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INTRODUCTION 
 
Spinal cord injury (SCI) is a devastating central nervous 
system (CNS) trauma with severe disabling and fatal 
rates, resulting in direct or indirect loss of sensory, 
motor, and other functions below the injury area [1]. 
The prevalence of SCI is on the rise with about 17,000 
new cases each year, and the population is getting 
increasingly younger [2]. The primary and secondary 
responses following an injury can trigger a series of 
destructive cascading phenomena in the spinal cord to 
further exacerbate nerve cell death and tissue 

destruction, allowing for poor functional recovery in 
most patients [3]. At present, the surgical and 
pharmacological therapies in the clinic still cannot 
obtain satisfactory results, which brings great 
psychological and economic burdens to patients and 
society [4, 5]. Hence, it is extremely crucial to 
understand the pathological process of SCI deeply to 
formulate effective therapeutic strategies. 
 
As part of the CNS, the spinal cord has an integral 
blood-brain barrier that restricts the penetration of 
immune cells and cytokines from peripheral blood 
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ABSTRACT 
 
Numerous studies have documented that immune responses are crucial in the pathophysiology of spinal cord 
injury (SCI). Our study aimed to uncover the function of immune-related genes (IRGs) in SCI. Here, we 
comprehensively evaluated the transcriptome data of SCI and healthy controls (HC) obtained from the GEO 
Database integrating bioinformatics and experiments. First, a total of 2067 DEGs were identified between the 
SCI and HC groups. Functional enrichment analysis revealed substantial immune-related pathways and 
functions that were abnormally activated in the SCI group. Immune analysis revealed that myeloid immune 
cells were predominantly upregulated in SCI patients, while a large number of lymphoid immune cells were 
dramatically downregulated. Subsequently, 51 major IRGs were screened as key genes involved in SCI based on 
the intersection of the results of WGCNA analysis, DEGs, and IRGs. Based on the expression profiles of these 
genes, two distinct immune modulation patterns were recognized exhibiting opposite immune characteristics. 
Moreover, 2 core IRGs (FCER1G and NFATC2) were determined to accurately predict the occurrence of SCI via 
machine learning. qPCR analysis was used to validate the expression of core IRGs in an external independent 
cohort. Finally, the expression of these core IRGs was validated by sequencing, WB, and IF analysis in vivo. We 
found that these two core IRGs were closely associated with immune cells and verified the co-localization of 
FCER1G with macrophage M1 via IF analysis. Our study revealed the key role of immune-related genes in SCI 
and contributed to a fresh perspective for early diagnosis and treatment of SCI. 
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circulation [6]. As such, the spinal cord is widely 
considered to be an immune-privileged site [7]. 
However, the integrity of the blood-spinal cord 
barrier can be disrupted after SCI, resulting in 
dramatic alterations in the cellular microenvironment 
of the spinal cord. A substantial population of 
peripheral immune cells infiltrate the injured area 
uncontrollably and interacts with glial cells to 
activate the immune response with the release of 
extensive inflammatory factors, which exacerbate 
local tissue damage and recovery [8, 9]. The 
restoration and recovery of nerves after SCI are 
frequently intimately connected with an appropriate 
microenvironment [10]. Under normal conditions, 
peripheral immune responses are essential for 
maintaining the homeostasis of the spinal micro-
environment. While SCI will directly impair the 
vegetative innervation function of endocrine and 
lymphoid organs, causing a prolonged and overactive 
immune response, which in turn affected the 
pathophysiological changes at the site of injury [11]. 
The immune inflammatory response has been 
recognized as central to the mechanisms of secondary 
SCI onset and holds an integral role in activating and 
coordinating other secondary injury mechanisms [12]. 
A variety of immune cells are involved in the 
inflammatory response after SCI, including 
neutrophils, macrophages, B lymphocytes, and T 
lymphocytes, which can remain at the site of injury 
long and exert different functions in response to the 
injury phases and altered signaling in the 
microenvironment [13, 14]. An increasing number of 
studies have demonstrated that the inflammatory 

microenvironment formed from immune cells and 
cytokines has a dual role in the regenerative and 
repair processes in SCI [15]. For instance, 
macrophages are capable of forming both a pro-
inflammatory response in the injured spinal cord to 
exacerbate tissue damage and an anti-inflammatory 
signal to protect neuronal cells [16]. However, the 
involvement of immune-related genes (IRGs) in SCI 
remains unclear. 
 
