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INTRODUCTION 
 

Ischaemic cardiomyopathy (ICM) refers to a disease in 

which the heart cannot pump blood normally due to 
long-term ischaemia and hypoxia damage to myocardial 

cells caused by severe coronary artery stenosis [1]. 

According to the World Health Organization, ICM is 

one of the leading causes of death worldwide. Moreover, 

heart failure (HF) secondary to ICM, in contrast to 

nonischaemic aetiologies, has been demonstrated to be 

independently associated with mortality [2, 3]. Due to 
the high hospitalization and mortality rates caused by 

coronary artery disease (CAD) and HF, prevention and 

timely therapy for ICM are especially crucial [4]. 
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ABSTRACT 
 

The immune molecular mechanisms involved in ischaemic cardiomyopathy (ICM) have not been fully elucidated. 
The current study aimed to elucidate the immune cell infiltration pattern of the ICM and identify key immune-
related genes that participate in the pathologic process of the ICM. The differentially expressed genes (DEGs) 
were identified from two datasets (GSE42955 combined with GSE57338) and the top 8 key DEGs related to ICM 
were screened using random forest and used to construct the nomogram model. Moreover, the “CIBERSORT” 
software package was used to determine the proportion of infiltrating immune cells in the ICM. A total of 39 DEGs 
(18 upregulated and 21 downregulated) were identified in the current study. Four upregulated DEGs, including 
MNS1, FRZB, OGN, and LUM, and four downregulated DEGs, SERP1NA3, RNASE2, FCN3 and SLCO4A1, were 
identified by the random forest model. The nomogram constructed based on the above 8 key genes suggested a 
diagnostic value of up to 99% to distinguish the ICM from healthy participants. Meanwhile, most of the key DEGs 
presented prominent interactions with immune cell infiltrates. The RT‒qPCR results suggested that the expression 
levels of MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 between the ICM and control groups were consistent with 
the bioinformatic analysis results. These results suggested that immune cell infiltration plays a critical role in the 
occurrence and progression of ICM. Several key immune-related genes, including the MNS1, FRZB, OGN, LUM, 
SERP1NA3 and FCN3 genes, are expected to be reliable serum markers for the diagnosis of ICM and potential 
molecular targets for ICM immunotherapy. 
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Presently, standardized drug therapy aimed at relieving 

symptoms and improving the prognosis is still the 

cornerstone of ICM treatment [5, 6]. However, even 

after complete revascularization for severe coronary 

artery stenosis and long-term standardized use of 

secondary prevention drugs for CAD, there are still 

some patients with a poor prognosis and deteriorating 

cardiac function, and immunologic and inflammatory 

responses may be partly responsible for the poor 

prognosis of these patients. It was reported that the 

pathophysiology of ICM involves a spectrum of 

metabolic, neurohumoural and inflammatory changes 

[6]. When damaged and necrotic cardiomyocytes die due 

to ischaemic shock to the myocardium, immune and 

nonimmune cells are activated [7]. Recently, Bansal et 

al. suggested that proinflammatory and antiangiogenic 

regulatory T-lymphocytes (Tregs) promote immune 

activation and pathological left ventricular remodelling 

in ischaemic heart failure [8]. Moreover, a previous 

study demonstrated that monocytes play a pathological 

role in mediating left ventricular remodelling, interstitial 

fibrosis, and progressive cardiac insufficiency [9]. Nehra 

et al. showed that CD8+ T cells were increased at eight 

weeks after myocardial infarction during ICM [10]. 

These evidences indicate that immune cells play a 

crucial role in the pathological process of ICM. 

Nevertheless, the pattern of immune cell infiltration in 

the ICM has not been fully elucidated. Therefore, further 

elucidating the pattern of immune cell infiltration in the 

ICM and identifying the key immune-related DEGs 

involved in the ICM will hopefully provide a new 

molecular target for ICM immunotherapy. 

 

In recent years, with the rapid development of gene chip 

sequencing technology, microarray analysis has become 

a novel and practical method to screen susceptible genes 

involved in cardiovascular diseases [11, 12], which lays 

a solid foundation for establishing a new gene-based 

diagnostic model related to cardiovascular diseases. 

Random forest is a classification algorithm that uses a 

set of selected classification trees to perform gene 

selection and microarray data classification [13], which 

shows excellent performance even when most predictive 

variables are disordered [14, 15]. Importantly, the 

prediction error could be reduced by using the random 

forest algorithm on a selected subset of genes compared 

with the existing methods and other proposed methods 

[13, 16]. Moreover, compared with other methods, the 

random forest method is more effective in identifying 

key genes significantly associated with disease. [17]. 

Recently, as a widely applied analytical method, 

CIBERSORT has often been used to study the immune 

cell infiltration pattern in diseases based on RNA 
sequencing or microarray data and to evaluate the 

infiltrated proportion of 22 immune cells in each sample 

[18]. However, studies using a combination of random 

forest and CIBERSORT to verify immune-related genes 

associated with ICM are very limited. Hence, in the 

current study, CIBERSORT was used to evaluate the 

immune cell infiltration patterns in ICM, and the key 

DEGs were identified using random forest and then we 

further analysed the correlation between the key DEGs 

and immune cells. Finally, we verified the expression 

levels of the screened key DEGs and their diagnostic 

efficiency in the testing sets and the collected clinical 

samples. 

