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ABSTRACT 
 

Background: Five types of HIF-PHIs have been authorized for anemia treatment in CKD patients in China and Japan. 
These are enarodustat, roxadustat, daprodustat, vadadustat, and molidustat. How effectively they compare to ESAs 
about clinical results in CKD-DD patients is uncertain. This study examined the RCT evidence about the benefits and 
risks of HIF-PHIs and ESAs in dialysis CKD patients. 
Methods: We conducted an extensive investigation and network meta-analysis of RCTs. In these RCTs, patients with 
CKD-DD received one of five different HIF-PHI or ESAs, a placebo, and no medical intervention. Outcomes included 
hemoglobin, iron parameters, and adverse events, and there were four weeks of follow-up at least. A frequentist 
framework for multivariate random effects meta-analyzed the results. The effect sizes of categorical variables were 
displayed as odds ratios. Mean differences were employed for computing continuous outcomes with common units; 
otherwise, standardized mean differences were applied. The Cochrane tool evaluated the bias risk in RCTs. 
Results: 26 RCTs with 14945 patients were qualified for inclusion. Compared to the placebo, HIF-PHIs and ESAs 
dramatically boosted hemoglobin without affecting serum iron. Roxadustat performed better hemoglobin levels 
than ESAs (MD 0.32, 95% CI 0.10 to 0.53) and daprodustat (0.46, 0.09 to 0.84). Roxadustat (91.8%) was the top 
hemoglobin treatment among all medical interventions, as determined by the SUCRA ranking. However, 
roxadustat caused more thrombosis and hypertension than ESAs (1.61, 1.22 to 2.12) and vadadustat (1.36, 1.01 to 
1.82). The lowest rates of hypertension and thrombosis were seen in molidustat (80.7%) and ESAs (88.5%). 
Compared with a placebo, ESAs and HIF-PHIs all affected TSAT levels. Except for molidustat, the other four  
HIF-PHIs impact different iron parameters. Regarding ferritin reduction, roxadustat (90.9%) and daprodustat 
(60.9%) came out on top. Enarodustat (80.9%) and roxadustat (74%) placed best and second in lowering hepcidin 
levels. The former two medicines for TIBC improvement were vadadustat (98.7%) and enarodustat (80.9%). 
Conclusion: The most effective treatment for hemoglobin correction is roxadustat. The superior efficacy of 
reducing hepcidin makes roxadustat and enarodustat appropriate for patients with inflammation. However, the 
increased risk of hypertension and thrombosis associated with roxadustat should be noted. In patients at risk 
for hypertension and thrombosis, molidustat and ESAs may be preferable options. When administering 
roxadustat and daprodustat, clinicians should check ferritin to assess iron storage. Lower TSAT in patients 
receiving HIF-PHIs and ESAs treatment suggests intravenous iron supplements are needed. 
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INTRODUCTION 
 

Renal anemia is a prevalent and serious complication 

among CKD patients. It is common in many nations 

and linked to poor clinical outcomes, including 

hospitalization, declining health-related quality of 

life, and mortality [1, 2]. Anemia was defined as a 

hemoglobin level less than 130 g/L for males or 120 

g/L for females over 15 years old in the clinical 

practice guideline of KDIGO in 2012 [3]. Renal 

anemia is caused by reduced red blood cell (RBC) 

survival and erythropoietin (EPO) production due to 

renal failure [4–7]. Furthermore, iron availability  

is necessary for erythropoiesis. Hepcidin and 

ferroportin contribute to the iron balance in humans. 

Elevated hepcidin and decreased ferroportin result in 

an iron shortage and sequestration, essential for renal 

anemia [8]. 

 

RBC transfusions and medicinal treatments, such as 

ESAs and HIF-PHIs, treat renal anemia in CKD 

patients. ESAs encourage erythropoiesis and lessen the 

requirement for RBC transfusions. KDIGO suggested 

that ESAs should treat CKD-DD patients with 9–10 

g/dL to prevent a hemoglobin level of less than nine 

g/dL [1, 9]. However, ESAs are administrated 

subcutaneously or intravenously. In the long term, they 

most likely raise the risk of thrombosis and hyper-

tension [10, 11]. Moreover, some patients are resistant 

and hypo-response to ESAs [12, 13]. Several factors are 

related to this hypo-responsiveness, including inflam-

mation, nutritional state, and dialysis adequacy. Some 

people require a larger dose than usual to obtain the 

desired hemoglobin concentration. A higher dose  

of ESAs increases morbidity and death invariably [14, 

15].  

