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INTRODUCTION 
 

Until 2022, lung cancer has the highest global mortality 

rate among cancers, killing about 350 people each day 

[1]. Non-small cell lung carcinoma (NSCLC) accounts 

for approximately 85% of all lung cancer patients [2]. 

The incidence of LUAD, the most predominant subtype 

of NSCLC, has been increasing year by year [3]. 

Although the clinical management strategies for LUAD 

are continuously updated, there are still problems such 

as low early diagnosis rates and unsatisfactory long-

term survival of patients [4]. In this regard, there is an 

urgent need to find a new clinical model that can 

accurately diagnose and assess the prognosis of LUAD, 

and further explore the molecular mechanisms related to 

the development of the disease, which may provide a 

new idea for the subsequent targeted therapy. 

 

Ferroptosis, a novel type of programmed cell death [5], 

distinguishes itself from other cell death modalities such 

as apoptosis and necrosis and occurs mainly due to the 

presence of divalent iron ions that accelerate the process 

of lipid peroxidation of saturated fatty acids in the body, 

resulting in oxidative stress in cells, which further 

induces cell death [6]. The iron metabolism has a dual 

effect on tumor development, i.e., an increase in iron 

content within a certain range is not conducive to the 

control of tumor cell growth and multiplication [7], but 

when the intracellular iron concentration exceeds a 

threshold, the ferroptosis effect that is triggered at this 
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biomarkers (LIFR, CAV1, TFAP2A) were significantly correlated with immunization. Meanwhile, we found that a 
LINC00324/miR-200c-3p/TFAP2A regulatory axis could be involved in the progression of LUAD. In conclusion, 
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time has a positive effect on tumor control [8]. A 

number of studies have shown that various tumor 

suppressors can upregulate the sensitivity of tumor cells 

to iron death, such as p53 and BRCA1-Associated 

Protein 1 (BAP1) [9, 10], both of which can inhibit the 

expression of SLC7A11 coupled with ferroptosis 

mechanism to exert tumor suppressive effects. As an 

essential co-factor in the body, copper, similar to iron, 

plays an important role in biological processes such as 

participation in mitochondrial respiration and regulation 

of signaling pathways [11]. Cuproptosis death is a novel 

mode of cell death proposed by recent studies, and its 

mechanism of occurrence depends on intracellular 

copper accumulation [12]. During the development of 

cuproptosis, excess copper ion carriers were found to 

bind to fatty tricarboxylic acid cycle proteins to trigger 

protein aggregation, leading to acute proteotoxic stress 

[13]. The discovery of cuproptosis may become a new 

mechanism for the treatment of tumors in clinical 

practice, which will guide the future research direction 

of tumor diagnosis and treatment [14]. 

 

Current studies have confirmed the involvement of 

ferroptosis and cuproptosis in the development of many 

cancers and both are considered to be important factors 

strongly associated with cancer progression [15, 16]. It 

was found in clinical studies on LUAD that the 

occurrence of ferroptosis has significant implications 

for the treatment of patients with the advanced and 

drug-resistant diseases [17], in which cuproptosis also 

showed a positive prognostic effect [18]. Collectively, it 

is reasonable to speculate that the combination of the 

two death modalities may provide better control of 

tumor progression. Recent studies have shown that 

CRFGs have superior performance in prognosis and 

immune infiltration in hepatocellular carcinoma [19]. In 

the study about colorectal cancer, we can find that the 

prognostic significance of CRFGs in cancer has higher 

reliability [20]. The research results mentioned above 

prove that CRFGs are relevant in the exploration of 

clinical treatment of malignant tumors. However, the 

relevant studies of CRFGs in LUAD have not been 

addressed, thus the combined therapeutic mechanism of 

ferroptosis and cuproptosis in LUAD needs to be further 

discovered. Therefore, the study of CRFGs in LUAD 

may also provide new ideas for the diagnosis and 

treatment of this disease. 

 

The lncRNA also plays a crucial role in the 

development of cancer by interacting with DNA, RNA, 

and proteins to regulate gene expression in both cis or 

trans transcription, the organization of nuclear structural 

domains and at the post-transcriptional level [21]. It is 
now generally accepted that lncRNA can identify cancer 

cell pathology and identify tumor subtypes, with 

important prognostic value, and is a biomarker for a 

variety of cancers, which can be used to guide patients 

in therapy selection [22]. In the available studies, 

lncRNA was found to have a significant impact on the 

progression and metastasis of LUAD. It has been 

demonstrated that the JPX/miR-33a-5p/Twist1 axis can 

activate Wnt/β-catenin signaling to promote metastasis 

in LUAD [23]. Meanwhile, LINC00472 was identified 

as a protective factor for LUAD [24]. In contrast, the 

molecular regulatory mechanism of CRFGs is still 

unclear, which enlightens us to conduct an in-depth 

investigation of lncRNA to lay the foundation for 

clinical studies of LUAD. 