Recently, bioinformatics analysis combined with 
machine learning has been widely applied to genomic 
biodata to detect reliable and robust biomarkers for the 
diagnosis and treatment of diseases [17, 18]. In this study, 
we utilized bioinformatics analysis to synthesize the role 
of IRGs based on peripheral blood transcriptomic data 
from SCI patients. Subsequently, machine learning was 
performed to identify 2 immune modulation patterns for 
SCI patients and screen robust biomarkers to diagnose 
SCI patients. Finally, we validated these biomarkers with 
in vivo experiments. Our findings provided a solid 
theoretical foundation for further characterizing the role 
of immune response in SCI. 
 
RESULTS 
 
Identification of DEGs and enrichment analysis in 
SCI 
 
The flow chart of this study was shown in Figure 1. As 
illustrated in Figure 2A, the SCI and HC groups could 
be distinguished. Subsequently, a total of 2067 
differentially expressed genes (DEGs) were identified 

 

 
 

Figure 1. Flow chart of this study. 
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between SCI and healthy controls (HC), of which 1160 
were up-regulated genes and 907 were down-regulated 
genes (Figure 2B). Heat map showing the expression of 
the top 30 DEGs between SCI and HC groups (Figure 
2C). Moreover, Gene set enrichment analysis (GSEA) 
revealed marked activation of inflammatory responses, 
complement, and reactive oxygen species (ROS) in the 
SCI compared to the HC group (Figure 2D). Gene 
Ontology (GO) analysis indicated that these DEGs were 
concerned with the immune system process, immune 
response, cell activation, and so on (Figure 3A, 3B). 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis identified that these DEGs were mainly 
involved in hematopoietic cell lineage, Th1 and Th2 
cell differentiation, T cell receptor signaling pathways, 
etc., (Figure 3C, 3D). 
 
Evaluation of the immune microenvironment in SCI 
 
To elucidate the immune microenvironment in 
peripheral blood after SCI, we applied the xCELL 
algorithm to assess the abundance of immune infiltrating 

cells. The results revealed that the expression of 
macrophages, macrophage M1, macrophage M2, 
neutrophils, etc., was significantly higher in the SCI 
group than in the HC group (Figure 4A). On the 
contrary, the expression of B cells, CD4+ T cells, CD8+ 
T cells, NK cells, etc. was significantly lower in the SCI 
group than in the HC group. These findings suggest that 
immune cell dysregulation was intimately associated 
with the development of SCI (Figure 4B). 
 
Screening of key modules and IRGs via WGCNA 
 
Weighted gene co-expression network analysis 
(WGCNA) was constructed to screen the most relevant 
module for the onset of SCI. As shown in Figure 5A, a 
total of 12 modules were identified by hierarchical 
clustering and dynamic tree-cutting algorithms. Among 
the 12 modules, we observed that the turquoise module 
presented the most positive correlation with SCI (Figure 
5B). The turquoise module includes a total of 679 genes 
which may be critical for the pathological progression 
of SCI (Figure 5C). Finally, a total of 51 major IRGs 

 

 
 
Figure 2. Screening for differentially expressed genes (DEGs) in SCI. (A) PCA analysis between the SCI and HC groups; (B) Volcano 
map of DEGs, red represent up-regulated genes and blue represent down-regulated genes; (C) Volcano map showing DEGs; (D) GSEA 
analysis between the SCI and HC groups. 
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were identified based on the intersection of DEGs, 
turquoise modules, and IRGs (Figure 5D). 
 