 

Unlike ESAs, HIF-PIHs are oral medications. They 

inhibit PHI to enhance HIF-mediated endogenous EPO 

synthesis. Furthermore, HIF-PHIs decrease hepcidin 

levels to improve iron availability. In 2020, the Asian 

Pacific Society of Nephrology (APSN) indicated that 

HIF-PHIs might be used as an alternative to ESAs in 

the correction and maintenance of hemoglobin for 

CKD patients receiving dialysis or not [16]. 

Nowadays, five kinds of HIF-PHIs have been 

approved in China and Japan for anemia treatment  

in CKD patients [17–21]. They are roxadustat, 

daprodustat, vadadustat, molidustat, and enarodustat. 

However, there is a lack of information regarding the 

relative advantages of HIF-PHIs and ESAs in CKD-

DD patients in clinical guidelines and reported trials. 

The APSN questions their blood pressure and 

thrombosis safety. These unknowns create uncertainty 

in selecting an agent from among the five ESAs and 

HIF-PHIs.  

The vast majority of reported meta-analyses compared 

roxadustat and daprodustat to a placebo. Only one 

network meta-analysis examined the distinction 

between HIF-PHIs and ESAs or placebo in CKD-NDD 

patients [22]. Due to a difference in iron influence 

among five HIF-PHIs and ESAs and clearance rate of 

HIF-PHIs between CKD-DD and CKD-NDD patients, 

we conducted this network meta-analysis to compare 

the clinical efficacy and safety of ESAs and five HIF-

PHIs in patients with CKD-DD. 

 

METHODS 
 

We registered the study protocol at the International 

Prospective Register of Systematic Reviews 

(CRD42022313670). We conducted the study according 

to the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines. 

 

Eligibility criteria  

 

Trials were eligible for inclusion if they (i) were RCTs; 

(ii) included participants over the age of 18 years with 

CKD-DD; (iii) compared five kinds of HIF-PHIs with 

placebo, ESAs, or no medical interventions; (iv) 

reported any of the following outcomes: differences in 

hemoglobin levels; differences in iron parameters 

(ferritin, hepcidin, TIBC, TSAT, serum iron); adverse 

cardiovascular events (hypertension, thrombosis). 

Studies covering pediatric patients and patients with 

CKD-NDD were excluded. 

 

HIF-PHIs therapy in eligible RCTs included roxadustat, 

daprodustat, vadadustat, molidustat, and enarodustat. 

ESAs covered epoetin and darbepoetin. If a study 

contained two or more groups of the same experimental 

intervention, we combined data from these groups. 

 

Data sources and searches 

 

Two independent blind reviewers (MZW and CJ) 

searched PubMed, Embase, Cochrane, Web of Science, 

and https://clinicaltrials.gov databases from inception  

to July 7, 2022. A third reviewer (JL) resolved 

disagreements. The search terms were roxadustat, 

daprodustat, molidustat, vadadusta, enarodustat, 

epoetin, darbepoetin, erythropoiesis-stimulating agent, 

chronic kidney disease, and dialysis. Additional studies 

were searched in the reference lists and relevant 

systematic reviews and meta-analyses. 

 

Data extraction 

 

Two reviewers (CJ and XYY) independently evaluated 

the eligibility of titles, abstracts, and full texts. Two 

reviewers (LSM and CPP) independently extracted  

https://clinicaltrials.gov/
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data from eligible studies. Data included study 

characteristics (author, publication year), population 

(sample size, patient demographics, comorbidities), 

intervention description (drug name, dose), and 

outcomes. Reviewers resolved disagreements by 

discussion or consultation with a third reviewer (ZCY). 