 

In the present study, we constructed a clinical prediction 

model about CRFGs in LUAD by bioinformatics using 

the gene signature of cuproptosis-related ferroptosis as 

the main object of analysis and validated it using an 

external dataset for correlation. Based on the model, we 

established potential prognostic biomarkers. We also 

further explored the regulatory mechanisms of the two 

combined death modes by related lncRNA and the 

potential impact on the prognosis of LUAD. The 

workflow of this study is shown in Figure 1. 

 

RESULTS 
 

Acquisition and enrichment analysis of CRFGs 

 

In the Genecards database, 302 genes related to 

ferroptosis were obtained (Supplementary Table 1), and 

16 genes (FDX1, LIPT1, LIAS, DLD, MTF1, GLS, 

CDKN2A, DLAT, PDHA1, PDHB, DBT, GCSH, 

DLST, SLC31A1, ATP7A, and ATP7B) closely related 

to copper death were collated from the latest studies on 

cuproptosis [13]. 

 

Gene differential expression analysis was performed 

on 516 LUAD samples and 59 normal samples in  

the TCGA database, volcano maps (Figure 2A) and 

gene heat maps (Figure 2B) were constructed, and a 

total of 2590 genes showing differential expression 

were acquired, of which 928 genes were up-regulated 

in LUAD compared to normal samples, and  

the remaining 1662 genes were down-regulated 

(Supplementary Table 2). 

 

The PPI network was constructed from the genes 

associated with ferroptosis and cuproptosis (Figure 2C), 

and the network contained a total of 270 nodes with 16 

genes associated with cuproptosis and 254 genes 

associated with ferroptosis. Venn diagrams were plotted 

for the 2590 differential genes and 270 CRFGs in 

LUAD, and a total of 44 common genes were found 

(Figure 2D). The top twenty results with the highest 

gene enrichment in CRFGs in LUAD are shown in 

Figure 2E. 
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Figure 1. The flow chart of this study. 
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Figure 2. Acquisition and enrichment analysis of LUAD-related CRFGs. (A) Volcano plot, blue dots indicate genes significantly down-

regulated in expression in LUAD samples compared to normal samples, and red dots indicate genes significantly up-regulated. (B) Heat map. 
(C) PPI network diagram of CRFGs, ferroptosis-related genes are shown with pink nodes and green nodes representing cuproptosis-related 
genes. (D) Venn diagram constructed by LUAD and CRFGs. (E) GO and KEGG enrichment analysis of LUAD-related CRFGs, with the longer 
columns representing higher enrichment. 
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Potential prognostic genes and mutational landscape 

 

A univariate Cox regression analysis was performed on 

44 CRFGs (Table 1), and 15 potentially independent 

prognostic genes were filtered out at a p-value <0.05, 

which showed differential expression in LUAD 

compared with normal tissues (Figure 3A). The 

mutational landscape of these 15 potentially prognostic 

genes was further analyzed using TCGA data to 

visualize the top 10 genes with the highest degree of 

mutation, with the results shown in Figure 3B, where 

the gene with the highest mutation density is the LIFR. 

 
Establishment and validation of a prognostic 

signature associated with CRFGs 

 

Based on these 15 potential independent prognostic 

genes of LUAD above, we performed LASSO Cox 

regression analysis to construct a prognostic signature 

associated with CFRGs. Finally, 13 genes were 

included in the prognostic signature (Figure 3C, 3D). 

The specific formulation of the prognostic signature: 

Riskscore=(0.2392)*CCT3+(0.0875)*ENO1+(0.1088)*

TFAP2A+(0.0275)*CA9+(0.0302)*SLC7A11+(0.0251)

*GCLC+(0.1293)*CAV1+(-0.1273)*GPX3+(-0.1325)* 

LIFR+(-0.017)*HLF+(0.0557)*ACSL4+(-0.0103)*AL 

OX15+(0.0144)*SCD. The risk plots and Kaplan-Meier 

survival analysis curves for the prognostic signature 

associated with CRFGs in Figure 3E–3G show that the 

high-risk group has a shorter survival time compared to 

the low-risk group. The 1-, 3-, and 5-year survival 

probability of the risk score was represented by the 

AUC values of 0.716, 0.726, and 0.623, respectively, in 

the TCGA cohort. These results indicate that the 

prognostic model constructed in this experiment 

possesses good stability. 

 

To further validate the prognostic performance of our 

model, two datasets, GSE41271 and GSE31210, were 

selected in the GEO database as external validation 

cohorts for the prognostic performance of the model. As 

shown in Figure 4A, 4B, the validation results of both 

external cohorts demonstrate the generalizability and 

reliability of our constructed prognostic signature 

regarding CRFGs in LUAD. By DCA we found that the 

prognostic signature associated with CRFGs had better 

clinical utility compared with other single prognostic 

signatures for cuproptosis or ferroptosis (Figure 4C–4E). 

 

To further evaluate the potential clinical use of 

prognostic models associated with CRFGs, univariate 

Cox regression analysis (Figure 5A) and multivariate 

Cox regression analysis (Figure 5B) of prognostic 

signature together with associated clinical factors were 

performed and a nomogram was constructed (Figure 

5C). The calibration curves of this nomogram show that 

the observed and predicted values have a high 

consistency (Figure 5D). 

