLRC4 and PLCG1 were examined 
using the CPTAC database. (C) IHC analysis of the protein levels of GSDME, PLCG1, NLRC4 and NLRP6 using the HPA database. (D) Differential 
expression and distribution of GSDME, PLCG1, NLRC4 and NOD1 in HCC based on single-cell RNA-sequence analysis using the Human Liver 
Browser database. ***p < 0.001. 
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Figure 11. Correlations between the 5 PRGs and drug sensitivity in HCC. (A–F) The relationships between the expression of 5 PRGs 

and drug sensitivity were explored based on the GDSC database through the pRRophetic package. *p < 0.05, **p < 0.01, ***p < 0.001. 
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been lost at the time of diagnosis, and the survival rate 

of HCC patients is still unsatisfactory [3]. Thus, it is 

urgent to deeply and systematically understand the 

molecular mechanism and open up new diagnostic 

strategies and treatment methods for HCC. Pyroptosis is 

a new form of regulated cell death (RCD) that causes 

cell membrane rupture and death via continuous cell 

expansion, resulting in the release of cell contents, 

which in turn activates a strong inflammatory response 

[11]. Compared with apoptosis, pyroptosis occurs faster 

and is accompanied by the release of a large number of 

proinflammatory factors, leading to the rapid death of 

cancer cells [31]. A growing number of studies have 

illuminated that pyroptosis-related molecules play a role 

in promoting tumor development and provide a new 

idea for the treatment of liver cancer [32–34]. 

 

In this study, two independent clusters were identified 

using consensus clustering analysis according to the 

expression levels of 33 PRGs. Importantly, PRGs in C2 

had increased expression, and patients in C2 exhibited a 

worse prognosis than those in C1. Meanwhile, essential 

differences in terms of grade, T stage and TNM stage 

between C1 and C2 were observed (Table 1). C2 was 

enriched in immunity-related biological pathways and 

strongly correlated with prognosis and immune 

infiltration. In addition, to obtain a novel prognostic 

signature to predict OS, we selected pyroptosis 

regulators related to prognosis in HCC. Based on the 

prognostic potential of PRGs in HCC patients, we 

established and validated the risk prediction models of 

five PRGs (GSDME, NLRC4, NLRP6, NOD1 and 

PLCG1) and separated the HCC patients into a high-risk 

group and a low-risk group. The univariate and 

multivariate Cox regression analysis results illustrated 

that the established PRG risk model was an independent 

prognostic model for HCC patients. Combined with the 

established clinicopathological characteristics, ROC 

analysis proved that the risk model had more benefits in 

predicting the OS of patients with HCC. To expand our 

risk model, we further established a novel nomogram 

model to predict OS. At the same time, the actual OS is 

highly consistent with the model predictions as the 

results of the calibration curve. 

 

Chemotherapy and immunotherapy are important adjunct 

treatments for patients with HCC [4]. The development 

of new anticancer drugs is a time-consuming, high-

investment and high-risk project. Often, the birth of new 

anticancer drugs requires several years or even decades 

of research, development and validation. Sorafenib, a 

multitargeted tumor drug, can selectively target the 

receptors of certain signaling pathways to facilitate 
apoptosis, suppress angiogenesis and inhibit cancer cell 

proliferation [35]. Sorafenib is an effective first-line 

therapy for late-stage HCC [36, 37]. Although sorafenib 

is less toxic and well tolerated, it still has some special 

adverse effects, which should be considered in clinical 

research and application. Moreover, according to clinical 

observations, the overall effective rate of treatment for 

liver cancer is relatively low. Additionally, sorafenib 

resistance is becoming more common. Fortunately, many 

other broad-spectrum anticancer drugs, including 5-

fluorouracil, docetaxel, doxorubicin, etoposide, gefitinib, 

gemcitabine, paclitaxel, vinblastine and sunitinib, are also 

used as treatment strategies for liver cancer patients. In 

the current study, according to the GDSC database, the 

relationships between clusters and chemotherapeutic drug 

sensitivity were investigated. The sensitivity of the two 

clusters to common chemotherapeutic drugs was 

obviously different, and cluster 2 HCC patients may 

benefit from these drugs. In addition, the risk model 

containing five PRGs was also significantly correlated 

with sensitivity to these drugs. In the high PRG 

expression group, the IC50 value of chemotherapeutic 

agents was obviously decreased, indicating that HCC 

patients with elevated PRG expression may gain more 

therapeutic benefits from these drugs through pyroptosis, 

which may make the treatment of HCC more effective 

and have fewer side effects. 

