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INTRODUCTION 
 

Glioma is a frequent tumor that is the leading reason of 

cancer associated deaths and prone to chemo-resistance 

as one of the primary causes of treatment outcomes 

[1, 2]. Pyroptosis, an inflammatory cell death pathway, 

not only enhances the sensitivity of chemotherapy to 

tumors, but also efficiently induces anti-tumor immune 

activity in the body [3, 4]. Notably, pyroptosis may be a 
powerful weapon tool in the treatment of many chemo-

resistant tumors, especially glioma. Due to the absence 

of efficient drugs for clinical treatment of gliomas, novel 
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ABSTRACT 
 

Background: Pyroptosis, also known as inflammatory necrosis, is a programmed cell death that manifests itself 
as a continuous swelling of cells until the cell membrane breaks, leading to the liberation of cellular contents, 
which triggers an intense inflammatory response. Pyroptosis might be a panacea for a variety of cancers, which 
include immunotherapy and chemotherapy-insensitive tumors such as glioma. Several findings have observed 
that long non-coding RNAs (lncRNAs) modulate the bio-behavior of tumor cells by binding to RNA, DNA and 
protein. Nevertheless, there are few studies reporting the effect of lncRNAs in pyroptosis processes in glioma. 
Methods: The principal goal of this study was to identify pyroptosis-related lncRNAs (PRLs) utilizing 
bioinformatic algorithm and to apply PCR techniques for validation in human glioma tissues. The second goal 
was to establish a prognostic model for predicting the overall survival patients with glioma. Predict algorithm 
was used to construct prognosis model with good diagnostic precision for potential clinical translation. 
Results: Noticeably, molecular subtypes categorized by the PRLs were not distinct from any previously 
published subtypes of glioma. The immune and mutation landscapes were obviously different from previous 
subtypes of glioma. Analysis of the sensitivity (IC50) of patients to 30 chemotherapeutic agents identified 22 
agents as potential therapeutic agents for patients with low riskscores. 
Conclusions: We established an exact prognostic model according to the expression profile of PRLs, which may 
facilitate the assessment of patient prognosis and treatment patterns and could be further applied to clinical. 
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druggable targets are strongly needed. Therefore, 

pyroptosis is considered to be a “key player” in glioma, 

and is an effective tumor-killing process that can be 

targeted. Nevertheless, the regulatory mechanism and 

clinical significance of pyroptosis in tumors such as 

glioma are still confusing and need further investigation. 

 

Previous researches have emphasized the effect of 

protein-coding genes in pyroptosis and confirmed a 

number of genes that affect pyroptosis sensitivity, 

including Gasdermins and Casp genes [2, 5]. 

Nevertheless, there are few reports on whether and how 

non-coding RNA regulate pyroptosis [6, 7]. Long non-

coding RNAs (lncRNAs) are non-coding RNAs of more 

than 200 nucleotides [8]. Abundant studies have 

revealed that lncRNAs regulate the bio-behavior of 

glioma [9–11]. Several studies have demonstrated that 

lncRNAs modulate pyroptosis through a competitive 

endogenous RNA mechanism, acting as sponges on 

particular micro RNAs and attenuating inhibition of 

targeted mRNAs [7, 12, 13]. Additional findings have 

revealed that lncRNAs could also influence pyroptosis 

by directly binding to proteins or suppressing the 

translational process, suggesting the diverse effects of 

lncRNAs in the regulation of pyroptosis. 
 

Thus, the validation of pyroptosis associated lncRNAs 

(PRLs) is essential to unravel the underlying mechanism 

of gliomagenesis and identify new therapeutic targets. 

In this study, PRLs were identified and a prognostic 

model according to PRLs matrix was constructed, 

which possessed high-level diagnostic precision and 

was associated with immune microenvironment and the 

mutation landscape. 

 

RESULTS 
 

Identification of prognostically significant PRLs in 

glioma patient samples 

 

Graphical abstract showed the overview of this study. 

We evaluated 14391 lncRNAs by performing the RNA-

seq of the glioma patient samples from the Cancer 

Genome Atlas (TCGA). We also took 11 pyroptosis 

related genes from the previous literatures. Then we 

identified 46 PRLs by carrying out Pearson correlation 

between the lncRNAs and the PRLs applying |R|>0.7 

and P < 0.05 as the selective standards (Figure 1A, 

Supplementary Table 1). These were AC002553.2, 

AC004817.3, AC004847.1, AC005785.1, AC006369.1, 

AC007038.1, AC015813.1, AC015961.2, AC027682.4, 

AC040162.3, AC069281.2, AC073869.1, AC087672.2, 

AC087741.1, AC092809.4, AC109460.3, AC116049.1, 

AC135048.4, AC145098.1, AL008729.1, AL031705.1, 

AL109811.1, AL138831.3, AL355987.4, AL450384.2, 

AL512770.1, AP002490.1, ARHGAP27P1-BPTFP1-

KPNA2P3 (ABK), CARD8-AS1, CCDC18-AS1, 

CYTOR, FAM13A-AS1, GUSBP11, HCP5, LINC01146, 

LINC01355, LINC01426, LINC01504, LINC01506, 

PCED1B-AS1, PDXDC2P-NPIPB14P, PSMB8-AS1, 

RFPL3S, SLC25A25-AS1, SSBP3-AS1, USP30-AS1. 