 

RESULTS 
 

Identification of DEGs 

 

The specific workflow is shown in Figure 1. After data 

normalization and removal of the batch differences, a 

total of 39 DEGs, including 18 upregulated and 21 

downregulated DEGs, were identified (Supplementary 

Table 1) and could be visualized in the volcano plot and 

heatmap (Figure 2A, 2B). In addition, the specific 

expressions of 39 DEGs in the training set are also 

shown in the Supplementary Table 2. 

 

Functional analysis 

 

As shown in Figure 3A, the results of the GO analysis 

include biological processes, cellular components and 

molecular function. The top three enriched GO terms 

were muscle hypertrophy in response to stress, cardiac 

muscle adaptation, and cardiac muscle hypertrophy in 

response to stress (biological processes); collagen-

containing extracellular matrix, vacuolar lumen, and I 

band (cellular components); extracellular matrix 

structural constituent, extracellular matrix structural 

constituent conferring, and compression resistance 

(molecular function). The KEGG enrichment analyses 

suggested that DEGs were involved in the following 

pathways, including the complement and coagulation 

cascades, the HIF-1 signalling pathway, the cGMP-PKG 

signalling pathway, and the Wnt signalling pathway 

(Figure 3B). The DO analysis also suggested that  

the DEGs were mainly concentrated in some cardio-

vascular system diseases such as cardiomyopathy, 

arteriosclerosis, arteriosclerosis cardiovascular disease, 

intrinsic cardiomyopathy, heart septal defect, and dilated 

cardiomyopathy (Figure 3C). In addition, the detailed 

results of the KEGG, DO and GO enrichment analyses 

are presented in the Supplementary Tables 4, 5. 

 

Screening the key DEGs with the random forest 

classification model 

 
The out-of-bag classification error was relatively stable 

when the decision tree was set at 450 in the random 

forest classification model (Figure 4A). A total of 15 
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DEGs were identified as potential diagnostic markers of 

ICM using the random forest algorithm (Mean Decrease 

Gini >2) and the top 8 DEGs (MNS1, FRZB, OGN, 

LUM, SERP1NA3, RNASE2, FCN3, and SLCO4A1) 

were selected as key genes for further analysis (Figure 

4B). In addition, the specific importance of 39 DEGs in 

the training set are also shown in the Supplementary 

Table 3. As shown in Figure 4C, the 8 key DEGs might 

be useful to distinguish between the ICM and control 

samples. Among them, MNS1, FRZB, OGN, and LUM 

were upregulated while SERPINA3, RNASE2, FCN3, 

and SLCO4A1 were downregulated in the control 

samples compared with the ICM samples. 

 

ICM nomogram construction and verification 

 

The nomogram (Figure 5A) was constructed from the 

results of the multiple logistic regression to intuitively 

understand the relationship between 8 key genes and the 

prognosis of ICM. The calibration curves were plotted 

based on the expression levels of the 8 key genes in the 

training (Figure 5B) and validation (Figure 5C) sets, 

respectively, to verify the accuracy of the nomogram 

prediction. The predicted curves were almost the ideal 

curve, which suggested good performance. The DCA 

confirmed the improved clinical utility of the nomogram 

in predicting the morbidity of ICM patients in the 

training (Figure 5D) and validation (Figure 5E) sets. 

Moreover, the clinical impact curves also demonstrated 

that the nomogram model had significant predictive 

ability and good clinical utility both in the training 

(Figure 5F) and validation (Figure 5G) sets. In addition, 

the area under the curve (AUC) was 0.992 (95% 

confidence interval (CI) 0.984-1.000) in the training 

(Figure 5H) and 0.995 (95% CI 0.985-1.000) in the 

validation (Figure 5I) sets. 

 

 
 

Figure 1. A flow chart for analysis. DEGs, differentially expressed genes; GO, gene ontology annotation; KEGG, kyoto encyclopedia of 

genes and genomes pathway enrichment analyses; DO, disease ontology analysis; RF, random forest; MNS1, meiosis-specific nuclear 
structural 1; FRZB, frizzled-related protein; OGN, osteoglycin; LUM: lumican; SERPINA3: serpin family A member 3; FCN3: ficolin-3. 
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Immune cell distribution pattern 

 

The immune fractions expressed differentially between 

the control and ICM samples were evaluated using the 

CIBERSORT algorithm. The histogram intuitively 

shows that the total proportion of 22 different immune 

cell subtypes in 246 ICM samples was 1 

(Supplementary Figure 3). The heatmap (Figure 6A) 

suggested that the proportions of several immune cells 

in both the ICM and control samples were obviously 

different. Based on the correlation matrix, we found that 

CD4 memory resting T cells were negatively correlated 

with Tregs and CD8 T cells but positively correlated 

with plasma cells; Tregs were positively related to CD8 

T cells and naive B cells but negatively related to 

plasma cells (Figure 6B). As shown in Figure 6C, naive 

CD4 T cells, M0 macrophages and resting mast cells 

were increased, while Tregs and monocytes were 

decreased in ICM samples compared with control 

samples (p <0.05). Furthermore, Supplementary Table 6 

shows the details of the immune cell infiltration pattern 

between the ICM and control samples. 

 

 
 

Figure 2. Differentially expressed genes (DEGs) in ICM and healthy samples. (A) Volcano plot of the 39 DEGs. Red dots represent 

significantly upregulated genes, and blue dots represent significantly downregulated genes. (B) Heatmap of the 39 lipid-related DEGs in ICM 
and control samples. Red blocks indicate high-expression genes, and blue blocks indicate low-expression genes. 
 