Recognition of immune modulation patterns in SCI 
patients 
 
To ascertain the immune subtypes in SCI, unsupervised 
clustering analysis was applied to precisely classify 
SCI patients based on the expression profiles of 51 
IRGs. Eventually, k = 2 was identified as the best 
number of patterns (Figure 6A–6C). Principal 
component analysis (PCA) revealed that these two 
patterns could be distinguished (Figure 6D). The heat 
map demonstrated the expression of these 51 IRGs in 
different immune modulation patterns (Figure 6E). 
xCELL analysis revealed an increased abundance of 
macrophages, macrophage M2, and Treg infiltration in 
Cluster1 compared to Cluster 2, while CD4+ T cells, 
CD8+ T cells, NK cells, etc., showed the opposite 
results (Figure 7A, 7B). Immune function analysis 
reveals that inflammation-promoting, T-cell co-
stimulation, and cytolytic activity were more pro-

nounced in Cluster 2 (Figure 7C). These results 
indicated that SCI patients can be divided into 
immunoreactive and immunosuppressive patterns 
according to immune status. 
 
Selection of core IRGs by machine learning and PPI 
analysis 
 
To identify stable and reliable biomarkers to diagnose 
SCI, two machine learning and PPI analyses were used 
to further screen 51 IRGs. The Random Forest 
algorithm identified 11 candidate genes with a relative 
importance score >0.5 (Figure 8A, 8B). The least 
absolute shrinkage and selection operator (LASSO) 
algorithm confirmed 6 candidate genes with the 
minimum lambda value (Figure 8C, 8D). Moreover, the 
Protein-Protein interaction (PPI) network identified 10 
key genes involved in the occurrence of SCI (Figure 
8E). Finally, 2 Core IRGs were identified based on the 
intersection of the results of the above 3 algorithms 
which were considered key targets for the diagnosis and 
treatment of SCI (Figure 8F). 

 

 
 

Figure 3. Functional enrichment analysis of DEGs. (A, B) GO terms of DEGs; (C, D) KEGG pathway of DEGs. 
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Diagnostic efficacy and verification of core IRGs 
 
We found that the expression of FCER1G was higher in 
the SCI group than in the HC group in GSE151371, 
while NFATC2 was significantly downregulated 
(Figure 9A, 9B). The receiver operating characteristic 
(ROC) curve found that the area under curve (AUC) 
values of FCER1G and NFATC2 were 0.982 and 1.000, 
respectively (Figure 9C). When fitting these data to one 
variable, the AUC value of the ROC curve was 1.000, 
indicating excellent performance in predicting the 
occurrence of SCI (Figure 9D). Subsequently, 
quantitative polymerase chain reaction (qPCR) analysis 
was performed to further assess the expression of Core 

IRGs in the external validation cohort. The results 
showed that, compared with the HC group, the 
expression of FCER1G was elevated in the SCI group, 
while the expression of NFATC2 was decreased, in 
agreement with the results of the bioinformatics 
analysis (Figure 9E, 9F). 
 
Validation of the core IRGs in vivo 
 
Transcriptomic data from rat spinal cord tissues revealed 
that FCER1G expression was significantly higher in the 
SCI-d3 than in the sham group, while NFATC2 
exhibited the opposite result (Figure 10A, 10B). Western 
blot (WB) analysis also demonstrated comparable trends 

 

 
 
Figure 4. Immune landscape between SCI and HC groups assessed using xCELL algorithm. (A) Differences in myeloid immune 
cells; (B) Differences in lymphoid immune cells. *p < 0.05; **p < 0.01; and ***p < 0.001. 
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(Figure 10C). Immunofluorescence (IF) analysis 
revealed that FCER1G protein expression in SCI-d7 was 
significantly above the sham group, while NFATC2 
protein expression in SCI-d7 was visibly lower than that 
in the sham group (Figure 10D, 10E). 

Correlation and verification of core IRGs with 
immune cells 
 
We found that Core IRGs were intimately associated 
with multiple immune cells. NFATC2 was mainly 

 

 
 
Figure 5. WGCNA analysis screening key module in SCI. (A) The cluster dendrogram of co-expression genes in SCI; (B) Co-relationship 
of different modules and characteristics; (C) Scatter plot showing the correlation between turquoise module and SCI; (D) Wayne analysis 
screening for important IRGs. 
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positively correlated with a range of lymphoid cells and 
negatively correlated with myeloid cells (Figure 11A). 
In contrast, FCER1G was mostly positively correlated 
with a variety of myeloid cells, and negatively 
correlated with lymphoid cells (Figure 11B). Notably, 
FCER1G was positively linked to macrophage M1, 
which has been suggested to be essential immune cells 
in the development of pro-inflammatory effects of SCI 
(Figure 11C). Subsequently, IF analysis identified that 
FCER1G expression was colocalized with iNOS 
positive macrophage, which validated the relationship 
between FCER1G and macrophage M1(Figure 11D). 
 