 

The primary outcome was hemoglobin change from 

baseline to end-up. Secondary outcomes were changes 

in ferritin, hepcidin, TIBC, TSAT, serum iron, and 

cardiovascular adverse events from baseline to end-up. 

Cardiovascular adverse events were hypertension and 

thrombosis. 

 

Risk of bias assessment 

 

The Cochrane tool independently assessed the bias risk 

of eligible RCTs by three reviewers (CJ, MZW, and 

YXL). This tool included six items: random sequence 

generation, allocation concealment, blinding, 

incomplete outcome data, selective reporting, and any 

other bias. In evaluating every study, investigators 

judged the low, unclear, or high risk of bias for each 

item and assigned an overall risk of bias. 

 

Data analysis 

 

For continuous outcomes, outcomes with the same unit 

were calculated as mean differences (MD) with 95% CI. 

Standardized mean differences (SMD) with 95% CI 

were calculated when continuous outcomes varied in 

measurement units. The results were synthesized as 

odds ratios (OR) with 95% CI for dichotomous 

outcomes. 

 

We developed a network meta-analysis by a 

frequentist method. This method restricts maximum 

likelihood estimation to quantify network hetero-

geneity and account for the correlations between effect 

sizes in studies with more than two groups. Network 

consistency and common heterogeneity across all 

treatment contrasts were analyzed. We presented a 

summary effect of all comparisons by forest plots. 

Mean ranking and Surface Under the Cumulative 

Ranking curve (SUCRA) were computed to obtain 

treatment hierarchies. SUCRA determines the 

probability of a treatment being the most effective. 

The larger surface area under the curve presents  

a higher probability of a treatment being the better 

intervention. We estimated the inconsistency of direct 

and indirect evidence by global inconsistency  

and node-splitting methods. P < 0.05 indicated 

significant heterogeneity in the entire network. The 
statistical analysis software was STATA 15.0 (Stata 

Corporation, College Station, TX, USA) with 

“network” packages. 

Availability of data and materials 

 

Raw data can be accessed in the Supplementary 

Materials. 

 

RESULTS 
 

Characteristics of included studies 

 

Twenty-six RCTs involving 14945 participants met our 

inclusion criteria (Figure 1). Table 1 and Supplementary 

Table 1 show the characteristics of included studies. 

The trial sample size ranged from 37 to 3554, and the 

mean age of patients ranged from 48 to 66 years. The 

length of their intervention ranged from 4 to 148 weeks. 

44.42% (n = 6639) were women. Of the 26 studies in 

the network analysis, 7 RCTs enrolled 998 patients 

undergoing peritoneal dialysis, and the remaining 

patients were undergoing hemodialysis. This network 

analysis evaluated five kinds of HIF-PHIs (roxadustat, 

daprodustat, vadadustat, molidustat, and enarodustat) 

and two kinds of ESAs (epoetin and darbepoetin). It 

contained the following comparisons: HIF-PHIs vs. 

placebo/control (n = 7), HIF-PHIs vs. epoetin (n = 9), 

HIF-PHIs vs. darbepoetin (n = 6), HIF-PHIs vs. ESAs 

(epoetin and darbepoetin) (n = 4).  

 

Risk of bias 

 

According to the Cochrane Collaboration tool, most 

studies showed a low risk of bias. Twelve studies 

reported a high risk of bias because they were not 

double-blinded (Supplementary Figure 1). 

 

Network meta-analysis 
 

Figure 2 shows the network of all comparisons. These 

trials included epoetin (n = 9), darbepoetin (n = 6), 

ESAs (n = 4), daprodustat (n = 7), molidustat (n = 4), 

vadadustat (n = 3), roxadustat (n = 10), enarodustat 

(n = 2), and placebo/control (n = 7). 

 

Inconsistency analysis 
 

We used a node-splitting approach and a global 

inconsistency analysis to examine the consistency of all 

comparisons. The global inconsistency result shows no 

statistical inconsistency (P = 0.377). The outcomes of 

the node-splitting method are shown in Supplementary 

Table 2. Both direct and indirect comparisons were 

consistent. 