 

As an inflammatory type of RCD, pyroptosis was 

identified by cell swelling, membrane rupture and pore 

formation, leading to the release of intracellular 

contents, including IL-1β and IL-18, and ultimately 

causing a cascade-amplified inflammatory action [7]. 

The essential components of pyroptosis, including 

inflammasomes, GSDM proteins and cytokines, are all 

associated with the development, invasion and 

metastasis of tumors [15]. Cleavage of GSDM family 

members, such as GSDMD and GSDME, mediated by 

cysteine proteases is the key process that causes 

pyroptosis [38]. Previous studies have shown that 

GSDME is downregulated in some human cancers and 

might act as a tumor suppressor [39, 40]. The DNA 

methylase inhibitor decitabine (5-aza-2'-deoxycytosine) 

could downregulate the expression of GSDME, thereby 

preventing the proliferation and colony formation 

ability of melanoma, gastric cancer and CRC cells, and 

may reduce the invasive ability of breast cancer cells 

[41]. In addition, GSDME is associated with etoposide 

resistance [42]. Loss of GSDME facilitates the 

resistance of melanoma cell lines to etoposide, which 

can be rescued by overexpression of GSDME [42]. 

Treatment of lung cancer cells with inhibitors of KRAS, 

EGFR or ALK results in caspase-3-regulated activation 

of GSDME, thereby increasing the anticancer efficacy 

of these drugs [43, 44]. In mouse tumor models, 

knockdown of GSDME enhanced tumor growth, 
whereas ectopic expression of GSDME inhibited tumor 

growth [45]. Importantly, the tumor inhibitory effect  

of GSDME was dominated by killing cytotoxic 
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lymphocytes, as this effect was markedly abolished in 

mice with loss of perforin or in mice deficient in CD8+ 

T and NK cells [45]. CAR-T cells induce pyroptosis by 

sequentially releasing granzyme B, activating caspase-3 

and cleaving GSDME [46]. Pyroptosis-associated 

factors in turn activate caspase-1 in macrophages, 

leading to cleavage of GSDMD, which ultimately 

induces cytokine release syndrome [46]. Consistently, 

knockout of the GMEDE gene in B16 melanoma greatly 

decreased the survival rate in tumor-implanted mice. 

Therefore, GSDM genes not only trigger pyroptosis in 

tumor cells but also activate antitumor immunity [44, 

47]. NOD1, a member of the pattern recognition 

receptor (PRR) family, is involved in various 

pathologies, especially cancer. NOD1 is expressed in 

some types of cells, including endothelial cells, 

hematopoietic cells and various immune cells (e.g., 

neutrophils, macrophages, monocytes, NK cells, and 

lymphocytes) [48]. These findings are consistent with 

our observations. NOD1 activation elicits antigen-

specific T-cell immune responses primarily through Th2 

polarization [49]. Additionally, NOD1 stimulates Th1, 

Th2 and Th17 immune responses along with other 

innate immune TLRs [49]. Additionally, NOD1 

activation also contributes to the B-cell antigen 

receptor-assisted survival of mature B cells [50]. 

Activation of NOD1 also promoted chemokine 

production and specific recruitment of neutrophils in 

mice [51]. A recent study demonstrated that activation 

of NOD1 facilitated oncogenesis by promoting 

autophagy-dependent macrophage reprogramming and 

triggering myeloid-derived suppressor cell (MDSC) 

expansion and immunosuppressive ability through 

arginase-1 activity in colorectal cancer [52]. In contrast, 

NOD1 expression was markedly decreased in HCC 

tissues, and overexpression of NOD1 greatly prevented 

tumorigenesis and increased the response to 

chemotherapeutic drugs through suppression of the 

SRC/MAPK pathway in vitro and in vivo [53]. These 

results imply that NOD1 exerts its tumor-suppressive 

effect on HCC. In the current study, we observed that 

NOD1 expression was markedly increased in HCC 

tissues in some datasets and that NOD1 was also 

expressed in immune cells through single-cell RNA 

sequence analysis. PLCG1, a primary subtype of 

phospholipase C (PLC), is directly activated by diverse 

membrane receptors. Upon T-cell activation, as a 

phospholipase, PLCG1 can cleave phosphatidylinositol 

4,5-diphosphate in the plasma membrane into two 

second messengers: inositol 1,4,5 triphosphate and 

diacylglycerol. Inositol 1,4,5-triphosphate causes 

calcium release from the endoplasmic reticulum, 

increases the intracellular calcium concentration and 
activates NFAT, while diacylglycerol activates specific 