DISCUSSION 
 
Spinal cord injury is a severe CNS disorder that often 
leads to persistent organ dysfunction and permanent 
neurological deficits [1]. Despite the multiple methods 
that have been utilized to manage spinal cord injuries, 
including surgical decompression, pharmacotherapy, 
and physical rehabilitation, most patients still do not 

receive sufficient outcomes [4]. Consistent with the 
classic response to most organ injuries, SCI can trigger 
an intense immune inflammatory response, causing a 
rapid increase in circulating neutrophils, accompanied 
by immediate recruitment and infiltration of immune 
cells such as monocytes into the injured spinal cord site 
[15]. The immune response is a normal physiological 
consequence of the dramatic changes in the micro-
environment following SCI, but this excessive 
response can entail further damage to spinal cord 
tissues, prevent repair and regeneration of spinal cord 
neurons, and ultimately worsen the clinical outcomes 
[6]. Therefore, a deeper understanding of the role of 
immune-related genes in the acute phase of SCI to 
suppress secondary damage will contribute to 
improving the development of novel therapies for SCI 
patients. 
 
In this study, a total of 2067 DEGs were identified 
between SCI and HC groups. GSEA analysis identified 
inflammatory response, complement, and ROS to be 

 

 
 
Figure 6. Recognition of immune modulation patterns in SCI. (A–C) Clustering matrix plot at k = 2 via unsupervised clustering 
analysis; (D) PCA analysis of immune modulation patterns; (E) Heat map showing the expression of important IRGs. 
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more active in the SCI group than in the HC group. 
ROS is a single-electron reduction product of molecular 
oxygen involved in various physiological and 
pathological processes [19]. ROS have been proven to 
play an important part in the immune system, 
participating in the construction of innate and adaptive 

immunity and maintaining internal environmental 
homeostasis [20]. On the one hand, ROS is a key 
mediator of antigen presentation and immune cell 
activation. On the other hand, ROS can exert pro-
inflammatory effects by controlling a wide range of 
signaling pathways [21]. Moreover, immune cells can 

 

 
 
Figure 7. Immune landscape in different immune modulation patterns. (A) Differences in myeloid immune cells; (B) Differences in 
lymphoid immune cells; (C) Differences in immune function. *p < 0.05; **p < 0.01; and ***p < 0.001. 
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release large amounts of ROS to exert immune-killing 
effects [22]. GO and KEGG analysis likewise revealed 
that these DEGs were associated with a broad range of 
immune-related pathways, including immune system 
process, immune response, Th1 and Th2 cell 

differentiation, and T cell receptor signaling pathway. 
These findings indicated that immune dysfunction 
played an essential role in the development and 
progression of SCI. Subsequently, the xCell algorithm 
uncovered a significantly more infiltrative abundance of 

 

 
 
Figure 8. Screen for Core IRGs in SCI. (A, B) Random forest algorithm to screen Core IRGs; (C, D) LASSO algorithm to screen Core IRGs; 
(E) PPI analysis to screen Core IRGs in Cytohubba; (F) Wayne diagram to obtain the intersection of the three algorithms. 
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neutrophils, macrophages M0, M1, and M2 in the SCI 
group than in the HC group, while a mass of lymphoid 
cells was markedly downregulated. These results were 
in agreement with previous studies. Following SCI, 
myeloid neutrophils rapidly enter the bloodstream and 

migrate and accumulate in the injured spinal cord 
through the endothelial barrier, exacerbating tissue 
inflammatory damage [23]. Activated neutrophils not 
only engulf localized necrotic tissue but also release 
elastase and reactive oxygen species to damage neurons 

 

 
 