Moreover, we examined the correlation between the 

expression patterns of these regulators and molecular 

features. All PRLs were clearly distinguished in tumor 

grading (Figure 1B). Of the 46 PRLs, 44 revealed 

significant differences in groups of molecular subtypes, 

while AC005785.1, and PDXDC2P-NPIPB14P did not 

(Figure 1C). Of the 46 PRLs, 38 showed significant 

differences between tumor and normal tissues, while 

AC006369.1, AC007038.1, AC116049.1, AL008729.1, 

AL031705.1, AL138831.3, LINC01506 and SSBP3-AS1 

did not (Figure 1D). These findings also correspond to 

the poor prognosis of cluster2 as shown in Figure 2E. 

Taken together, these results suggested that cross-talk 

among the PRLs plays an important role in the 

development of glioma. 

 

Identification of PRLs pattern in glioma 

 

To conduct further studies on the expression features of 

PRLs in glioma, we classified glioma patients using a 

consensus clustering algorithm the expression profiles 

of 46 PRLs. We chose k = 2 for stable clustering of 

PRLs according to their cumulative distribution 

functions. Subsequently, we applied two modulation 

patterns by using the unsupervised clustering method, 

containing 484 cases in PRLs cluster 1 and 214 cases in 

PRLs cluster 2 (Figure 2A, 2B). Cluster 1 has a higher 

survival advantage than cluster 2 (Figure 2E). We 

further proceeded heatmap and quantitative analysis of 

the expression values of the 46 PRLs. Among the 46 

PRLs, 14 PRLs in cluster 2 were significantly higher 

than in cluster 1, and the remaining 32 PRLs which 

were the reverse (Figure 2C, 2D, Supplementary 

Table 2). Then, we calculated the distribution of grades, 

IDH and 1p19q in the two clustering groups 

respectively, and found that G4, IDHwt, and non-codel 

accounted for a high proportion of cluster 2 (Figure 3A–

3C). The strong relationship between our PRLs 

subgroups and clinical features further demonstrates the 

precision and robustness of our identification of PRLs 

patterns in glioma. 

 

The immune landscape of PRLs groups 

 

The interplay between PRLs groups and the immune 

system relies on a complicated cellular cross-talk 

involving PRLs and immune cells [14]. Therefore, we 

assessed the immune status of gliomas by ssGSEA base 
on the infiltration of immune cells in the tumor 

organization, and classified glioma samples into two 

subgroups by consensual clustering. The results showed 
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that we differentiated immune cell infiltration between 

the two cluster groups and there was significant 

enrichment of immune cell infiltration observed in 

cluster2 group, the risk score gradually increased with 

tumor grades (Figure 2D, Supplementary Figures 1B 

and 3B). Immune checkpoints (ICPs) are crucial for 

cancer immunotherapy, and a number of ICPs agonists 

and antagonists being evaluated in clinical oncology 

[15–17], we further performed their expression profile 

in distinct subtypes. Except for TNFRSF25, TNFSF18, 

 

 
 

Figure 1. Construction and validation of the 46 pyroptosis-related lncRNA (PRLs) signature in Glioma patients. (A) 

Correlations between PRLs and pyroptosis regulator for glioma (Pearson test). (B) The expression of 46 PRLs among grades in glioma. (C) 
The expression of 46 PRLs between molecular subtypes. (D) The expression of 46 PRLs between normal tissues and glioma tissues. *p < 
0.05, **p < 0.01, ***p < 0.001. 
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TNFSF9, and VSIR, all the ICPs were overexpressed in 

the TCGA cohort high immunity group (Supplementary 

Figure 1A). Thus, patients in cluster2 may have a 

stronger immune response to tumorigenesis and tumor 

progression and therefore may benefit more from 

immune checkpoint inhibitors therapy than patients in 

cluster1. Then, we quantitatively analyzed the 

ESTIMATEscores of the two clusters and found that the 

Immunescore and Stromalscore of cluster 2 were 

significantly higher than that of cluster 1, and the tumor 

 

 

 
Figure 2. Subgroups of glioma related by PRLs. (A) The consensus score matrix of all samples in TCGA cohorts at k = 2. (B) Consensus 

clustering cumulative distribution function (CDF) for k = 2–6 in TCGA cohort. (C) The expression of 46 PRLs between two cluster groups. 
(D) The heatmap for 46 PRLs and 22 kinds of immune cells. (E) KM curves for the two cluster groups (Log-rank test, p = 0.0001). 
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purity was just the contrary (Supplementary Figure 1C). 