isoforms of protein kinase C (PKC) [54, 55]. Recent 

bioinformatics analysis identified that PLCG1 was 

frequently highly expressed and mutated in various 

cancers and was involved in tumorigenesis as an 

oncogene [56]. Elevated expression of PLCG1 was 

linked with poor survival and tumor progression in 

lower-grade glioma (LGG) patients [57]. Knockdown of 

PLCG1 significantly reduced the proliferation, migration 

and invasiveness of IDH wild-type LGG cells [57]. The 

PLCG1-mediated signaling pathway also regulated tumor 

metastasis. The PLCG1/PKCθ axis accelerated STAT3 

activation and promoted the proliferation and survival of 

cutaneous T-cell lymphoma cells [55]. These results have 

highlighted the important role of these PRGs in immunity 

and oncogenesis. 

 

A growing body of research has revealed that the five 

core prognostic PRGs are also closely related to various 

human diseases. GSDME expression was elevated in the 

renal tubules of patients with systemic lupus 

erythematosus (SLE) and pristane-induced lupus mice. 

Knockout of GSDME significantly alleviated SLE 

pathogenesis by suppressing GSDME-regulated 

pyroptosis of renal cells [58]. These data suggest that 

GSDME-mediated pyroptosis is involved in the 

pathogenesis of SLE and that GSDME may be a potential 

therapeutic target for SLE. Loss of GSDME effectively 

ameliorated cisplatin- or ischemia–reperfusion-induced 

inflammation and acute kidney injury by inhibiting 

caspase-3/GSDME-induced pyroptosis [59]. In fact, 

some chemotherapeutic drugs, including cisplatin and 

doxorubicin, can trigger GSDME cleavage in human 

renal cells. Knockdown of GSDME attenuated 

doxorubicin- or cisplatin-triggered cell pyroptosis [60]. 

Therefore, GSDME-modulated pyroptosis may play a 

vital role in chemotherapy-induced nephrotoxicity. 

Moreover, loss of GSDME also aggravated skin damage 

in UVB-treated mice by promoting the infiltration and 

activation of neutrophils [61]. Previous studies have 

identified NOD1 as a key player in host-microbial 

defense and multiple inflammatory diseases. There is a 

direct link between NOD1 and atherosclerosis. In vivo 

experiments indicated that deficiency of NOD1 reduced 

the risk of atherosclerotic thrombosis by inhibiting 

leukocyte infiltration and decreasing macrophage 

apoptosis [62]. NOD1 expression was upregulated in the 

adipose tissue of patients with metabolic syndrome or 

gestational diabetes [63, 64]. Interestingly, the 

polymorphism in NOD1 (Glu266Lys) was associated 

with dietary saturated fat and insulin sensitivity in 

humans aged 20-29 years [65]. Whole body or 

hematopoietic depletion of NOD1 significantly decreased 

high-fat diet (HFD)-associated glucose and insulin 

resistance in mice [66, 67]. Another study indicated that, 

loss of NOD1 accelerated obesity in mice fed a HFD, 
accompanied by increased levels of free thyroidal T4, 

reduced expression of uncoupling protein 1 (UCP1) in 

brown adipose tissues, and enhanced infiltration of 
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inflammatory cells in white adipose tissues and liver 

tissues, suggesting a protective role of NOD1 against 

inflammation and obesity [68]. Infection with Japanese 

encephalitis virus (JEV) greatly elevated the 

transcriptional and protein expression of NOD1 in mice, 

and knockout of NOD1 enhanced resistance to JEV 

infection by inhibiting the neuroinflammatory response 

and multiple downstream signaling pathways [69]. 