Figure 9. Diagnostic value and validation of Core IRGs. (A, B) The expression levels of Core IRGs in GSE151371; (C, D) ROC curve 
analysis for Core IRGs; (E, F) Validation of Core IRGs expression by qPCR analysis between SCI patients (n = 10) and healthy controls (n = 8). 
*p < 0.05; **p < 0.01; and ***p < 0.001. 
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and aggravate neurological dysfunction [15]. The 
infiltrating macrophages in the injured spinal cord 
consist of two sources, resident microglia and the 
peripheral source of myeloid macrophages. Macro-
phages as an element of the immune network possess  
a high level of plasticity. Under the stimulation  
of inflammatory factors, macrophages can polarize  
into M1 and M2 phenotypes, each exhibiting pro-
inflammatory, and anti-inflammatory effects resulting in 
a dual immune response to SCI, as well as cytotoxic and 
neuroprotective effects [24–27]. Overall, these findings 
provide novel insights into the contribution of the 
immune response and immune microenvironment in 
SCI. 
 
To further characterize the role of IRGs in SCI, 
WGCNA analysis was performed to screen for the 

closest modules related to the pathophysiology of SCI. 
WGCNA is an approach to analyzing the gene 
expression patterns of multiple samples by clustering 
functionally related genes and associating them with 
specific variables [28]. Using gene expression data from 
the peripheral blood of SCI patients, we constructed a 
gene co-expression network and found that the 
turquoise module was most positively associated with 
the pathogenesis of SCI. Subsequently, 51 major IRGs 
were screened through the intersection of IRGs, DEGs, 
and turquoise modules. We considered that these 51 
IRGs were intimately associated with the regulation of 
the immune response in the pathological process after 
SCI. Based on the expression profiles of these IRGs, 
unsupervised clustering analysis divided SCI patients 
into two distinct immune modulation patterns. Anti-
inflammatory immune cells including macrophages M0, 

 

 
 
Figure 10. Verification of the expression of Core IRGs via rat SCI model. (A, B) Sequencing results of Core IRGs in SCI and sham group; 
(C) WB analysis demonstrating the expression of Core IRGs in the sham, SCI-3d and 7d group, respectively; (D, E) Immunofluorescence showed 
the expression of Core IRGs in sham and SCI-7d groups. Bar = 50 um; *p < 0.05; **p < 0.01; and ***p < 0.001. 
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M2, and Treg were up-regulated in Cluster 1, while pro-
inflammatory immune cells such as CD8 T cells and 
NK cells were up-regulated in Cluster 2. Treg and 
macrophage M2 play an important role in the neuro-
inflammatory process after SCI, significantly 
suppressing the inflammatory response and reducing the 
secretion of inflammatory elements to promote the 
recovery of neurological function [26, 29]. In addition, 
ssGSEA analysis revealed that inflammation-
promoting, T-cell co-stimulation, and cytolytic activity 
were more active in Cluster 2, which further validates 
the previous results. We believe that SCI patients in 

Cluster 2 had a more severe immune and inflammatory 
response, which results in poor distant functional 
recovery. Altogether, these findings provide new 
perspectives for the precise classification of SCI 
patients for personalized immunotherapy. 
 
Considering the inaccuracy of a single algorithm, two 
machine learning algorithms and PPI analysis were 
applied to identify the most stable and reliable IRGs for 
the early diagnosis and treatment of SCI. The results 
identified a total of two IRGs (FCER1G and NFATC2), 
which exhibited accurate predictive performance for 

 

 
 