The above results confirm the high immune status of 

cluster2 and the low immune status of cluster1. 

 

The mutation landscape of PRLs groups 

 

Related papers indicate that immunity state may also 

contact with mutation [18]. Greater tumor mutational 

burden (TMB) and somatic mutation rates are linked to 

stronger cancer immunity [19]. We performed variation 

rate analysis in both groups in order to investigate 

whether immune infiltration status was associated with 

mutation rate. Among the two subtypes, cluster1 had the 

higher mutation rate (97.28%) than that in cluster2 

(87.63%) (Figure 4A, 4B). The IDH1 mutation was 

higher in cluster1 (77%) than cluster2 (18%), IDH1 

 

 
 

Figure 3. The proportion of patients with grades, IDH1 mutation type, and 1p19q codel status in the high or low-risk groups 
in the TCGA cohort. (A) The proportion of patients with grades mutation type in the high or low-risk groups. (B) The proportion of 
patients with IDH1 mutation type in the high or low-risk groups. (C) The proportion of patients with 1p19q codel status in the high or low-
risk groups. (D) The expression value of 8 lncRNA in glioma tissues and normal brain tissues. 
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mutation dramatically indicated the outcome of glioma 

patients, so the distinction in IDH1 mutation between 

two cluster subtypes may be one of the reasons that 

contribute to the survival of patients [20]. This finding 

is in agreement with the results of the survival analysis 

of the two clusters in Figure 2E. In addition, we 

explored the landscape of co-occurrence using the top 

first 25 mutation genes with the comet algorithm. 

Twelve pairs of cases (IDH1-IDH2, IDH1-FLG, IDH1-

PTEN, IDH1-EGFR, IDH1-NF1, PIK3CA-TP53, 

FUBP1-TP53, FUBP1-ATRX, CIC-TP53, CIC-ATRX, 

IDH1-EGFR, IDH1-PTEN) compared with 

 

 
 

Figure 4. The mutation landscape of two cluster groups. (A, B) Waterfall diagram displays the mutation landscape of the top 20 

most commonly mutation genes. (C) The heatmap analyzes the mutual co-occurrence and exclusion mutations of the top 25 commonly 
mutation genes. (D) The forest plot shows the top 10 most distinctively mutation genes between the two groups. (E) Boxplots displaying 
the comparisons of mutation frequencies of each mutation type classified by effects, SNV, DEL, INS, and SNP. 
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prevalent mutually exclusive mutations showed 

mutually exclusive mutations, indicating that they may 

have superfluous impact in the common pathway and a 

selected advantage of retaining the mutation copy 

between them (Figure 4C). After checking trans-

criptional changes in the two subgroups mentioned 

above, the presence of genomic level distinction 

between the two subgroups was further investigated. 