Knockout of NOD1 also significantly decreased the 

number of isolated lymphoid follicles in the distal ileum 

and colon of mice and greatly increased the total number 

of bacteria in the ileum to affect intestinal homeostasis 

[70]. Compared with wild-type (WT) mice, mice lacking 

NOD1 are more likely to be infected with early 

pneumococcal septicemia, which implies that NOD1 

plays a key role in initiating innate defense and 

promoting a rapid response to infection [71]. These 

results imply that the physiological function of NOD1 in 

the intestine is crucial to maintain the homeostasis 

between the microbiota and host immune system. PLCG1 

is a vital regulator of cellular signaling. In mice, specific 

knockout of PLCG1 in neural progenitor cells resulted in 

axonal guidance defects in the dorsal midbrain during 

embryogenesis. Moreover, in adult PLCG1-deficient 

mice, structural changes in the corpus callosum, olfactory 

tubercle, and substantia innominate were observed. These 

data indicated that PLCG1 may play key roles in the 

development of white matter structure by regulating the 

netrin-1/deleted in colorectal cancer (DCC) complex 

signaling pathway [72]. Mice with GABAergic neuron-

specific deletion of PLCG1 showed handling-induced 

recurrent seizures with a reduced number of GABAergic 

synapses, decreased hippocampal inhibitory synaptic 

transmission, anxiety alleviation and fear memory 

disorder [73]. Numerous studies have extensively 

investigated the immune functions of NLRC4 in response 

to bacterial infection. For example, mice with NLRC4 

deficiency had low resistance to Salmonella 

Typhimurium and Legionella pneumophila infections and 

exhibited elevated bacterial burden [74]. When mice 

were infected with Shigella, intestinal mucosa thickening, 

shrinkage of the cecum, macroscopic edema, and acute 

weight loss were observed in NLRC4-/- mice, suggesting 

that NLRC4 conferred resistance to Shigella infection 

[75]. In NLRC4 knockout mice, bacterial flagellin, one of 

the main innate immune activators in the intestine, failed 

to induce the expression of IL-18 and IL-1β, indicating 

that NLRC4 was necessary to rapidly generate 

inflammasome cytokines [76]. Lack of NLRC4 also 

aggravated dextran sulfate sodium (DSS)-induced acute 

colitis and increased flagellate-caused mortality in mice 

[76]. Recently, increasing evidence has revealed the 

important functions of NLRP6 in microbial infection-
associated inflammation. Mice lacking NLRP6 were 

highly resistant to infection with a variety of bacterial 

pathogens, such as Salmonella typhimurium, Listeria 

monocytogenes and Escherichia coli. When NLRP6-

deficient mice were infected with these bacterial 

pathogens, the number of circulating monocytes and 

neutrophils increased, accompanied by activation of the 

mitogen-activated protein kinase (MAPK) and nuclear 

factor-κB (NF-κB) signaling pathways. In contrast, 

NLRP6-/- mice showed increased parasite shedding and 

significant susceptibility to Cryptosporidium infection 

compared with WT control mice [77]. NLRP6 knockout 

mice exhibited spontaneous intestinal hyperplasia, large 

recruitment of inflammatory cells, and deterioration of 

DSS-induced colitis. The lack of NLRP6 in mouse colon 

epithelial cells led to a decrease in IL-18 levels and a 

change in fecal microbiota composition. Compared with 

WT controls, NLRP6-/- mice infected with 

encephalomyocarditis virus or murine norovirus 1 had 

increased mortality and viremia [78]. Mechanistically, 

NLRP6 bound to viral RNA in cooperation with Asp-

Glu-Ala-His (DEAH) box helicase 15 (DHX15) to 

induce the expression of interferons and interferon-

stimulated genes [78]. Additionally, the expression of 

NLRP6 was increased in intestinal tissues when mice 

were infected with Candida albicans. The colonization of 

Candida albicans facilitated HCC growth in WT mice, 

but this effect disappeared in NLRP6-/- mice, suggesting 

that NLRP6 could promote the occurrence and 

development of HCC [79]. Although there are some 

contradictory experimental results, NLRP6 undoubtedly 

participates in the regulation of innate immunity [80]. 

 

Immunotherapy aims to activate the human immune 

system to kill tumor cells and inhibit tumor growth. The 

targets of immunotherapy are not tumor cells and tissues 

but the human body's own immune system [81, 82]. The 

increased expression of immune checkpoint molecules on 

cancer cells and/or tumor-infiltrating immune cells can 

inhibit antitumor immunity. Previous studies have 

confirmed the clinical efficacy of the application of PD-1 

or PD-L1 in inhibiting the progression of advanced HCC 

[83, 84]. Thus, immunotherapy has become a novel 

treatment approach representing an effective and 

promising option against HCC. In our current research, 

both TIMER and CIBERSORT analyses demonstrated 

that the two clusters exhibited different infiltrated 

abundances of various immune cells. Interestingly, C2 

exhibited higher immune cell infiltration and immune 

checkpoint gene expression. Moreover, the risk score of 

the 5-PRG signature was also markedly and positively 

linked with the infiltrated abundances of six major 

immune cells. Moreover, the single-cell RNA sequencing 

analysis results indicated that the core PRGs in the 

prognostic signature were expressed in both liver cancer 

cells and different immune cells. More importantly, we 
also observed that patients in C2 corresponded to higher 

TIDE scores according to the TIDE algorithm, indicating 

a worse response to immunotherapy. In summary, the 
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identified distinct clusters and prognostic signature play a 

critical role in mediating immune cell infiltration and 

immunotherapy response. 