Figure 11. Correlation of Core IRGs with immune cell infiltration. (A, B) Core IRGs relevance to immune infiltrating cells in SCI;  
(C) Scatter plots of the correlation between FCER1G and macrophage M1; (D) Fluorescence analysis uncovered co-localization of FCER1G 
with iNOS. 
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SCI patients. Notably, our study was conducted with 
transcriptomic data from peripheral blood samples, 
which already has gained clinical recognition due to the 
accessibility and feasibility of peripheral blood 
detection for the early diagnosis of SCI [30]. 
Subsequently, we validated the expression of these 
IRGs on an external validation cohort and rat SCI 
model. The results showed that FCER1G was 
remarkably upregulated after SCI, while NFATC2 was 
noticeably downregulated after SCI. These findings 
were consistent with the results of the bioinformatic 
analysis, further validating the reliability of these 
biomarkers. Moreover, we found that FCER1G and 
NFATC2 were tightly correlated with various immune 
infiltrating cells, especially FCER1G was positively 
correlated with macrophage M1. Immunofluorescence 
analysis was used to further validate the connection of 
FCER1G with macrophage M1 in vivo. Previous studies 
identified FCER1G was intimately involved in M1 pro-
inflammatory cell infiltration in the cardiac immune 
microenvironment [31]. At the early stage of SCI, 
macrophage M1 continuously recruits into the injured 
area to swallow necrotic tissue, which is beneficial to 
the recovery of SCI to a certain extent [26]. However, 
the extensive infiltration of macrophage M1 in SCI 
tends to delay clearance, which activates and releases a 
substantial amount of inflammatory agents through  
NF-κB and STAT1 signaling pathways, causing an 
inflammatory cascade response to further exacerbate the 
tissue damage [32]. Thus, we suggested that  
the upregulation of FCER1G after SCI can exacerbate 
the neuroinflammatory response and cause further 
damage through macrophage M1 polarization. FCER1G 
is an important inflammation-related molecule that 
encodes the Fc receptor γ-chain (FcRγ). FcRY contains 
an immune receptor tyrosine-based activator motif 
(ITAM) which is a key signaling transducer of multiple 
pathways mediating autoimmunity and chronic 
inflammation [33]. Numerous studies have found that 
FCER1G is expressed on the surface of various immune 
cells, including neutrophils, macrophages, eosinophils, 
etc., [34, 35]. FCER1G has been shown to promote 
neuropathic pain after nerve injury via immune and 
defense pathways [36]. NFATC2 is a nuclear factor 
member of the activated T cell (NFAT) family with a 
central role in the induction of gene transcription in the 
immune response [37]. Upregulation of NFATC2 can 
activate T cells and induce the production of a large 
number of cytokines to participate in the immune 
process [38]. In the acute phase of SCI, we found that 
the expression of multiple T cells was significantly 
downregulated, which might be tightly related to the 
downregulation of NFATC2. Collectively, our results 
provided new biomarkers for the early diagnosis and 
immune infiltration of SCI which might be novel targets 
for the treatment of SCI. 

There were several weaknesses in our study. First, this 
study was sourced from public databases and lacked 
corresponding clinical and prognostic information, 
resulting in no further assessment of prognosis. 
Secondly, the present study has a relatively small 
sample, so a larger sample is still needed to evaluate the 
predictive efficacy of Core IRGs. Third, the exact 
regulatory mechanisms between core IRGs and immune 
cells remain unclear, as extensive experiments remain 
necessary to elucidate these points in the future. 
 
CONCLUSIONS 
 
In conclusion, we revealed for the first time the immune 
feature and microenvironmental aberrations in SCI. 
Moreover, we recognized two immune modulation 
patterns with different immune statuses in SCI patients. 
Besides, 2 Core IRGs were identified for early 
prediction of SCI and strongly correlated with immune 
cells. We also verified the colocalization of FCER1G 
with macrophage M1. These findings may offer new 
insights and targets to fully understand the impact of 
immune response in SCI. 
 
MATERIALS AND METHODS 
 
Data processing and sample collection 
 
The microarray expression profile for SCI patients was 
acquired from GSE151371 in the GEO database. The 
data in GSE151371 were normalized before download 
and included the expression profiles of peripheral blood 
leukocytes from 38 SCI patients and 10 healthy controls 
[30]. Moreover, peripheral blood samples from 10 SCI 
patients and 8 HC were collected from Xi-Jing Hospital 
as independent validation analysis. This study was 
approved by the institutional review board of Xi-Jing 
Hospital, the Fourth Military Medical University, and 
all the patients provided signed informed consent. 
Demographic details of all subjects were presented in 
summary in Supplementary Table 1. 
 
Principal component analysis and screening of 
differentially expressed genes 
 
PCA was used to discriminate the characteristics 
between SCI and HC groups. Then, the R “limma” 
package was adopted to filter DEGs, with |log2Fold |≥1 
and p-value ≤ 0.05 set as the threshold. 
 