 
 

Figure 3. Functional enrichment analyses for DEG genes in the training set. (A) Gene Ontology (GO) enrichment analysis. (B) Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway analysis. (C) Disease Ontology (DO) analysis. 
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The correlations between the 8 key DEGs and infiltrated 

immune cells are shown in Figure 7. The SERPINA3 gene 

was negatively correlated with resting mast cells, 

activated dendritic cells, and activated NK cells but 

positively correlated with monocytes, M2 macrophages, 

eosinophils, and neutrophils; the SLCO4A1 gene was 

negatively correlated with resting mast cells and 

positively correlated with neutrophils, monocytes, and 

eosinophils; the FCN3 gene was positively correlated 

with monocytes and resting memory CD4 T cells but 

negatively correlated with M0 macrophages, CD8 T cells 

and naive CD4 T cells; the FRZB was positively 

correlated with resting mast cells and activated dendritic 

cells but negatively correlated with monocytes; the LUM 

gene was positively correlated with M1 macrophages and 

resting mast cells but negatively correlated with 

monocytes and resting NK cells; the MNS1 gene was 

positively correlated with resting mast cells but 

negatively correlated with neutrophils and monocytes; 

the OGN gene was positively correlated with M1 

macrophages and resting mast cells but negatively 

correlated with monocytes; and the RNASE2 gene was 

positively correlated with monocytes, neutrophils, 

esoinophils and M2 macrophages but negatively 

correlated with activated NK cells, M0 macrophages, and 

resting mast cells (p<0.05–0.01, respectively). 

 

External validation of the top 8 key DEGs in the 

testing set 

 

The expression levels of these 8 key DEGs are shown in 

Supplementary Figure 4. The expression levels of MNS1 

(p = 0.00033), FRZB (p = 6.3e-09), OGN (p = 2.9e-08), 

and LUM (p = 2.3e-10) were increased in ICM compared 

to the control samples, while SERP1NA3 (p = 7.2e-09), 

RNASE2 (p = 0.0043), FCN3 (p = 2.9e-12), and 

SLCO4A1 (p = 7.2e-09) were decreased in the ICM 

samples. 

 

 
 

Figure 4. The results of the top 8 DEGs screened by random forest. (A) The plot of performance in log scale against epoch number. 

(B) The importance of the top 8 DEGs ranked by the mean decrease in accuracy. (C) Heatmap of the top 8 genes. Red blocks indicate high-
expression genes, and blue blocks indicate low-expression genes. 
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Validation by RT‒qPCR 

 

The expression levels of MNS1 (p = 2e-05), FRZB (p = 

2.3e-05), OGN (p = 0.0001), and LUM (p = 9.5e-06) 

were increased in ICM compared to the control group, 

and SERPNA3 (p = 4.3e-05) and FCN3 (p = 3.7e-07) 

were higher in the control group (Figure 8). Nevertheless, 

the expression levels of RNASE2 (p = 0.49) and 

SLCO4A1 (p = 0.23) were similar between the two 

groups. As shown in Figure 9, the AUC values of MNS1, 

FRZB, OGN, LUM, SERP1NA3, and FCN3 were 0.821 

(95% CI: 0.718–0.923), 0.818 (95% CI: 0.711–0.925), 

0.792 (95% CI: 0.669–0.915), 0.833 (95% CI: 0.733–

0.934), 0.808 (95% CI: 0.701–0.914), and 0.882 (95% 

CI: 0.790–0.974), respectively. 

 

DISCUSSION 
 

Ischaemic cardiomyopathy (ICM) is a chronic immune 

system activation state, and immune or inflammatory 

mechanisms play crucial roles in its occurrence and 

development [8]. After ischaemic injury of myocardial 

tissue, the inflammatory immune response will activate 

the repair process, which is manifested as the removal of 

necrotic tissue debris, the formation of stable scars, and 

the initiation of neovascularization in the myocardium to 

achieve effective wound healing. However, incomplete 

immune resolution or a persistent low-grade inflammatory 

response can lead to poor remodelling of myocardial 

tissue and left ventricular dilatation, ultimately leading  

to ICM [10]. Scientists have observed that the innate 

inflammatory cascade is primarily mediated by 

neutrophils, monocytes, and macrophages, and it 

contributes to chronic inflammatory processes [19]. 

Notably, monocytes and macrophages have been found 

to play complex and diverse roles in myocardial injury 

[10]. He et al. showed that monocytes and reparative 

macrophages contribute to the removal of necrotic debris, 

granulation tissue formation, and angiogenesis in the 

early stage after myocardial infarction [20]. However, 

 

 
 

Figure 5. Establishment and verification of the ICM diagnostic signature and nomogram. (A) Eight predictive nomograms of 

genetic diagnosis. (B) Calibration curve in the training set. (C) Calibration curve in the testing set. (D) Decision curve analysis (DCA) in the 
training. (E) DCA in the testing set. (F) Clinical impact curve in the training set. (G) Clinical impact curve in the testing set. (H) ROC curve in the 
training set. (I) ROC curve in the testing set. 
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Ismahil et al. demonstrated that monocytes play a 

pathological role in mediating left ventricle remodelling, 

interstitial fibrosis and progressive cardiac dysfunction 

[9]. Depending on the stimulation, M0 macrophages 

polarize into M1 and M2 macrophages, which perform 

proinflammatory and anti-inflammatory functions, 

respectively [21]. In addition, other types of immune 

cells have also been found to play key roles in 

ventricular remodelling or heart failure. Sun et al. 