 

Potential prognostic biomarkers 

 

To explore potential prognostic molecular mechanisms 

closely associated with LUAD progression, we 

performed a multivariate Cox regression analysis in the 

TCGA cohort combining age, gender, pTNM-stage, and 

smoking these clinical characteristics and 13 CRFGs. 

TFAP2A (p=0.02847), CAV1 (p=0.00854), LIFR 

(p=0.00273), age (p=0.04739), and pTNM-stage 

(p<0.0001) were shown to be potential prognostic 

factors closely associated with LUAD (Figure 6A). 

TFAP2A, CAV1, and LIFR were identified as potential 

prognostic biomarkers for further analysis. 

 

TME analysis 

 

In the TCGA cohort, we calculated the degree of immune 

cell infiltration of seven common immune cells in LUAD 

tissues by the EPIC algorithm, and in Figure 6B, it can be 

found that the degree of infiltration of most immune cells 

was increased in LUAD compared to normal tissues, 

except for T cell CD8+. We then investigated the degree 

of immune infiltration of three potentially prognostic 

biomarkers and found that TFAP2A expression showed a 

negative correlation with the degree of B cell, Endothelial 

cell, and T cell CD8+ infiltration and a positive 

correlation with T cell CD4+ infiltration (Figure 6C). 

 

We also researched the association between the eight 

universal immune checkpoints and the expression of 

these three potentially prognostic biomarkers, as shown 

in Figure 6D, where all three biomarkers have some 

association with the immune checkpoints. 

 

The core gene identification and analysis 

 

The results of the analysis of OS and PFS of the three 

biomarkers (Figure 7A, 7B) and Kaplan-Meier survival 

curves (Figure 7C–7E) showed that the high expression 

of TFAP2A was detrimental to survival in the LUAD 

patients. 

 

High levels of Microsatellite instability (MSI), which 

predispose to the accumulation of mutations in cancer 

and an increase in tumor mutational burden (TMB), are 

detrimental to the control of cancer progression [25]. In 

this regard, we performed MSI scores for the three 

potential prognostic biomarkers. In Figure 7F–7H, it can 

be seen that CAV1 (p=0.003) and TFAP2A (p=0.008) 

expression showed a correlation with MSI score whereas 
LIFR (p=0.294) expression was not significantly 

correlated with it. Combining the results of the above 

analysis, we suggest that TFAP2A may act as a 
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Table 1. OS-related univariate Cox regression analysis of 
44 CRFGs. 

Uni_Cox Pvalue Hazard ratio (95% CI) 

TFAP2A 0.00005 1.23695(1.11607,1.37092) 

CCT3 0.00025 1.51739(1.21406,1.8965) 

CDC25A 0.00029 1.31458(1.13381,1.52417) 

HLF 0.00069 0.8406(0.76035,0.92932) 

ENO1 0.00154 1.44234(1.1498,1.80932) 

LIFR 0.00168 0.80991(0.71011,0.92373) 

GCLC 0.00247 1.14134(1.04769,1.24336) 

SLC7A11 0.00891 1.11886(1.02855,1.2171) 

HELLS 0.01939 1.20561(1.03069,1.4102) 

CA9 0.02291 1.07088(1.00953,1.13597) 

ACSL4 0.02331 1.19584(1.02461,1.39569) 

CAV1 0.03002 1.11989(1.01101,1.24048) 

SCD 0.04025 1.13687(1.00572,1.28513) 

ALOX15 0.04032 0.90049(0.81464,0.99538) 

GPX3 0.04371 0.87952(0.77637,0.99638) 

TFRC 0.05972 1.12552(0.99517,1.27294) 

GJA1 0.06981 1.1034(0.99206,1.22722) 

TLR4 0.09284 0.87035(0.74022,1.02335) 

MAP1LC3C 0.09328 0.90838(0.81195,1.01626) 

NEDD4L 0.11818 0.87487(0.7398,1.0346) 

CYBB 0.14379 0.92893(0.8415,1.02544) 

ACSL1 0.16507 0.89012(0.75523,1.04911) 

SLC39A8 0.17102 0.91088(0.79694,1.04112) 

CDKN2A 0.19075 1.05277(0.97471,1.13708) 

PTGS2 0.22003 1.04517(0.97392,1.12163) 

CP 0.24934 1.04482(0.96971,1.12575) 

ALOX5 0.28193 0.93514(0.8276,1.05664) 

ETV4 0.40547 0.95551(0.85836,1.06366) 

SLC40A1 0.43914 0.95399(0.84668,1.0749) 

DDR2 0.4647 0.94663(0.81721,1.09656) 

WWTR1 0.54997 1.05991(0.87583,1.28268) 

HCAR1 0.58266 0.97332(0.88383,1.07188) 

CYGB 0.60552 1.05051(0.87133,1.26654) 