Functional enrichment analysis 
 
R package “clusterProfiler” was applied to perform the 
KEGG pathway and GO terms enrichment analysis of 
DEGs. KEGG pathway is the collection of metabolic 
pathways to respond to molecular interactions and 
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response networks, including metabolism, genetic 
information processing, environmental information 
processing, cellular processes, human disease, and drug 
pathways. GO terms include molecular functions, 
biological processes, and cellular components. In 
addition, GSEA analysis also identified hallmark gene 
sets between SCI and HC groups. p < 0.05 and FDR < 
0.25 were considered as the criteria. 
 
Landscape of immune microenvironment 
 
To evaluate the differences in immune infiltrating cells 
between SCI and HC groups, gene expression profiles 
were uploaded into xCELL (https://xcell.ucsf.edu/) to 
obtain the abundance of myeloid and lymphoid cells in 
peripheral blood [39]. In addition, the ssGSEA 
algorithm was performed to assess the immune function 
of each sample. 
 
Weight gene co-expression network analysis 
 
WGCNA was performed to construct a co-expression 
network and identify functional modules [28]. To ensure 
the accuracy of the results, the top 25% absolute median 
difference genes were included and outlier genes and 
samples were removed. Then, the appropriate power for 
the weight parameter of the adjacent function is chosen 
by using the pickSoftThreshold function. Subsequently, 
the adjacency was transformed into a topological 
overlap matrix (TOM) with empirical soft threshold β = 
6. To classify genes with similar expression profiles to 
identify modules, hierarchical clustering was performed 
based on 1-TOM and minimum gene size (n = 30). 
Modules with similar expression profiles were merged 
with the threshold value of 0.25. 
 
Identification of immune-related genes in SCI 
 
A total of 1793 immune-related genes were obtained 
from the ImmPort database [40]. Following the 
determination of DEGs and key modules from 
WGCNA, Venn analysis was used to intersect the above 
three gene parts to obtain the major IRGs involved in 
the pathological progression of SCI. 
 
Classification of immune modulation patterns for 
SCI patients 
 
Based on the expression profiles of these important 
IRGs, unsupervised clustering analysis was performed 
to determine the immune modulation patterns of SCI 
patients through the R package “Consensus Cluster 
Plus”. The cumulative distribution function (CDF), 
consensus matrix, and comparative change in area under 
the CDF curve were taken to ensure the optimal number 
of clusters. 

Screening of key IRGs for diagnosis of SCI patients 
 
To improve the prediction accuracy, two machine 
learning algorithms and PPI analysis were employed 
to screen the candidate genes for SCI diagnosis. 
Random Forest is another type of machine learning 
that selects the smallest genetic set with the lowest 
error rate from massive data to recognize potential 
biomarkers [41]. LASSO is a linear regression 
machine learning based on gene expression profiles to 
filter key genes to help clinicians increase prediction 
accuracy [42]. The random forest algorithm monitors 
genes by the R package random forest, and the 
relative importance score >0.5 was used as the 
threshold value. The R package “glmnet” was used for 
the dimensionality reduction of the LASSO algorithm 
and the minimum lambda value was set as a threshold. 
Besides, the PPI network was established by the 
STRING database (version 11.0). Then, Cytoscape 
was utilized to build PPI visualization networks and 
screen hub genes by the Radiality algorithm in the 
Cytohubba [43]. The intersection of the results of the 
three algorithms was considered a Key IRGs. ROC 
curves were further used to evaluate the diagnostic 
effectiveness of Key IRGs. 
 
qRT-PCR 
 
Total RNA from peripheral blood samples was 
extracted using TRIZOL methods. cDNA synthesis kit 
(Takara, China) was utilized to reverse transcribe the 
RNA. The TB Green Premux Ex Taq II (Tli RNaseH 
Plus) and Bio-Rad CFX96 real-time PCR system (Bio-
Rad, United States) was employed for qRT-PCR. The 
internal control was GADPH. The relative expression 
was calculated based on the comparative Ct (2−ΔΔCt) 
method. The primer sequences of the Key IRGs were 
shown in Table 1. 
 