demonstrated that TNF-α secreted by mast cells could 

induce matrix metalloproteinase activation, leading  

to ventricular remodelling [22]. In heart failure, 

chymotrypsin released by mast cells causes left ventricle 

dysfunction by promoting cardiomyocyte apoptosis and 

fibroblast proliferation [23]. CD4+ T cells impart 

proinflammatory and detrimental effects during chronic 

ischaemic heart failure and promote adverse ventricular 

remodelling [24, 25]. Tregs are the most critical immune 

cells found in vivo with powerful immune-suppressive 

potential [10]. A persuasive study indicated that Tregs 

are essential for modulating immune responses, 

promoting cardiac repair and initiating immune 

resolution [26]. It has been reported that adoptive 

transfer of Tregs after myocardial infarction can alleviate 

 

 
 

Figure 6. Pattern of immune cell subtype infiltration in the training set. (A) Heatmap of the 22 immune cell proportions in each 

sample. (B) Correlation heatmap of the 22 immune cells. The deeper the red, the stronger the positive correlation. The darker the pink, the 
stronger the negative correlation. (C) Representative violin plot showing the different fractions of infiltrated immune cells. 
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inflammation and promote cardiac repair. Importantly, 

partial depletion and successful reconstruction of 

Tregs resets their phenotypic and immunosuppressive 

potential, improving cardiac function, reducing  

left ventricle remodelling and partially reversing the 

ICM [27]. These studies indicate that the immune 

microenvironment plays a complex and critical role in 

the occurrence and development of ICM. Nevertheless, 

the immune microenvironment of ICM has not been 

fully elucidated. 

 

 
 

Figure 7. Correlation between 8 key genes and infiltrated immune cells. Representative graphs showing the correlation between 

the infiltrated immune cells and SERP1NA3 (A), SLCO4A1 (B), FCN3 (C), FRZB (D), LUM (E), MNS1 (F), OGN (G) and RNASE2 (H). The correlation 
strength is shown by the dot size; the p values are expressed as the changes in dot colour, and p < 0.05 was considered statistically significant. 
SERPINA3: serpin family A member 3; SLCO4A1, solute carrier organic anion transporter family member 4A1; RNASE2, ribonuclease A family 
member 2; FCN3, ficolin-3; FRZB, frizzled-related protein; LUM, lumican; MNS1, meiosis-specific nuclear structural 1; OGN, osteoglycin. 
 

 
 

Figure 8. External validation of the key genes in the clinical samples. The expression levels of MNS1 (A), FRZB (B), OGN (C), LUM (D), 
SERPINA3 (E), RNASE2 (F), FCN3 (G) and SLCO4A1 (H) in the clinical samples. MNS1, meiosis-specific nuclear structural 1; FRZB, frizzled-
related protein; OGN, osteoglycin; LUM: lumican; SERPINA3: serpin family A member 3; FCN3: ficolin-3; SLCO4A1, solute carrier organic anion 
transporter family member 4A1; RNASE2, ribonuclease A family member 2. 
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In the current research, we found that Treg and 

monocyte infiltration were decreased and that naive CD4 

T cells, resting mast cells and M0 macrophages were 

increased in the ICM compared with normal samples, 

which showed that Tregs and monocytes might play 

protective roles and that naive CD4 T cells, resting mast 

cells and M0 macrophages might play promoting roles in 

the pathological process of ICM. Moreover, several 

interactions among 22 types of infiltrating immune cells 

in the ICM were also noted. We found that CD4 memory 

resting T cells were negatively correlated with Tregs and 

CD8 T cells but positively correlated with plasma cells; 

Tregs were positively correlated with CD8 T cells and 

naive B cells but negatively correlated with plasma cells. 

However, our results have only partially elucidated the 

characteristics of the immune microenvironment in ICM, 

and the immune-related key molecular targets involved 

in ICM have not been fully identified. Therefore, 

identifying these molecular markers will provide a new 

perspective for the diagnosis and immunotherapy of 

ICM. In this study, a total of 8 key immune-related 

DEGs (MNS1, FRZB, OGN, LUM, SERP1NA3, 

RNASE2, FCN3, and SLCO4A1) involved in ICM were 

screened by a random forest algorithm combined with a 

nomogram model. Meanwhile, a nomogram based on the 

above 8 key genes suggested a diagnostic value of up to 

99% to distinguish ICM from healthy participants. In 

addition, the results of RT‒qPCR and ROC curve 

analysis showed that the expression levels of MNS1, 

FRZB, OGN, and LUM were increased in ICM patients 

compared with the control group, while the expression 

levels of SERP1NA3 and FCN3 were decreased. 

Moreover, gene enrichment analysis showed that the 

potential molecular mechanism of these key genes 

involved in ICM was mainly related to inflammation or 

immunity, but the underlying molecular mechanisms of 

these genes might be slightly different. 

 

Among the four upregulated genes in ICM, frizzled-

related protein (FRZB) is a secreted  protein that serves 

as a modulator of the Wnt signalling pathway by directly 

interacting with Wnt and it plays a key role in 

dorsoventral patterning of the mesoderm during 

vertebrate development [28]. It has been demonstrated 

that FRZB is a key molecule in the progression of 

abdominal aortic aneurysm [29], and it can reduce the 

growth and aggressiveness of fibrosarcoma cells [30]. 