FBLN1 0.62394 0.96973(0.85759,1.09653) 

JAM3 0.64954 0.964(0.823,1.12916) 

LCN2 0.69188 1.01353(0.94835,1.0832) 

ALAS2 0.71757 1.07262(0.73362,1.56827) 

JUN 0.76688 0.97822(0.84569,1.13152) 

PDK4 0.81162 0.98725(0.88837,1.09714) 

IL6 0.82012 1.01138(0.91741,1.11497) 

ZFP36 0.83636 1.01291(0.89686,1.14397) 

LPCAT3 0.8883 0.98608(0.81083,1.19919) 

ATF3 0.96585 0.9975(0.88946,1.11867) 

EFEMP1 0.97338 0.99808(0.89172,1.11713) 

 

core gene and be closely related to the development of 
LUAD. Figure 7I shows the distribution of gene 

mutations in the TFAP2A. We also used pathological 

sections of TFAP2A protein expression to demonstrate 

core gene-related immunohistochemistry through the 

HPA database (Figure 7J), and it was seen that TFAP2A 
expression levels were significantly higher in LUAD 

tissues compared to normal tissues. These results further 

validate the upregulation of TFAP2A expression in 

LUAD tissues. 
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Figure 3. The prognostic signature associated with CRFGs. (A) Differential expression of 15 potentially prognostic CRFGs in LUAD 

samples and the normal samples. (B) Mutation landscape map of potentially prognostic CRFGs, showing SNV and genomic mutation types.  
(C, D) Prognostic signature established by LASSO Cox regression analysis. (E) Risk score distribution, patient survival status and CRFGs 
expression profile calculated by the prognostic signature. (F) Survival curves of LUAD patients in low- and high-risk groups. (G) ROC curves of 
the prognostic signature at 1, 3, and 5 years. *P < 0.05, **P < 0.01. 
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Exploration and validation of lncRNA-related 

regulatory axis 

 

To further elucidate the regulatory mechanisms associated 

with the core gene in LUAD, we conducted an 

exploration of the lncRNA-related regulatory axis. 

Relevant miRNAs about TFAP2A were obtained from the 

four databases (mirDIP, miRDB, miRWalk and StarBase) 

we selected for the search, and the specific results can be 

found in Supplementary Table 3. MiR-200c-3p and miR-

616-3p were obtained from the comprehensive analysis as 

upstream miRNAs of TFAP2A (Figure 8A). In the TCGA 

cohort, both miRNAs showed increased expression 

compared to normal samples (Figure 8B, 8C). Next, the 

upstream lncRNAs of the obtained core miRNAs were 

predicted in the LncBase database, and then Kaplan-

Meier analysis was performed to plot the survival curves. 

It should be noted that the prediction result of miR-616-3p 

was poor, so we selected miR-200c-3p as the subject of 

the follow-up study. As seen in Figure 8D–8G, the 

expression of four lncRNAs, LINC00324 (p=0.00741), 

LINC00240 (p=0.000789), LINC00973 (p=0.0029) and 

LINC02073 (p=0.00764), were closely associated with 

the prognostic outcome of LUAD. Their specific AUC 

values can be obtained from Supplementary Figure 1. We 

also analyzed the expression of the four lncRNAs 

mentioned above in LUAD and normal samples, and it 

could be found that they all had significant expression 

differences (Figure 8H–8K). After discussion and analysis 

of these four lncRNAs, we selected LINC00324, which 

 

 
 

Figure 4. Validation of the prognostic signature. Validation of the prognostic signature in the external datasets (A) GSE41271 and (B) 
GSE31210. DCA curve was used to assess the clinical utility of the prognostic signature associated with CRFGs versus a single cuproptosis or 
ferroptosis model at (C) 1 year, (D) 3 years, and (E) 5 years of OS. Model1 represents the CRFGs-related model, Model2 represents the 
cuproptosis-related model, and Model3 represents the ferroptosis-related model. 
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has some research background and relevant expression 

results in the relevant GSE dataset, to establish the 

regulatory axis. To further validate the regulatory 

mechanism of the LINC00324/miR-200c-3p/TFAP2A 

regulatory axis constructed in this study, we selected four 

datasets (GSE43458, GSE32863, GSE30219, and 

GSE27262) in the GEO database as external validation 

cohorts. In Figure 8L–8O, it can be seen that our selected 

relevant lncRNA regulatory axis has good outcomes in 

the dataset. Based on the above validation results, we 

hypothesized that lncRNAs may play an important role in 

LUAD progression through the LINC00324/miR-200c-

3p/TFAP2A regulatory axis. 