Establishment of SCI rat model and sequencing 
analysis 
 
The Sprague Dawley rats were used to construct the 
SCI model, all animal experiments were approved by 
the Institutional Animal Care and Use Committee of the 
Fourth Military Medical University. The SCI model was 
based on our previously reported modified bilateral 
spinal cord clamping model: the rats were anesthetized 
by intraperitoneal injection of 10 g/L sodium 
pentobarbital, a median incision was made on the dorsal 
skin to expose the T10 spinous process, and a 
laminectomy was performed at T10 to expose the spinal 
cord. The spinal cord was then clamped by forceps for 
40 s to cause SCI. In the Sham group, only the lamina 
was opened without damaging the spinal cord. 
Subsequently, based on our previously reported RNA 

https://xcell.ucsf.edu/
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Table 1. Primer sequences of the Core IRGs. 

Gene Sequence (5′–3′) 

FCER1G 
Forward: AGCAGTGGTCTTGCTCTTACT 
Reverse: TGCCTTTCGCACTTGGATCTT 

NFATC2 
Forward: CGATTCGGAGAGCCGGATAG 
Reverse: TGGGACGGAGTGATCTCGAT 

GAPDH 
Forward: GGAGCGAGATCCCTCCAAAAT 
Reverse: GGCTGTTGTCATACTTCTCATGG 

 
sequencing results in rat spinal cord tissues, we 
validated the expression of Core IRGs [44]. 
 
Western blotting analysis 
 
Animals were perfused with saline at specific time 
points and approximately 2 cm segments were excised 
from the injured spinal cord. The RIPA lysis buffer 
(Beyotime, China) was used for extracting proteins. We 
used a BCA protein assay kit (Solarbio, China) for 
quantifying proteins. The proteins were then boiled, 
loaded, separated by electrophoresis, and transferred 
onto NC membranes. Using suitable primary antibodies, 
including anti-FECR1G (1:2000, DF13263, Affbiotech, 
China), anti-NFATC2 (1:2000, A3107, Abclonal, 
China), and anti-GAPDH (1:5000, 60004-1-Ig, 
Proteintech, China). the cell membranes were blocked 
with skim milk and incubated under 4°C overnight, 
followed by incubation with the secondary antibody 
(1:2000) for 1 h at room temperature and observation by 
ECL luminescence. 
 
Immunofluorescence staining 
 
After 7 days of SCI, the rats were perfused with 
paraformaldehyde, dissected, and sectioned at the site of 
injury, paraformaldehyde-fixed, sucrose sunk and OCT 
embedded, followed by sectioning. Sections were 
treated with 0.3% TritonX-100 for 20 min and blocked 
with 5% BSA blocking solution at room temperature for 
1 h. The appropriate primary antibody was added to the 
sections and incubated overnight at 4°C, including anti-
FECR1G (1:100, DF13263, Affbiotech, China), anti-
NFATC2 (1:100, A3107, Abclonal, China), and anti-
iNOS (1:100, ab210823, Abcam, United Kingdom). 
Sections were incubated with a secondary antibody 
(1:200) at room temperature in the dark for 1 h. After 
washing with PBS for 10 min, cell nuclei were stained 
with DAPI. 
 
Statistics 
 
Statistical analysis was conducted using the R 4.0.5 
software, SPSS 21.0, and GraphPad Prism 8. We 

performed Willcoxon to determine differences between 
experimental groups and performed a one-way ANOVA 
to determine differences among the three groups. All 
differences among and between groups were considered 
to be statistically significant at P < 0.05 (*p < 0.05, **p < 
0.01, and ***p < 0.001). 
 
Data availability statement 
 
The original contributions presented in the study are 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Table 
 
Supplementary Table 1. Demographics and clinical data of all subjects. 

Subjects Gender Age BMI Injured neurologic level 
SCI patients     

1 M 41 22.4 T12 
2 F 43 20.8 T12 
3 M 61 24.5 T9 
4 F 35 21.9 T12 
5 M 55 23.2 T3 
6 M 27 19.6 T11 
7 M 43 22.3 T11 
8 F 64 21.3 T12 
9 M 36 23.4 T9 
10 M 46 21.8 T12 

Healthy control 
1 M 23 22.5 NA 
2 M 47 23.8 NA 
3 M 33 23.3 NA 
4 F 25 21.1 NA 
5 M 62 22.5 NA 
6 M 32 21.7 NA 
7 F 48 20.8 NA 
8 M 58 20.6 NA 

 