Previous research has reported that FRZB is involved in 

congenital heart defects [31]. Yang et al. [32] suggested 

that FRZB could regulate dilated cardiomyopathy 

through the extracellular matrix signalling pathway. 

Meanwhile, Ma et al. [33] showed that FRZB was 

significantly upregulated in hypertrophic cardiomyopathy 

(HCM) and can serve as a biomarker and is a potential 

therapeutic target for HCM. This evidence strongly 

suggests that FRZB is significantly associated with 

 

 
 

Figure 9. Receiver operating characteristic (ROC) curve analysis. ROC curve analysis of MNS1 (A), FRZB (B), OGN (C), LUM (D), 

SERPINA3 (E), RNASE2 (F), FCN3 (G) and SLCO4A1 (H) in the clinical samples. MNS1, meiosis-specific nuclear structural 1; FRZB, frizzled-
related protein; OGN, osteoglycin; LUM: lumican; SERPINA3: serpin family A member 3; FCN3: ficolin-3; SLCO4A1, solute carrier organic anion 
transporter family member 4A1; RNASE2, ribonuclease A family member 2. 
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cardiomyopathy development, but the relationship 

between FRZB and immune cells and ICM remains 

unclear. Our current study suggested that FRZB was 

upregulated in ICM samples; meanwhile, we also 

observed that was negatively related to monocytes but 

positively related to resting mast cells and activated 

dendritic cells. Nevertheless, further research is needed to 

confirm these discoveries. 

 

Osteoglycin (OGN) is a protein that belongs to the small 

leucine-rich proteoglycan (SLRP) family, and these 

SLRPs play critical roles in shaping the organization 

and structure of the extracellular matrix in the heart and 

other organs [34]. In 2008, OGN was first discovered to 

be related to the ventricular mass [35], which laid a 

foundation for further research on the role of OGN in 

cardiovascular disease. A study showed that OGN 

expression was increased in patients with coronary heart 

disease compared with normal subjects and was related 

to the severity of the coronary lesions [36]. Rienks et al. 

demonstrated that 72 kDa chondroitin sulfate-OGN 

could aggravate cardiac inflammation by enhancing 

Toll-like receptor 4 activation [34]. It has been reported 

that the downregulation of OGN is beneficial for the 

formation of endothelial cells and it might become a 

novel treatment target for ischaemic vascular diseases 

[37]. In addition, OGN expression changes during the 

course of cytotoxicity events, and chemotactic 

stimulation was found in natural killer cells and 

neutrophils [38], but the relationship between OGN and 

immune cells and ICM susceptibility remains poorly 

understood. Herein, we noticed that the expression of 

OGN was significantly increased in ICM patients 

compared with healthy subjects and it was negatively 

related to monocytes but positively related to M1 

macrophages and resting mast cells. Thus, we speculate 

that the upregulation of OGN expression might cause 

ICM by enhancing immune inflammation. 

 

Lumican (LUM) belongs to the small leucine-rich repeat 

proteoglycan family [39, 40]. Previous studies reported 

that LUM could regulate the growth of cardiomyocytes 

by adjusting the pericellular extracellular matrix [41], 

and moderate LUM deficiency can weaken cardiac 

fibrosis and ameliorate diastolic dysfunction after 

excessive pressure load [42]. When heart failure occurs, 

fibroblasts produce large amounts of LUM, which is 

involved in cardiac remodelling processes induced by 

mechanical and proinflammatory stimulation [43]. 

Moreover, Zhang et al. [44] suggested that LUM may 

have a potentially good predictive ability for the 

diagnosis of dilated cardiomyopathy. The meiosis-

specific nuclear structural 1 (MNS1) gene is involved in 
bile acid, fatty acid, and haem metabolism [45] and  

it affects the course of heart failure. A recent study 

showed that MNS1 was screened through three machine 

learning methods to be regarded as a possible 

bioinformatics marker for heart failure [46]. These 

results indicate that LUM and MNS1 play vital roles in 

heart failure, but their association with the immune cells 

involved in ICM is still unclear. In the current research, 

we found that LUM and MNS1 were highly expressed in 

ICM patients compared with healthy subjects. 

Meanwhile, we also noticed that LUM and MNS1 were 

positively correlated with resting mast cells but 

negatively correlated with monocytes. These findings 

suggested that LUM and MNS1 may participate in ICM 

by affecting resting mast cells and monocyte cells, but 

more studies are needed to verify our current findings. 

 

Serpin family A member 3 (SERPINA3), an acute phase 

response gene, is upregulated during the process of 

inflammation [47] and has been demonstrated to 

promote myocardial ischaemia reperfusion injury [48]. 

Wågsäter et al. suggested that SERPINA3 expression is 

significantly increased in human atherosclerotic lesions 

[49]. However, a recent study found that SERPINA3 

expression was decreased in heart failure patients 

compared with control subjects, indicating that 

SERPINA3 played a protective role during the process 

of heart failure [7]. Meanwhile, Masanori et al. showed 

that SERPINA3 might serve as a potential prognostic 

biomarker for heart failure [50]. Ficolin-3 (FCN3) is a 

recognition molecule in the lectin pathway of the 

complement system that is expressed in the liver and the 

lung [51]. Trine et al. demonstrated that FCN3 is a 

serum protein that may be involved in the progression 

of systemic lupus erythematosus [52]. Shang et al. 

found that FCN3 may activate the complement system 

and be overexpressed in type 2 diabetes plasma [53]. 