 

DISCUSSION 
 

As one of the most frequently diagnosed cancers in the 

world, early diagnosis of lung cancer is a key research 

area to reduce its mortality [26]. The diagnostic tools 

currently used, such as Chest X-ray (CXR) and sputum 

cytology, are of interest in reducing the death rate of 

NSCLC [27]. However, the above methods have the 

shortcoming of low sensitivity for early screening of 

NSCLC [28, 29]. Therefore, there is an urgent need to 

find an early diagnosis method with high sensitivity and 

accuracy in the clinical treatment process. Compared to 

traditional screening methods, the addition of biomarker 

detection has provided new ideas for the early diagnosis 

of NCCLC in recent years [30, 31]. Numerous studies 

have shown that the establishment of cuproptosis-

related gene signatures [32] and ferroptosis-related gene 

signatures [33, 34] have good prognostic value for 

LUAD. However, the correlation between CRFGs and 

LUAD remains to be investigated. In summary, we 

chose to build a CRFGs gene set to construct a 

prognostic signature and verify its ability to predict the 

prognosis of LUAD patients. 
 

The GO and KEGG enrichment results of CRFGs 

showed that 44 CRFGs may be associated with 

 

 
 

Figure 5. The prognostic signature-related nomogram. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. 

(C) Nomogram for predicting the 1-, 3-, and 5-year OS of LUAD patients in the TCGA cohort. (D) Calibration curve to validate the established 
nomogram. 
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biological processes such as the HIF1 signaling 

pathway, response to hypoxia, regulation of cellular 

response to stress, and defective intrinsic pathway for 

apoptosis. The above pathways have been found to be 

involved in the progression of LUAD. In LUAD cells, 

the glycogen branching enzyme (GBE1) is in the 

downstream of the HIF1 signaling pathway. It has been 

shown that the blockade of GBE1 signaling under 

hypoxic conditions can significantly inhibit the 

development of LUAD [35]. Dysregulation of the 

KEAP1/NRF2 stress response pathway promotes the 

development of LUAD [36]. Meanwhile, defects in 

apoptotic pathways are limiting for radiation therapy of 

NSCLC [37]. The above studies provide evidence from 

the side that CRFGs can act on LUAD with important 

potential molecular mechanisms that can support our in-

depth study. 

 

Further univariate Cox regression and LASSO Cox 

regression analyses optimized to establish the 

prognostic signature associated with CRFGs showed 

good performance in predicting the prognosis of 

LUAD patients. As seen in the SNV analysis figure, 

genes such as LIFR, GCLC, CA9, ACSL4, and 

TFAP2A have high mutation rates in LUAD, which 

play an important role in the overall survival of such 

patients. Previous studies have proven that the 

expression level of LIFR correlates with disease 

progression and survival of patients [38]. GCLC, a 

new LUAD prognostic biomarker, whose expression is 

upregulated accelerates the process of ferroptosis and 

inhibits the proliferation and invasion of LUAD cells 

[39]. Meanwhile, TFAP2A can regulate the miR-16 

family/TFAP2A/PSG9/TGF-β signaling pathway [40] 

by inducing the expression of KRT16 [41], ITPKA 

[42], and other oncogenes to affect the development, 

migration and invasion of LUAD. In addition, it has 

been suggested that TFAP2A can regulate the 

ferroptosis of gallbladder cancer cells through the Nrf2 

signaling axis, so TFAP2A may act as a regulatory 

factor of ferroptosis [43]. The prognostic signature 

established with TCGA-LUAD data, validated by 

external datasets in the GEO database, and the 

comparison of nomogram and DCA can indicate that 

our prognostic signature related to CRFGs has better 

results and greater advantages in predicting the 

prognosis of LUAD patients, which has some 

significance for clinical application. 

 

 
 

Figure 6. Potential prognostic biomarkers acquisition and immunoassay for CRFG in LUAD. (A) Multifactorial Cox regression 

analysis of CRFGs and associated clinical characteristics. (B) Immune scores in LUAD and normal tissues, the horizontal coordinate represents 
the types of immune cell infiltration and the vertical coordinate represents the distribution of immune scores in the two groups. (C) Heat map 
of correlation between potential prognostic biomarkers and immune scores, horizontal coordinates represent the type of immune cell 
infiltration, vertical coordinates represent genes. (D) Heat map of the correlation between the potential prognostic biomarkers and common 
immune checkpoints, horizontal coordinates represent immune checkpoints and vertical coordinates represent biomarkers. 
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Figure 7. Survival analysis of potential prognostic biomarkers and identification of the core genes. Results of (A) OS and (B) PFS 

survival analysis for the potential prognostic biomarkers. (C) Relationship between LIFR expression and OS. (D) Relationship between TFAP2A 
expression and OS. (E) Relationship between TFAP2A expression and PFS. Correlation studies of potential prognostic genes with MSI, in which 
(F) CAV1 was significantly associated with MSI, while (G) LIFR was non-significantly associated with MSI as well as (H) TFAP2A was significantly 
associated with MSI. (I) Lollipop charts of the mutation landscape of TFAP2A, showing a somatic mutation rate is 0.98%. (J) Protein expression 
of TFAP2A in normal and LUAD tissues in pathological sections, indicating that TFAP2A was highly expressed in LUAD samples. 
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The TME occupies an important position in tumor-

related research, and the evaluation of the immune 

system facilitates the development of personalized 

immunotherapy strategies for LUAD patients [44]. It 

has been suggested that the ferroptosis score and 

cuproptosis-related gene score are important for TME 

cell infiltration in LUAD patients and assist in assessing 

the effects of immunotherapy [18, 45]. It was suggested 

that the degree of intra-tumor infiltration of immune 

cells and the immune checkpoint correlation could be 

used for the development of prognostic markers for 

LUAD [46, 47]. We performed a multivariate Cox 

regression analysis and found that TFAP2A, CAV1, and 

LIFR were of greater research potential among the 

above prognostic biomarkers. Immune infiltration 

analysis showed that TFAP2A, CAV1, and LIFR were 

highly correlated with most immune cells in LUAD. 