Somatic mutations, comprising single nucleotide 

polymorphisms (SNP), single nucleotide variants, 

insertions, and deletions, were computed and shown 

applying the “maftools” algorithm [21]. The SNPs and 

Total in cluster2 group were also exceeded by those in 

cluster1 group, while the major portion of genomic 

variants were missense mutations (60%) in the two 

subgroups. As for SNVs, all samples were examined, 

and C>T was the prevalent type in both groups. For 

most of the types of SNV (C>A, C>T, T>A, T>G), the 

mutation number was clearly higher in the cluster2 

group than in cluster1 group (Figure 4E). Moreover, the 

samples in the cluster1 subgroup have a remarkably 

higher level of variant allele fractions (VAFs) than 

those in the cluster2 subgroup (Supplementary Figure 

2B), which had been thought to be linked to cancer 

progression and worse results, supporting the discovery 

of relatively superior tumor purity and inferior 

heterogeneity in the cluster1 samples. This finding 

echoes the answer we got in Figure 4C. The proportion 

between transversion and transition in all SNVs were 

roughly 3:1 and maintained stabilized in both subgroups 

(Supplementary Figure 2A). More interesting is that 

several genes had distinct mutation rates between the 

two subgroups. In terms of outcomes, the top 10 genes 

were shown in Figure 4D. Furthermore, IDH1 is another 

classic example demonstrating the distinct mutation 

sites between two subgroups (Supplementary Figure 

2C) and the plausible chain reaction of the variance in 

prognostic effect. Eventually, we evaluated driver gene 

for the two subtypes, and the findings indicated that the 

dominant driver genes of cluster1 subgroup were IDH1, 

IDH2, and KRT15, meanwhile, the driver gene of 

cluster2 subgroup was IDH1 (Supplementary Figure 

2D). With removing germline CNV, remarkable gains 

and losses were observed for each cohort with a 

threshold FDR < 0.05. Through comparison, we 

detected more regional alterations in the cluster1 

subgroup (Figure 5A, 5B, Supplementary Table 3). By 

computing the frequency of each CNV in all patients, 

we discovered that 7q gain and 10p loss were the most 

common CNVs in cluster1 subgroup; whereas 1p loss, 

7q gain and 19p loss were also among the most 

common changes occurred in cluster2 subgroup (Figure 

5C, 5D, Supplementary Table 4). We found significant 
differences between two subgroups in most mutation 

features, further demonstrating the accuracy of grouping 

by PRLs in predicting mutational features. 

Identification hub PRLs in glioma and construction 

of pyroptosis related LncRNA prognostic model 

 

To further obtain more accurate PRLs, we conducted 

univariate and multi-variate cox regressions from 46 

PRLs and yielded 10 hub PRLs (Figure 6D). The 10 

hub PRLs were AC004817.3 (lnc-MAP3K9-10), 

AC007038.1, AC040162.3, AC145098.1 (PRR7-AS1), 

AL450384.2 (NSUN6), CYTOR, FAM13A-AS1, HCP5, 

PSMB8-AS1, USP30-AS1. To verify the reliability of 

these 10 hub PRLs for glioma patients, we validated 

these 10 PRLs in human glioma samples. AC007038.1 

and AC040162.3 were not found with corresponding 

sequences due to their relatively short discovery time, 

and we performed PCR analysis on the remaining 8 

lncRNAs, which showed consistent expression with 

the TCGA database (Figure 3D). Seeing that this has 

the stability of lncRNA expression, it lays the 

foundation for our further analysis. We constructed 

pyroptosis related lncRNA prognostic model (PRLPM) 

by lasso regression for 10 hub PRLs (Figure 6A, 6B). 

Moreover, we built the riskscore system according to 

PRLPM to classify patients into high and low risk 

groups based on PRLPM (Supplementary Table 5). 

Kaplan Meier survival analyses revealed that overall 

survival (OS) was worse in the high-risk cohort in 

comparison to the low-risk cohort (Figure 6E), the 

same result was obtained in Chinese Glioma Genome 

Atlas (CGGA) cohort (Supplementary Figure 3F). The 

survival preference in the low-risk group was superior 

to the high-risk group, whatever treatment was used 

(Figure 6F, 6G). Meanwhile, the timeROC showed the 

mean AUC values of prognosis predictions on TCGA 

cohort reached 0.86, 0.87, 0.82, 0.82 and 0.75 (Figure 

6H), the AUC values on CGGA were 0.7, 0.7, 0.69, 

0.71, and 0.79 (Supplementary Figure 3E). 

Distribution of PRLPM riskscore and OS also verified 

the survival analyses, the findings suggested that the 

expression of 10 hub PRLs was remarkably positively 

associated with PRLPM riskscore and OS (Figure 6C). 

From the above results, we found that PRPLPM has 

high accuracy in predicting the risk profile and 

prognosis of glioma patients. 

 

The relationship between riskscore and clinical traits 

 

We ordered the samples on the basis of their riskscore 

(rank low to high riskscore) and examined whether any 

demographic/molecular/clinical characteristics were 

associated with PRLPM in two public cohorts 

(Supplementary Figures 4A and 3A, Supplementary 

Table 6). We further quantitatively analyzed the 

relevance between risk scores and molecular/clinical 
traits. In the TCGA cohort, the results revealed that the 

PRLPM riskscore gradually increased with increasing 

grade, with lower PRLPM riskscore in patients with 
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IDH1mut than that in IDH1wt patients and significantly 

higher PRLPM riskscore in 1p19q non-codel patients 

than that in 1p19q codel patients (Supplementary Figure 

4B–4D). In the CGGA, the findings revealed that the 

PRLPM riskscore gradually increased with increasing 

grade, with lower PRLPM riskscore in patients with 

IDH1mut than that in IDH1wt patients and significantly 

higher PRLPM riskscore in recurrent and secondary 

patients than that in primary patients (Supplementary 

Figure 3B–3D). The proportion of tumor grading within 

the two subgroups showed that G4 and G3 were only 

found in the high-risk group. The proportion of 

IDH1mut in both subgroups revealed that IDH1mut was 

in predominant in the low-risk group. The rate of 1p19q 

 

 
 

Figure 5. Comprehensive analyses of copy number variation between two cluster groups. (A, B) Detection and comparison of 

the percentage of significant scores between the two groups. (C, D) Detection and comparison of the percentage of significant gains and 
losses between the two groups. 
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codel was considerably higher in the low-risk than in 

the high-risk group (Supplementary Figure 4E–4G). 