However, Song et al. showed that FCN3 expression was 

significantly decreased in ICM patients compared with 

healthy subjects [54]. These studies indicate that 

SERPINA3 and FCN3 maintain different expression 

patterns in different stages of atherosclerosis and related 

diseases. Similarly, in the current study, the expression 

levels of SERPINA3 and FCN3 were significantly 

decreased in ICM patients compared with healthy 

subjects. Moreover, SERPINA3 is positively related to 

neutrophils and monocytes but negatively related to 

activated NK cells; FCN3 is positively related to 

monocytes but negatively related to M0 macrophages, 

CD8 T cells and naive CD4 T cells. Our findings 

indicated that SERPINA3 and FCN3 might play a 

protective role in the pathological process of ischaemic 

cardiomyopathy by regulating immune cell infiltration. 

 

However, our current study also has some limitations. 

First, the included clinical samples were relatively 
small; therefore, our conclusions must be verified by a 

larger ICM cohort. Second, we did not detect the level 

of immune-related cytokines or chemokines in clinical 
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samples, so we could not further analyze the correlation 

between these key genes and cytokines and chemokines. 

Third, the key DEGs were only confirmed in clinical 

samples, and their potential roles were not demonstrated 

in ICM cells or animal models. Hence, more in vivo and 

in vitro studies are needed to clarify the association 

between the 6 key genes and the infiltrated immune 

cells and to understand the mechanism of these key 

genes during the pathological process of ICM. 

 

In conclusion, we confirmed that MNS1, FRZB, OGN, 

LUM, SERP1NA3, and FCN3 are novel credible serum 

markers for the diagnosis of ICM using random forest 

combined with nomogram. We noticed that naive CD4 

T cells, M0 macrophages and resting mast cells may be 

correlated with the occurrence and progression of ICM, 

while Tregs and monocytes may play a protective role 

in ICM. The interaction mechanisms between the above 

key DEGs and immune cells may be of great 

significance for the pathogenesis and progression of 

ICM. 

 

MATERIALS AND METHODS 
 

Data download and preprocessing 
 

The Gene Expression Omnibus (GEO) website  

was used to download 4 ICM-related datasets 

(https://www.ncbi.nlm.nih.gov/geo/). The GSE42955 

dataset, including 12 ICM and 5 control samples, was 

based on the GLP6244 platform (Affymetrix Human 

Gene 1.0 ST Array). GSE57338 included 95 ICM and 

136 control samples and was retrieved from GPL11532 

(Affymetrix Human Gene 1.1 ST Array). Based on the 

GLP96 platform (Affymetrix Human Genome U 133A 

Array), we also downloaded the GSE1869 dataset 

(including 10 ICM and 5 control samples) and the 

GSE5406 dataset (including 108 ICM and 16 controls) 

for subsequent validation. As shown in Supplementary 

Figure 1, the normalize Between Arrays function in  

the “limma” package was used to normalize samples, 

and the interbatch differences were eliminated using  

the “sva” package. Moreover, after removing two 

outlier samples (GSM1380018 and GSM1379815) 

(Supplementary Figure 2), the key genes involved in 

ICM were identified using a total of 246 samples in the 

training sets (GSE42955 combined with GSE57338). 

Meanwhile, after removing the interbatch differences 

between GSE1869 and GSE5406, the new integrated 

gene expression profiles were used as validation sets to 

verify the expression levels of the key genes. 

 

Identification of DEGs 
 

The DEGs between the ICM and control samples were 

identified using the “limma” package of R software [55]. 

The threshold values were p < 0.05 and |log fold change 

(FC)| > 1. The “heatmap” and “ggplot2” R packages 

were used to draw heatmaps and volcano plots. 

 

Functional enrichment analysis of DEGs 

 

The “enrichplot” R package was used to conduct GO 

and KEGG pathway analyses [56]. Cell composition 

(CC), biological processes (BP), and molecular 

functions (MF) were included in the GO analysis. Then, 

DO analysis was performed using the “clusterProfiler” 

R package [56]. A p value < 0.05 was considered 

statistically significant. 

 

Screening key DEGs 

 

The “randomForest” R package was used to construct a 

random forest classification model to screen the key 

DEGs associated with ICM [57]. The Gini index was 

used as an importance measure [58], and the best number 

of trees in the random forest algorithm was set to 450. 

Since the expression of the ninth gene was not detected in 

the subsequent validation set, the ninth gene could not be 

further validated in the validation set. So that, the genes 

with importance values greater than 2 [57, 59] and 

ranking in the top eight were considered the key DEGs of 

ICM for subsequent model construction. The key genes 

screened in the training sets were reclassified into 

unsupervised hierarchical clusters using the “pheatmap” 

software package, and a heatmap was plotted. 