Similar findings also pointed out that TFAP2A may act 

as a transcription factor for SLC7A5 and affect the 

expression of SLC7A5 in LUAD cells, thus causing 

alterations in immune-related gene expression and 

immune cell infiltration [48]. The LIF/LIFR axis could 

be a valuable clinical target for the regulation of 

multiple immune cells in TME [49], for example, by 

affecting the proliferation of CD4(+) and CD25(+) 

regulatory T cells [50]. The deletion of CAV1, a 

 

 
 

Figure 8. Results of the lncRNA-related regulatory axis. (A) Venn diagram using data from four databases: mirDIP, miRDB, miRWalk 

and StarBase. (B) Differential expression of miR-200c-3p, (C) miR-616-3p in LUAD samples and normal samples. Relationship between  
(D) LINC00324, (E) LINC00240, (F) LINC00973 and (G) LINC02073 expression levels and OS. Box plot of differential gene expression between 
(H) LINC00324, (I) LINC00240, (J) LINC00973, (K) LINC02073 in LUAD samples and normal samples. External dataset validation of expression 
differences of LINC00324. (L) GSE43458; (M) GSE32863; (N) GSE30219; (O) GSE27262. 
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membrane-intrinsic protein with inhibitory effects on 

LUAD, in TME may affect the survival of cancer cells 

[51]. Current studies have shown that CAV1 can act as 

an immune-related biomarker for LUAD, with positive 

correlations between different types of immune 

infiltration [52]. In addition, immune checkpoint 

blockade (ICB) therapy has been widely used in the 

treatment of NSCLC [53, 54], and there is an urgent 

need to find effective biomarkers to identify patients 

with LUAD who are sensitive to immune checkpoint 

inhibitors. Our study found that TFAP2A and CAV1 

have better responsiveness to common immune 

checkpoints, providing insight into ICB therapy for 

LUAD patients. 

 

There are extensive and complex inter-regulatory 

interactions between coding and non-coding RNAs 

[55]. In recent years, an emerging RNA crosstalk-

competing endogenous RNA (ceRNA) hypothesis has 

been proposed [56] and an increasing number of studies 

have supported this kind of it. It has been shown that 

ceRNA can play a regulatory role as a natural 

endogenous miRNA sponge competing for binding 

miRNA [57]. As a type of ceRNA, lncRNA has 

received extensive attention on the mechanism of 

reverse regulation by competing with mRNA to bind 

miRNA [58]. In parallel, it was found that lncRNA can 

participate in the multilayered regulatory circuitry of 

cancer cell biological behavior through the ceRNA 

network, showing potential therapeutic and prognostic 

value [59, 60]. Accordingly, we further performed OS 

and PFS analyses on TFAP2A, CAV1, and LIFR, which 

are the key genes in CRFGs, and constructed a CRFGs-

related ceRNA network by comparing and selecting 

TFAP2A with the best prognostic performance. 

Through various database screening and lncRNA 

prognostic analysis, we finally found that CRFGs may 

affect LUAD progression through LINC00324/miR-

200c-3p/TFAP2A regulatory axis. In the available 

studies, LINC00324 has been shown to play a role 

through the regulatory axis in a variety of cancer cells 

[61] and is considered a promising marker for tumor 

prognostic properties. Multiple bioinformatic analyses 

identified it as a ferroptosis and iron-metabolism related 

lncRNA signature for LUAD, involved in the 

construction of the prognostic signature [62] and 

coregulatory axis [63]. We demonstrated through 

substantial data in the TCGA-LUAD and GEO 

databases that LINC00324 acts as a protective factor in 

the development of LUAD and that its high expression 

favors the prognosis of LUAD patients, consistent with 

the findings of related studies [64]. Meanwhile, we also 

found that in this lncRNA regulatory axis, both miR-
200c-3p and TFAP2A expression levels were increased 

in LUAD patients, while LINC00324 expression levels 

were decreased. Combined with the relevant prognostic 

survival curve results, we propose the hypothesis that 

LINC00324 can be regulated by suppressing down-

stream gene expression. We believe that the decreased 

expression of LINC00324 in LUAD increased the level 

of miR-200c-3p, which promoted the expression of 

TFAP2A, while LINC00324 may also regulate the 

expression of downstream TFAP2A through a 

mechanism of competitive binding with miR-200c-3p, 

thus affecting the biological behavior of tumor cells and 

providing new approaches and ideas for clinical 

targeting therapy and targeted drug development of 

LUAD. 