These results demonstrate that PRLPM riskscores can 

respond to the demographic/molecular/clinical feature 

of glioma. 

The relationship between riskscore and tumor 

stemness indices 

 

Stems differed between PRLPM groups; specifically, 

the dedifferentiated phenotype was significant in the 

 

 
 

Figure 6. Predicting patient prognosis in the TCGA cohort based on PRLPM. (A) Regression coefficient profiles of identified 

pyroptosis immune regulators in the TCGA cohort. (B) Ten-time cross-validation for tuning parameter selection in the TCGA cohort. (C) 
Patients were divided into high and low-risk subgroups according to median level of PRLPM riskscore in train set; heatmap of 9 PRLs. (D) 
multivariate cox regression analyses of the association between PRLs and OS of patients in the TCGA cohort. (E) KM curve plot of OS for 
patients in high and low-risk subgroups. (F, G) Survival analyses for subgroup patients stratified by both PRLPM riskscore and treatment 
with radiotherapy (F) and pharmacological chemotherapy (G) in the TCGA cohort. (H) The timeROC curve to evaluate the prognostic value 
of PRLPM riskscore in TCGA cohort. 
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high-risk group, while the differentiated phenotype 

was significant in the low risk group (Supplementary 

Figure 5A, 5B). Then, we calculated the TMB and 

found that the TMB in the high-risk group was 

obviously higher than that in the low-risk group. 

Moreover, mRNAsi, EREG-mDNAsi, mDNAsi, 

EREG-mRNAsi, ENHsi, TMB, and DMPsi were 

actively and significantly related to the PRLPM 

riskscore, and the relevance were significant at 0.45, 

0.49, 0.5, 0.018, 0.5, 0.45, 0.39, respectively 

(Supplementary Figures 5C–5H, 6C, Supplementary 

Table 7). Considering that the PRLs characterized an 

immune activation phenotype of glioma, we applied 

the algorithms to evaluate the effectiveness of the 

PRLs signatures in forecasting ICB responsiveness in 

glioma and used SubMap to compare the prediction 

results [22, 23]. Consequently, our PRLs had 

comparable performance in predicting the glioma 

response to anti-PD1 and anti-CTLA4 treatments 

(Supplementary Figure 6D), indicating that 

stratification based on PRLs has the possible to 

recognize ICB reactors. In conclusion, there were 

distinct differences in the extent of tumor 

differentiation, and TMB, between the PRLPM groups. 

 

Comparison of differentially expressed genes and 

sensitivity to chemotherapeutic agents in high- and 

low-risk groups 

 

We examined the differential analysis for the both 

groups. Enrichment analysis was performed to forecast 

the potential functions of differentially expressed genes 

(DEGs) between high and low-risk groups, and as 

expected, the DEGs were concentrated in carcinogenic 

and immune pathways, for example neutrophil 

degranulation, neutrophil activation involved in immune 

response, wnt signaling pathway, p53 signaling 

pathway, Apoptosis, HALLMARK_APOPTOSIS, 

PI3K_AKT_MTOR SIGNALING, HALLMARK 

COMPLEMENT (Supplementary Figure 7A–7D). 

 

Different PRLPM subgroups should guide clinical 

therapy. Therefore, we made a comparison of the 

sensitivity of 30 anticancer drugs between the both 

groups to identify potential glioma treatment 

approaches. A total of 22 chemotherapy drugs had 

remarkably distinct IC50 estimates between two groups 

(Supplementary Figure 6A). Patients in the lowrisk 

group may be sensitive to these drugs. In this context, 

these agents have the potential to be used in the future 

for the treatment of low-risk PRLPM. Moreover, we 

find that the TMB in high-risk group was obviously 

higher than low-risk group (Supplementary Figure 6B). 

This result indicated high risk had better therapeutic 

effect than low risk in immunotherapy. 

The efficacy of the PRLPM riskcore across tumor 

types 

 

Considering the strong correlation between PRLPM and 

immunity described above, we further examined the 

validity of the PRLPM scoring system in different tumor 

types. The percentage of 22 immune cells was 

characterized as immune infiltration. We computed the 

relevance between the 22 immune cells percentage and 

the PRLPM riskcores and revealed the distinct trends in 

the relevance for pan-cancer, except PCPG and READ. 