 

Despite the promising findings obtained, our study still 

has several limitations. First, a pyroptosis-related 

prognostic model was constructed by using retrospective 

data from different databases to predict the survival rate 

of HCC patients. More large-scale data are needed to 

assess the application potential of the five PRG-based 

risk score models. Second, the expression of PRGs in 

different databases is not consistent. Most HCC patients 

in the TCGA-HCC database were Caucasian, and it is not 

clear whether the expression of PRGs and the prognostic 

signature has a similar tendency in other races and 

datasets. Third, the molecular functions of the five PRGs 

identified in this study need to be verified by more in-

depth in vitro and in vivo experiments and clinical data to 

further explore their roles and their impact on immune 

cell infiltration and immunotherapy in HCC. 

 

In summary, our analysis results provided insight into the 

expression pattern of the PRGs and constructed a risk 

score model and nomogram for prognosis prediction. The 

two independent clusters and the 5-PRG risk score, which 

integrated pyroptosis and immunological features with 

GSDME, NOD1, PLCG1, NLRP6 and NLRC4, could 

reliably predict prognosis and immunotherapy response 

in HCC patients. Additionally, the risk score-based 

nomogram model has promising clinical applications. 

 

MATERIALS AND METHODS 
 

Data collection and process 

 

The mRNA expression data and relevant clinical 

information for patients with HCC (371 HCC samples 

and 50 normal samples) were downloaded from the 

TCGA database. RNA sequencing (RNA-seq) data from 

the ICGC (International Cancer Gene Consortium) 

database, containing 202 normal samples and 240 HCC 

samples, were downloaded and used as the validation 

cohort. Moreover, expression of 5 PRGs in different 

GEO datasets were downloaded from the HCCDB 

database [36, 85]. 

 

Identification of differentially expressed PRGs 

 

PRGs were collected from a previous study [86]. The 

expression profiles of 33 PRGs were directly downloaded 

from TCGA and ICGC databases. The “ggplot2” and 

“pheatmap” packages of R language were used to 

identify differentially expressed PRGs with a P value 

<0.05. The online STRING (https://string-db.org/) and 

Metascape (https://metascape.org/gp/index.html#/main/ 

step1) platforms were used to construct the gene‒gene 

interaction and protein‒protein interaction (PPI) 

networks. 

 

Consensus clustering analysis of PRGs 

 

The PRGs were subjected to unsupervised clustering 

analysis with the R package “ConsensusClusterPlus”. 

Principal component analysis (PCA) was carried out to 

estimate the gene expression patterns among different 

clusters. Clustering heatmaps were generated using the 

“pheatmap” package. Kaplan‒Meier (KM) analysis was 

performed to reveal the difference in survival among 

different clusters by using the “survival” and 

“survminer” packages. 

 

Construction of the risk score 

 

Univariate regression analysis was first applied to select 

PRGs that were correlated with prognosis in HCC. 

Then, LASSO (least absolute shrinkage and selection 

operator) regression analysis with the R package 

“glmnet” was applied to construct the risk score model 

after univariate regression analysis. The equation was 

established as follows: risk score = sum of coefficients 

× prognostic PRG expression levels. KM curves and 

receiver operating characteristic (ROC) curves were 

further utilized to examine the prognostic ability of the 

risk model. 

 

Construction of the nomogram 

 

Univariate Cox regression and multivariate Cox 

regression analyses were applied to verify whether the 

risk model was linked with prognosis in HCC. In 

addition, a nomogram was constructed based on age, 

sex, tumor (T), node (N), metastasis (M) and risk score 

using the R package “rms”. 

 

Mutation landscapes in two clusters 

 

Tumor mutation burden (TMB) could predict the 

response to some different forms of immunotherapy and 

across multiple types of cancer. The mutation 

landscapes of the two clusters were visualized and 

compared through the R package “maftools”. 