 

Construction and verification of the ICM diagnostic 

signature and nomogram 

 

A nomogram [60] was used to demonstrate the 

diagnostic efficacy of a diagnostic model based on eight 

key genes to distinguish ICM from healthy subjects. We 

visualized the ICM prediction model using the 

nomogram method and scored the expression values of 

the top 8 key genes. The scores of the 8 key genes were 

then summed to obtain the total score. The value of the 

risk of ICM can be determined by drawing a vertical 

line at the total score obtained. To quantify the 

nomogram prediction function, a calibration curve was 

plotted to evaluate the consistency between the 

predictions of the nomograms and the actual 

observations and to describe the calibration of the 

model according to the consistency between the 

predicted risk and the actual outcome in the training and 

testing sets. Decision curve analysis (DCA) was 

conducted to evaluate the net clinical benefit of the 

model for predicting ICM in the training and testing 

sets, and the model had diagnostic value if the drawn 
DCA curve was higher than the horizontal and dotted 

lines. Subsequently, a clinical impact curve was drawn 

to assess the clinical practicability and applicability net 

https://www.ncbi.nlm.nih.gov/geo/
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benefits of the nomogram model in the training and 

testing sets. The “ROC” package was used to draw 

receiver operator characteristic (ROC) curves of the 

nomogram in the training and validation sets to evaluate 

the diagnostic efficacy of the nomogram. 

 

Correlation between key genes and immune cells 

 

The immune infiltration pattern in the ICM was 

determined using the “CIBERSORT” software package 

[18]. The “ggplot2” package in R software was used to 

draw the boxplot, heatmaps, and histograms after 

obtaining the immune cell expression matrix. The 

histogram suggests the percentage of 22 immune cells 

infiltrated in ICM samples, while the difference in 

immune cell infiltration between the ICM and control 

samples was displayed through boxplot and heatmap 

diagrams. The “corrplot” software package was used to 

calculate the correlation coefficient between the 8 key 

genes and each immune cell and visualize the results by 

the relevant heatmap. 

 

Study population 

 

A total of 60 participants were recruited from Hunan 

Provincial People’s Hospital, including 30 ICM patients 

and 30 healthy participants. The diagnostic criteria for 

ICM are as follows: a history of myocardial infarction, 

coronary revascularization (coronary artery bypass 

grafting or percutaneous coronary intervention), ≥ 75% 

stenosis of the left main or proximal left anterior 

descending coronary artery, or ≥ 75% stenosis of ≥ 2 

epicardial vessels [61]. All enrolled ICM patients had a 

left ventricular ejection fraction of ≤ 40% and a history of 

symptomatic heart failure (New York Heart Association 

[NYHA] functional class II or greater) [62]. Patients  

with a history of haematological disease, idiopathic 

cardiomyopathy, autoimmune disease, neoplasia, and 

severe renal or liver insufficiency were excluded. All 

participants provided written informed consent before the 

beginning of the study. 

 

Validation of the top 8 key DEGs in the testing set 

and the collected clinical samples 

 

First, boxplots were drawn to compare the relative 

expression levels of the top 8 key genes between ICM 

and the control samples in the testing set (GSE1869 

combined with GSE5406). Then, RT‒qPCR analysis 

was used to compare the relative expression levels of 

the top 8 key genes between ICM and the control 

samples. Total RNA was obtained from peripheral 

blood samples of the patients using a RNeasy™ Mini 
Kit (QIAGEN, Frankfurt, Germany). The total RNA 

was reverse transcribed into cDNA using  

the PrimeScript RT reagent kit (Takara Bio, Japan). RT‒ 

qPCR was performed with a Taq PCR Master Mix Kit 

(Takara, Otsu, Japan) using an ABI 7500 instrument 

(Applied Biosystems, USA). 
 

Statistical analysis 
 

R software (version 4.6.0) was used to perform the 

bioinformatics analyses. ROC curve analyses were 

performed using GraphPad Prism software (version 

9.0.0). A p < 0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Normalized for all the samples. (A) shows GSE42955 combined with GSE57338 and (B) shows GSE1869 

combined with GSE5406. 
 

  



www.aging-us.com 1492 AGING 

 
 

Supplementary Figure 2. Clustering dendrogram of samples. Cut height = 80 was used to divide 248 samples in the training sets 