The percentage of T cells CD8, T cells CD4 memory 

active, T cells CD4 memory resting, Macrophages M1, B 

cells naive were relevant to the PRLPM riskcores of most 

cancer types. Interestingly, these cells belonged to the 

antitumor type, to some extent, suggesting that the PRLs 

promote tumor immunity (Figure 7A). Furthermore, we 

identified a correlation between PRLPM riskscores and 

stem cell indices for all tumors except for ACC, KICH, 

SKCM, and UCS (Figure 7B). We found the significant 

relationship between the ESTIMATEscore and the 

PRLPM riskcores in addition to PCPG, and READ 

(Figure 7C). Such cancers with high mDNAsi were 

expected to be hypersensitive to immune checkpoint 

treatment. We thoroughly assessed the correlation of the 

PRLPM scoring system and the pan-cancer, and deeply 

explored the outstanding features of the PRLPM 

riskscore in pan-cancer, and laid the basis for the wide 

utilization of PRLPM riskscore in tumor. 

 

DISCUSSION 
 

In our study, we first identified 10 PRLs that notably 

associated with OS based on the univariate cox 

regression of the expression of PRLs in the glioma 

samples from TCGA. Pyroptosis may be the panacea 

for the therapy of many cancers in the future [4]. The 

induction of pyroptosis could notably inhibit cancer 

proliferation and patient aggravation, even in 

chemoresistant cases, since apoptosis rather than 

pyroptosis is the most frequent mechanism of chemo-

therapeutic drugs insensitivity. Nevertheless, the 

regulatory mechanism of pyroptosis remains largely 

unclear, especially in the area of non-coding RNAs, 

particularly lncRNAs. Jirong Wang et al. revealed that 

the AL450384.2 not only is the immune-related lncRNA 

and can be used as a prognostic marker for bladder 

cancer [24]. Brian J Reon et al. found CYTOR to be a 

potential biomarker and therapeutic target in 

glioblastoma and other tumor types, combining its 

prognostic potential and ability to promote invasion 

[25]. This group recently reported that FAM13A-AS1 

also was an autophagy-related lncRNA and accurately 

predicted the prognosis of BCLA patients [26]. HCP5 

facilitates cell proliferation and restrains apoptosis via 

miR-27a-3p/IGF-1 axis in human granulosa-like tumor 
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cell line KGN [27]. PSMB8-AS1 is involved in 

pancreatic cancer progression through modulating miR-

382-3p/STAT1/PD-L1 axis [28]. USP30-AS1 is involved 

in mitochondrial quality control in glioblastoma cells 

[29]. All these lncRNAs were significantly associated 

with tumor proliferation, and FAM13A-AS1 was not 

the only PRLs but also autophagy-related lncRNAs, 

further indicating the important role of our screened 

lncRNAs in the development of glioma. Hence, 

systematic selection for potential PRLs is imperative to 

accelerate the development of this field. 

 

The molecular mechanism of pyroptosis has triggered a 

strong inflammatory response and was considered as an 

ICD form in some cases and several studies established 

clinical prognostic models that use transcriptomic 

expression levels of pyroptosis regulators to predict 

survival outcomes of cancer patients. Nevertheless, we 

were the first to identify novel PRLs and construct a 

clinical prognostic model in glioma. We built 

prognostic models according to the expression profile of 

the 10 PRLs. The AUCs of the PRLPM ranged from 

0.75 to 0.87 and consistent with the 1- to 10-year 

follow-up, which is hopeful for clinical translation. 

 

Crosstalk between pyroptosis and immune micro-

environment remodeling has been shown in previous 

studies [30]. It is noteworthy that we also uncovered a 

relevance between two cluster groups and the immune 

microenvironment and mutation landscape, which may 

instruct distinct therapeutic approaches in the both 

groups. For instance, more NK cells and CD8+ 

infiltrated the cluster2 group, but CTLA4 expression 

was also increased in this cluster group and may inhibit 

the antitumor capabilities of these cytotoxic cells. The 

PRLPM gained by the subgraph algorithm was better in 

 

 
 

Figure 7. Performance of PIPM riskscore across tumor types. (A) Association between the PIPM riskscore and immune cells for each 

cancer type. (B) Association between the PIPM riskscore and stemness indices for each cancer type. (C) Correlations between the PIPM 
riskscore and ESTIMATEscore for each cancer type. 
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predicting immune checkpoint treatment. Hence, immune 

checkpoint inhibitors that target CTLA4, such as 

tremelimumab and ipilimumab, may be the best 

therapeutic approach for these patients. We observed that 

there are several chemotherapy agents with better 

sensitivity to high and low-risk groups, respectively, so 

that appropriate chemotherapy agents can be chosen based 

on distinct risk groups. The PRLPM riskscore system, 

which reflects individual pyroptosis modification patterns, 

reliably stratifies the stemness regulatory patterns with 

survival differences, as well as susceptibility to 

immunotherapy and radio-chemotherapy. 