 

Analysis of differentially expressed genes 

 

The R package “limma” was utilized to acquire the 

differentially expressed genes between different clusters 

with |log2 (fold change)|> 1.5 and p < 0.05. 

Additionally, Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment and Gene 
Ontology (GO) analyses were performed to explore the 

potential function of differentially expressed genes 

using the “ClusterProfiler” package. Heatmaps and 

https://string-db.org/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
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boxplots were generated using the “pheatmap” and 

“ggplot2” packages, respectively. 

 

Immune cell infiltration abundance in HCC 

 

The infiltration abundances of a variety of immune cells 

between the two risk groups were investigated using the 

CIBERSORT and TIMER algorithms. The infiltrated 

abundance of various immune cells in every HCC sample 

was explored using the “immunedeconv” package. The 

heatmap results are shown by the R package “pheatmap”. 

 

Associations between clusters and immunotherapy 

response 

 

The expression levels of major immune checkpoint 

genes between cluster 1 and cluster 2 were compared to 

show the difference under immunotherapy between the 

two subgroups. Additionally, the responses to 

immunotherapy were assessed with the TIDE (tumor 

immune dysfunction and exclusion) algorithm using the 

R packages “ggplot2” and “ggpubr”. The TIDE score of 

HCC was obtained from http://tide.dfci.harvard.edu. 

 

Immunohistochemistry analysis 

 

Immunohistochemical (IHC) staining results were 

directly obtained from the HPA (Human Protein Atlas) 

database (https://www.proteinatlas.org/) as described 

previously [36, 87]. The protein levels of PRGs in 

normal liver tissues and HCC tissues were compared 

through IHC staining. 

 

Targeted therapy drug prediction 

 

The chemotherapeutic response for each sample was 

predicted according to the largest publicly available 

Genomics of Drug Sensitivity in Cancer (GDSC) 

database (https://www.cancerrxgene.org/) with the R 

package “pRRophetic”. The IC50 (half-maximal 

inhibitory concentration) was assessed through ridge 

regression. 

 

Statistical analysis 

 

All statistics were performed using R software (version 

4.0.3). The Wilcoxon test was used for comparisons 

between two different subgroups. In KM analysis, the 

log-rank test was applied to estimate the difference in 

survival rate between subgroups. A p value less than 0.05 

was set as statistically significant for all analyses. 

 

Data availability 

 

The datasets analyzed for this study can be 

downloaded from the TCGA database 

(https://portal.gdc.cancer.gov), ICGC database 

(https://dcc.icgc.org/releases/current/Projects) and 

HCCDB database (http://lifeome.net/database/hccdb/ 

home.html). All data generated or analyzed during 

this study are included in this article and its 

Supplementary Material files. Further inquiries can be 

directed to the corresponding authors. 
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Supplementary Figure 1. The analytical workflow to construct the pyroptosis-related risk model in HCC. 
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Supplementary Figure 2. Differential expression of 33 PRGs in HCC according to the ICGC database. (A) Heatmap of the 

differential expression of PRGs in HCC samples and normal samples. (B) Box diagram of the differential expression of PRGs in HCC samples 
and normal samples. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 3. Differential expression of 33 PRGs in C1 and C2. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 4. Evaluation of immune cell infiltration abundance in different clusters of HCC samples by the 
CIBERSORT algorithm. (A, B) Heatmap and box diagram demonstrating the differential infiltration abundance of various immune cells in C1 

and C2. (C) Bar plot demonstrating the composition of a great variety of immune cells in every HCC patient from the two clusters analyzed by 
the CIBERSORT algorithm. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 5. Validation of the five-PRG signature model with multivariate Cox regression analysis in the ICGC 
cohort. (A) The risk score and OS status of each case. (B) KM analysis for the OS between two subgroups in the ICGC database. (C) The AUC 
of time-dependent ROC curves is shown. 
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Supplementary Figure 6. Expression of the PRGs. (A–E) Expression of the 5 PRGs in HCC according to the HCCDB (Integrative Molecular 

Database of Hepatocellular Carcinoma) database. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 7. Landscape of the genetic alterations of the 5 PRGs and correlation with various signaling pathways. 
(A, B) The genetic alterations of PLCG1, GSDME, NLRP6, NLRC4 and NOD1 in HCC were explored using the cBioPortal online tool. (C) The 
relationship between 5 PRGs and multiple cancer-associated signaling pathways was investigated using the GSCALite database. 