(GSE42955 combined with GSE57338) into two different cluster types. Cluster 0 contains the following two samples (GSM1379815 and 
GSE1380018), cluster 1 contains the following 246 samples (GSM1053922, GSM1053929, GSM1053939, GSM1053940, GSM1053942, 
GSM1379830, GSM1379831, GSM1379832, GSM1379833, GSM1379834, GSM1379835, GSM1379836, GSM1379837, GSM1379838, 
GSM1379839, GSM1379840, GSM1379841, GSM1379842, GSM1379843, GSM1379844, GSM1379845, GSM1379846, GSM1379847, 
GSM1379848, GSM1379849, GSM1379850, GSM1379851, GSM1379852, GSM1379853, GSM1379854, GSM1379855, GSM1379856, 
GSM1379857, GSM1379858, GSM1379859, GSM1379860, GSM1379861, GSM1379862, GSM1379863, GSM1379864, GSM1379865, 
GSM1379866, GSM1379867, GSM1379868, GSM1379869, GSM1379870, GSM1379871, GSM1379872, GSM1379873, GSM1379874, 
GSM1379875, GSM1379876, GSM1379877, GM1379878, GM1379880, GSM1379881, GSM1379882, GSM1379883, GSM1379884, 
GSM1379885, GSM1379886, GSM1379887, GSM1379888, GSM1379889, GSM1379890, GSM1379891, GSM1379892, GSM1379893, 
GSM1379894, GSM1379895, GSM1379896, GSM1379897, GSM1379898, GSM1379899, GSM1379900, GSM1379901, GSM1379902, 
GSM1379903, GSM1379904, GSM1379905, GSM1379906, GSM1379907, GSM1379908, GSM1379909, GSM1379910, GSM1379911, 
GSM1379912, GSM1379913, GSM1379914, GSM1379915, GSM1379918, GSM1379919, GSM1379920, GSM1379921, GSM1379922, 
GSM1379923, GSM1379924, GSM1379925, GSM1379926, GSM1379927, GSM1379961, GSM1379962, GSM1379965, GSM1379966, 
GSM1379967, GSM1379968, GSM1379969, GSM1379970, GSM1379971, GSM1379972, GSM1379973, GSM1379974, GSM1379975, 
GSM1379976, GSM1379977, GSM1379978, GSM1379979, GSM1379980, GSM1379981, GSM1379982, GSM1379983, GSM1379984, 
GSM1379985, GSM1379986, GSM1379987, GSM1379988, GSM1379989, GSM1379990, GSM1379991, GSM1380008, GSM1380010, 
GSM1380011, GSM1380012, GSM1380013, GSM1380014, GSM1380015, GSM1380021, GSM1380027, GSM1380122, GSM1380123, 
GSM1380124, GSM1053914, GSM1053916, GSM1053920, GSM1053921, GSM1053923, GSM1053927, GSM1053928, GSM1053930, 
GSM1053931, GSM1053932, GSM1053934, GSM1053936, GSM1379813, GSM1379814, GSM1379819, GSM1379821, GSM1379822, 
GSM1379823, GSM1379824, GSM1379825, GSM1379826, GSM1379828, GSM1379829, GSM1379928, GSM1379930, GSM1379933, 
GSM1379938, GSM1379943, GSM1379945, GSM1379946, GSM1379948, GSM1379949, GSM1379951, GSM1379952, GSM1379953, 
GSM1379958, GSM1379959, GSM1379960, GSM1379964, GSM1379992, GSM1379997, GSM1379998, GSM1379999, GSM1380000, 
GSM1380001, GSM1380002, GSM1380004, GSM1380005, GSM1380007, GSM1380019, GSM1380024, GSM1380030, GSM1380040, 
GSM1380041, GSM1380042, GSM1380043, GSM1380044, GSM1380045, GSM1380047, GSM1380049, GSM1380051, GSM1380052, 
GSM1380054, GSM1380055, GSM1380057, GSM1380060, GSM1380061, GSM1380063, GSM1380064, GSM1380065, GSM1380066, 
GSM1380067, GSM1380069, GSM1380070, GSM1380071, GSM1380074, GSM1380076, GSM1380079, GSM1380081, GSM1380086, 
GSM1380087, GSM1380089, GSM1380090, GSM1380091, GSM1380092, GSM1380093, GSM1380097, GSM1380100, GSM1380101, 
GSM1380104, GSM1380105, GSM1380106, GSM1380107, GSM1380108, GSM1380109, GSM1380110, GSM1380111, GSM1380112, 
GSM1380113, GSM1380114, GSM1380115, GSM1380116, GSM1380117, GSM1380119 and GSM1380120). 
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Supplementary Figure 3. Infiltration pattern of immune cell subtypes in validation set. The bar plot visualizing the relative percent 

of 22 immune cell in each sample. 
 

 
 

Supplementary Figure 4. External validation of the key genes in testing set. The expression levels of FCN3 (A), FRZB (B), LUM  
(C), MNS1 (D), OGN (E), RNASE2 (F), SERPINA3 (G), SLCO4A1 (H) in testing set. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 4–6. 

 

Supplementary Table 1. A total of 39 differentially expressed genes were identified. 

 

Supplementary Table 2. The gene expression matrix in the training set (GSE42955 combined with GSE57338). 

 

Supplementary Table 3. The 
importance of 39 DEGs. 

Gene Importance 

FCN3 19.31250056 

SERPINA3 19.25873157 

MNS1 7.778561915 

OGN 7.202295921 

SLCO4A1 5.872656897 

RNASE2 5.399599675 

FRZB 5.037672655 

LUM 4.95926197 

SMOC2 4.958591477 

SFRP4 4.116572428 

VSIG4 4.024444085 

CD163 3.813078851 

FCER1G 2.852484032 

ADAMTS9 2.749976824 

ASPN 2.486912883 

PHLDA1 1.847027445 

MYOT 1.836173723 

ANKRD2 1.743026675 

LYVE1 1.677558479 

IL1RL1 1.466302701 

HBB 1.209413475 

MYH6 1.156130419 

PLA2G2A 1.012830974 

C6 0.805501497 

CYP4B1 0.76590613 

MGST1 0.689610082 

ADAMTS4 0.636695692 

NPPA 0.627402182 

MXRA5 0.616162724 

UTY 0.508651928 

DDX3Y 0.49215963 

USP9Y 0.462653587 

SERPINE1 0.436366429 

HMGCS2 0.422313019 

EIF1AY 0.38407382 

MIR208A 0.371855071 

AOX1 0.333867857 

IFI44L 0.305582353 

DSC1 0.269703898 
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Supplementary Table 4. KEGG and DO analysis of the 39 DEGs. 

 

Supplementary Table 5. GO analysis of the 39 DEGs. 

 

Supplementary Table 6. Immune cell distribution pattern between the ICM and control samples. 