 

The performance of this scoring strategy applied to other 

cancer types also showed survival advantage of PRLPM 

riskscore and the correlation between PRLPM riskscores 

and stemness and immunity. In a sense, the PRLPM 

riskscore also reflects the stemness and immunity of 

cancers. The relevance between immune cells, stemness 

and PRLPM riskscore may suggest that both phenotypes 

are influenced by the PRLs in most tumors, leading to an 

uncontrolled immune disease and dedifferentiation 

defined by loss of structure of origin [31]. 

 

The current study has several strengths. First, we are the 

first team to construct an PRLs prognosis model in 

glioma. This model provided high diagnostic accuracy 

and can be applied for clinical translation. Second, the 

PRLPM may also guide clinicians to identify 

appropriate drugs for the therapy of glioma by 

comparing the sensitivity of patients in high and low-

risk populations to 30 common anti-cancer drugs. 

Nevertheless, the current algorithm is mainly based on 

bioinformatics analysis and further preclinical studies 

are needed to validate. 

 

Certainly, the current research has its limitations. Many 

previous bioinformatic literatures also examined 

lncRNA-based features in an individual TCGA and 

obtained considerable attention [32–34]. We selected 

PRLs according to the coefficient of coexpression 

relevance. Nevertheless, a more straightforward 

selection strategy is to compare the pool of altered 

lncRNAs in glioma samples with and without 

pyroptosis induction. Unfortunately, there are no 

clinically approved targeted agents that specifically 

cause pyroptosis, which hampers the viability of this 

selection strategy. 

 

CONCLUSIONS 
 

In summary, the current research was the first to 

recognize the PRLs pool and build an PRLPM that 

displayed high diagnostic precision in forecasting OS in 

glioma patients. It is anticipated that future studies will 

explore how lncRNA regulates pyroptosis and the 

potential regulatory mechanisms that influence the 

efficacy of focal death inducer therapy. We hope that 

the usefulness of PRLPM can also be confirmed by 

other clinical studies in the future. 

 

METHODS 
 

Data extraction 

 

The RNA_seq and clinical data of 698 glioma samples 

were obtained from TCGA, clinical data of 1018 glioma 

samples were downloaded from CGGA. Mutation rate 

and CNV frequency were gathered from cBioPortal. 

Clinical data of glioma patients, including age, sex, 

grades, OS and survival status was also collected for 

subsequent analyses. 

 

Recognizing pyroptosis regulators 

 

Access to relevant literature, we collected 11 genes 

(CASP1, CASP3, CASP4, CASP5, CASP8, GSDMB, 

GSDMC, GSDMD, GSDME, GZMA, GZMB), which are 

closely related to pyroptosis and serves as pyroptosis 

genes [35–37]. 

 

Consensus clustering 

 

Consensual clustering utilizes the k-means technique to 

determine specific pyroptosis patterns associated with 

the expression of pyroptosis regulators. Both stability 

and number were decided by the consensus clustering 

algorithm applying the “ConsensusClusterPlus” 

package [38]. 

 

Immune infiltration 

 

The relative infiltration of 28 immune cell types in 

TME was described using ssGSEA. Signature gene 

panels were obtained for each immune cell type from a 

recent paper [39]. 

 

Analyses of mutation subtypes 

 

Somatic mutation and CNV profiles were downloaded 

from the TCGA data portal. Analysis of somatic 

mutation data sorted by mutation annotation format was 

performed using the R package “maftools” [40, 41]. 

 

PRLs prognostic model predicts effective response to 

chemoradiotherapy, the analyses of relationship 

between clinical characteristics, tumor stemness 

indices, tumor mutation burden, and prognostic 

model riskscore 

 

The prognostic model was developed by lasso regression 

for PRLs, and we analyzed the survival, ROC, risk 
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factor, stemness, the response to chemoradiotherapy. 

The Kruskal-Wallis test was used to evaluate the 

difference between TMB, tumor stemness index and the 

prognostic model generated by lasso algorithm, and 

Pearson correlation was used to evaluate the correlation 

between tumor stemness index, TMB and prognostic 

model riskscore. Furthermore, the dedication to OS were 

computed by Kaplan-Meier algorithm. We also 

continued to analyze the association of prognostic model 

riskscores with clinical characteristics separately. 