 

Unfortunately, there are some limitations in our current 

study. The research was carried out based on the 

existing bioinformatics database, and the reliability of 

the information in the database influenced our results. 

Furthermore, although we used a large amount of 

external data from the GEO database to demonstrate the 

stability and reliability of our results, there was still a 

lack of in vivo or in vitro experimental validation. In the 

future, we will further explore the efficacy and specific 

mechanisms of the CRFGs-related LINC00324/miR-

200c-3p/TFAP2A regulatory axis acting on LUAD cells 

in depth through relevant experiments. 

 

CONCLUSIONS 
 

In conclusion, we constructed a CRFGs-related LUAD 

prognostic signature in this study, which exerted a good 

prognostic ability to predict LUAD patients. In 

particular, we identified three more prognostic 

biomarkers (TFAP2A, CAV1, and LIFR) with more 

investigational value to provide new ideas for 

immunotherapy in LUAD patients. By exploring the 

lncRNA regulatory axis, we also found that the CRFGs-

related LINC00324/miR-200c-3p/TFAP2A axis may be 

involved in the progression of LUAD, and the specific 

efficacy of its role remains to be verified by further 

experiments. 

 

MATERIALS AND METHODS 
 

Public data acquisition and pre-processing 

 

For Ferroptosis, the GeneCards database 

(https://www.genecards.org) was searched for related 

genes using the keyword “Ferroptosis” and the filtering 

condition was set to a “Relevance score” greater than or 

equal to 1. Cuproptosis-related genes were obtained 

from a previous study in a summary collection [13]. 

RNA-sequencing expression (level 3) and correspond-

ing clinical information of LUAD were obtained from 
The Cancer Genome Atlas (TCGA) database 

(https://portal.gdc.cancer.gov/). A total of 516 LUAD 

patients and 59 paraneoplastic samples from the TCGA 

https://www.genecards.org/
https://portal.gdc.cancer.gov/
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database were involved in this study. The microarray 

data sets (GSE41271, GSE31210, GSE32863, 

GSE43458, GSE30219, and GSE27262) were extracted 

from Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/), downloaded in 

MINiML format, and used the removeBatchEffect 

function of the limma package in the R software to 

remove batch effects. 

 

Acquisition of CRFGs in LUAD and related gene 

enrichment analysis 

 

The genes related to ferroptosis and cuproptosis were 

imported into the STRING database (https://string-

db.org) to construct protein-protein interaction (PPI) 

networks, from which CRFGs were obtained, and then 

the PPI networks were visualized in Cytoscape_v3.8.2. 

The “Limma” package in R software was used to 

explore differentially expressed genes (DEGs) in LUAD 

tissues versus normal tissues. Fold change and corrected 

p-values were used to plot the Volcano plot heatmap. 

Using the “pheatmap” package to draw heat maps. 

Subsequently, the common genes of CRFGs and 

LUAD-DEGs were acquired using Draw Venn Diagram 

(http://bioinformatics.psb.ugent.be/webtools/Venn/) for 

further analysis. To explore the potential biological 

functions and pathways of action of CRFGs, GO and 

KEGG enrichment analysis of common genes was 

performed using Metascape (https://metascape.org), 

setting p-values <0.05. 

 

Obtaining and analyzing potential prognostic genes 

in CRFGs 

 

The common genes were subjected to univariate Cox 

regression analysis, and the P values, hazard ratio (HR), 

and 95% confidence interval (CI) values of each gene 

were displayed by the “forestplot” package in R 

software, and statistically significant (p-values <0.05) 

genes were selected as potential independent prognostic 

factors for further analysis. The gene expression 

differences of independent prognostic genes in LUAD 

tissues and normal tissues were then statistically 

analyzed using the “ggplot2” package in R software  

and tested by the Wilcox-tests. Mutation information  

of these potential prognostic genes in LUAD was 

obtained through the GSCALite online website 

(http://bioinfo.life.hust.edu.cn/web/GSCALite/), and the 

top ten genes with the greatest degree of mutation were 

visualized.  

 

Construction and validation of a prognostic 

signature related to CRFGs 

 

The above potential independent prognostic genes were 

used to construct a CRFGs prognostic signature by 

LASSO Cox regression analysis using the “survival” 

and “glmnet” packages in R software. In the prognostic 

signature, a risk score is used for presentation. The risk 

score formula is shown here: risk score = (coefficient 

mRNA1 * expression of mRNA1) + (coefficient 

mRNA2 * expression of mRNA2) +… + (coefficient 

mRNAn * expression mRNAn). Then, all samples were 

divided into high-risk and low-risk groups using the 

median of the risk scores and the corresponding survival 

curves were plotted using Kaplan-Meier analysis and 

tested by the Log-rank method. To predict the accuracy 

of prognostic signature for LUAD patients, the time-

related ROC curve should be completed. Meanwhile, 

two expression microarray datasets, GSE41271 and 

GSE31210, selected from the GEO database, were used 

for external validation of the prognostic signature to 

discern the accuracy of the risk score. 

 

Finally, to further confirm the stability of our risk 

score models, we constructed DCA using the 

“ggDCA” package in R software. The model 

established in this study was compared with the 

previous LUAD-related models for ferroptosis [33] 

and cuproptosis [65]. 

 

Establishment of nomogram 

 

To evaluate the prognostic value of the model, the 

prognostic signature developed in this experiment and 

the clinical factors related to LUAD such as age, 

gender, pTNM-stage, and smoking, were subjected to 

univariate Cox regression and multivariate Cox 

regression analyses, and forest plots were constructed 

using the “forestplot” package in R software. Finally, 

based on the results of the multivariate Cox proportional 

risk analysis, the nomogram was constructed using the 

“rms” package to predict the overall survival (OS) of 

LUAD patients at 1, 3, and 5 years. The “rmda” R 

package was then used to build calibration curves and to 

evaluate the degree of consistency between the OS 

predicted rate and the actual OS rate by our established 

nomogram.  

 

Correlation immunoassay of potential prognostic 

biomarkers 

 

The EPIC algorithm in the R “immunedeconv” 

package was used to score the degree of immune cell 

infiltration in LUAD, and the results were visualized 

using the “ggplot2” and “pheatmap” packages in the R 

software. A multivariate Cox regression analysis was 

performed on the above prognostic risk score models 

for genes and relevant clinical factors, using the 
“forestplot” package to construct a forest plot to 

identify potential prognostic biomarkers, and then  

the R package “pheatmap” was used to show the 

https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/
https://string-db.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://metascape.org/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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correlation of potential prognostic biomarkers with 

immune scores and their expression correlation with 

common immune checkpoints.  

 
Survival analysis of related genes, MSI and 

immunohistochemistry 

 
OS and progression-free survival (PFS) curves of 

potential prognostic biomarkers in high and low 

expression groups were plotted using the Kaplan-

Meier approach and tested by Log-rank. The 

correlation of potential prognostic biomarker 

expression with MSI scores was assessed by the 

“ggstatsplot” package. After combining univariate Cox 

regression analysis and multivariate Cox regression 

analysis including relevant clinical factors, we also 

combined OS and PFS curves with MSI scores as a 

way to further screen the core gene closely associated 

with LUAD progression. The “maftools” package was 

used to visualize the distribution of mutations in core 

genes in LUAD. Also, we used the Human Protein 

Atlas (http://www.proteinatlas.org) to show the 

pathological profiles of the immunohistochemistry of 

the core gene. 

 
lncRNA-related regulatory axis acquisition and 

external validation 

 
The upstream miRNA information of the core gene  

was collected from four databases, mirDIP 

(ophid.utoronto.ca/mirDIP), miRDB (https://www. 

mirdb.org), miRWalk (mirwalk.umm.uni-heidelberg.de) 

and StarBase (https://ngdc.cncb.ac.cn/databasecommons/ 

database/id/169), after which the critical miRNA of the 

gene was obtained using Venny 2.1.0 

(bioinfogp.cnb.csic.es/tools/venny). The “ggplot2” 

package was used to statistically analyze the differences 

in the expression of these core miRNAs in LUAD 

tissues and normal tissues and tested by the Wilcox-

tests. After that, the upstream lncRNAs of the core 

miRNA were predicted using the LncBase database 

(https://diana.e-ce.uth.gr/lncbasev3). The Kaplan-Meier 

analysis method was used to plot survival curves 

regarding the high and low expression of lncRNAs, 

which were then tested by Log-rank with a screening 

condition of p-value <0.01. The data of LUAD were 

obtained from the TCGA database, and then the 

“ggplot2” package was used to statistically analyze the 

screened upstream lncRNAs and compare their 

expression differences in LUAD tissues and normal 

tissues. On balance, we chose lncRNAs with a certain 

research base and analytical results in the database to 

construct the regulatory axis, and to serve as the target 

for subsequent analysis. Finally, for the mechanism of 

action of the selected lncRNA-related regulatory axis 

we chose the external validation sets (GSE43458, 

GSE32863, GSE30219 and GSE27262) for validation 

and tested them using the Wilcox-tests. 
 

Statistical analysis 
 

The above statistical analysis was performed using R 

software (version 4.0.3) and the associated database. 

The p-value < 0.05 was considered statistically 

significant in this study. 

 
Data availability statements 
 

The original contributions presented in the study are 

included in the article or Supplementary Material. Further 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 

Supplementary Figure 1. ROC curves on LUAD prognosis for (A) LINC00324, (B) LINC00240, (C) LINC00973, and (D) LINC02073. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 3. 

 

Supplementary Table 1. The gene for ferroptosis in GeneCards. 

 

Supplementary Table 2. Genes differentially expressed in LUAD samples versus normal samples. 

 

Supplementary Table 3. Potential miRNA targets of TFAP2A in four databases (mirDIP, miRDB, miRWalk and 
StarBase). 

 