 

Significance of the pyroptosis related lncRNA 

prognostic model in drug sensitivity 

 

To estimate PRLPM in the clinical treatment of glioma, 

we used the method developed by Geeleher et al. [42] 

and the corresponding R package ‘prophetic’ to 

compute TCGA items for the IC50 of widely applied 

chemotherapy agents in the glioma dataset [43, 44]. The 

AJCC guidance suggested 30 common anti-tumor 

medications, like Cisplatin, Vinblastine, Imatinib, 

Adriamycin and/or cancer therapy. Wilcoxon signed 

rank method was employed to compare the variation in 

IC50 values of common antineoplastic agents between 

PRLPM high and low-risk groups, and the results are 

presented as box plots. 

 

Real-time quantitative PCR 

 

The RNA of 6 human glioma tissues and corresponding 

peritumoral tissues (Normal tissue) were reverse-

transcribed by RT reagent Kit gDNA Eraser (TaKaRa), 

and SYBR-Green (TaKaRa) detection was performed. 

The PCR primers were shown in Supplementary Table 8. 

 

Statistical analysis 

 

All data were performed with R version 4.0.5 and its 

corresponding packages. ESTIMATEscore was 

computed by using the ‘estimate’ package [45]. The 

lasso cox regression was carried out using the ‘glmnet’ 

package [46]. The data were analyzed using proper 

statistical criterion. Multiple-test adjustment was 

applied utilizing the FDR method. 

 

Availability of data and materials 

 

We organized the original data and uploaded it to 

Github. This is the URL we uploaded: 

https://github.com/shuaima1991/pyroptosis-related-

lncRNA.git. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The immune landscape of two cluster groups. (A) The expression value of immune checkpoint between 
cluster1 and cluster2 groups. (B) The enrichment scores of 22 kinds of immune cells between cluster1 and cluster2 groups. (C) The 
distribution of ESTIMATEscore in two cluster groups. 
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Supplementary Figure 2. Landscape of somatic mutation two cluster groups. (A) DNA substitution types including transition (Ti) 
and transversion (Tv). (B) Variant Allele Frequency expression of the top 10 genes of the two cluster groups. (C) Kaplan-Meier curves show 
the independent relevance between overall survival time and IDH1 mutation two cluster groups. (D) Distribution of tumor driver genes in 
two cluster groups. 
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Supplementary Figure 3. The relationship between grades, IDH1 mutation types, 1p19q status, and riskscore in CGGA 
cohort. (A) An overview of the association between riskscore and clinical characteristics. (B–D) Analyses of the relationship between 
IDH1mut type, recurrence status, grades and PRLPM riskscore. (E) The timeROC curve to evaluate the prognostic value of PRLPM riskscore 
in CCGA cohort. (F) KM curve plot of OS for patients in high- and low-risk subgroups in CGGA cohort. 
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Supplementary Figure 4. The relationship between grades, IDH1 mutation types, 1p19q status, and riskscore in TCGA 
cohort. (A) An overview of the association between riskscore and clinical characteristics (Histology, IDH.status, Gender, IDHcodel.subtype 

and Grade). (B–D) Analyses of the relationship between IDH1 mutation type, recurrence status, 1p19q status and PRLPM riskscore. (E–G) 
The proportion of patients with IDH1 mutation type, recurrence status, 1p19q status in the high- or low-riskscore groups in the TCGA 
cohort. 
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Supplementary Figure 5. Differences in stemness indices between the high- and low-risk groups. (A, B) Analyses of relationship 
between stemness indices and high- and low-risk groups. (C–H) The relationship between mDNAsi, DMPsi, EREG-mDNAsi, ENHsi, EREG-RNAsi, 
mRNAsi and riskscore. 
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Supplementary Figure 6. Estimated drug sensitivity in patients with high- and low-risk groups. (A) The chemotherapy response 

of two prognostic subtypes for 30 common chemotherapy drugs. (B) The TMB expression value in high- and low-risk groups. (C) 
Correlations between the PRLPM riskscore and TMB for each cancer type. (D) Comparison of the effectiveness of PRLs signature-based 
stratification in predicting ICB responsiveness. 
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Supplementary Figure 7. Functional enrichment analyses of DEGs between high- and low-risk group in the TGCA cohort. (A, 
B) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs. (C) The volcano plot for the 
DEGs between high- and low-risk group. (D) Gene set enrichment analysis (GSEA) enrichment analysis of DEGs. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–8. 

 

Supplementary Table 1. The correlation 46 PRLs and 11pyroptosis regulator. 

 

Supplementary Table 2. ConsensusClusterPlus. 

 

Supplementary Table 3. cluster1 CNV of GISTIC. 

 

Supplementary Table 4. cluster2 CNV of GISTIC. 

 

Supplementary Table 5. PRLPM riskscore. 

 

Supplementary Table 6. The relationship between riskscore and clinical traits. 

 

Supplementary Table 7. The relationship between the riskscore and stemness. 

 

Supplementary Table 8. PCR primers. 

 

 