 

Changes in hemoglobin levels from baseline 
 

Twenty-six RCTs reported data on hemoglobin. Figure 3 

shows the results of the network meta-analysis 
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for hemoglobin. Compared with a placebo, five  

HIF-PHIs and ESAs significantly increased 

hemoglobin. Roxadustat significantly increased hemo-

globin more than ESAs (0.32, 0.10 to 0.53) 

and daprodustat (0.46, 0.09 to 0.84). The other four 

HIF-PHIs did not improve hemoglobin levels more 

effectively than ESAs. There was also no statistical 

difference among daprodustat, molidustat, vadadustat, 

and enarodustat. 

 

Supplementary Table 3 presents ranking probabilities, 

ranking plots, mean ranks, and SUCRA values for all 

interventions. In hemoglobin levels, roxadustat was 

ranked as the best treatment with a SUCRA value of 

91.8%. The second-best treatment was enarodustat 

(79.4%), and the third-best was ESAs (53.9%). The 

intervention with the lowest SUCRA value was 

daprodustat (33.7%) (Figure 4). 

 

Changes in iron parameters from baseline 

 

We analyzed the influence of HIF-PHIs and ESAs on 

iron parameters, including ferritin, hepcidin, TIBC, 

TSAT, and serum iron. In all intervention comparisons, 

serum iron changes weren’t statistically significant. 

Compared with the placebo, ESAs and five HIF-PHIs 

significantly reduced TSAT. For other iron parameters, 

ESAs and molidustat didn’t affect. Vadadustat and 

enarodustat elevated TIBC (SMD 3.90, 95% CI 2.24 to 

5.56; 2.35, 0.74 to 3.97) and decreased hepcidin (MD 

−38.79, 95% CI −68.95 to −8.63; −54.95, −91.21 to 

−18.69). Daprodustat increased TIBC (SMD 1.24, 95%

 

 
 

Figure 1. Flowchart of the study. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines. 
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Table 1. Characteristics of the include studies. 

Author /year Size Follow-up Age 
Study 

type 
Interventions (no.) Comparisons Outcomes Measures 

Risk of 

bias 

Akizawa/2017 [40] 

NCT02019719 
97 4 weeks 62y RCT 

Daprodustatt (n = 78) 

Placebo (n = 19) 

Daprodustatt vs. 

Placebo 

Hemoglobin level; 

Hypertension 

Iron parameters 

Mean ± SD 

Odds ratio 

low 

risk 

Akizawa/2020 [41] 

NCT02969655 
271 52 weeks 64y RCT 

Daprodustatt (n = 136) 

Darbepoetin Alfa (n = 135) 

Daprodustatt vs. 

Darbepoetin Alfa 

Hemoglobin level; 

Hypertension 

Iron parameters 

Mean ± SD 

Odds ratio 

low 

risk 

Bailey/2019 [42] 

NCT02689206 
97 4 weeks 64y RCT 

Daprodustatt (n = 79) 

Placebo (n = 18) 

Daprodustatt vs. 

Placebo 

Hemoglobin level; 

Hypertension 

Thrombosis 

Mean ± SD 

Odds ratio 

low 

risk 

Brigandi/2016 [43] 

NCT01047397 
37 8 weeks  60y RCT 

Daprodustatt (n = 31) 

placebo (n = 6) 

Daprodustatt vs. 

Placebo  
Hemoglobin level Mean ± SD 

high 

risk 

Holdstock/2016 [44] 

NCT01587924 
82 4 weeks 58y RCT 

Daprodustatt (n = 62) 

rhEPO (n = 20) 

Daprodustat vs. 

rhEPO  

Hemoglobin level; 

Iron parameters 
Mean ± SD 

low 

risk 

Meadowcroft/2018 [45] 

NCT01977482 
210 24 weeks 60y RCT 

Daprodustatt (n = 171) 

Control (n = 39) 

Daprodustat vs. 

Control 

Hemoglobin level; 

Hypertension 

Iron parameters 

Mean ± SD 

Odds ratio 

low 

risk 

Singh/2021 [46] 

NCT02879305 
2964 148 weeks 58y RCT 

Daprodustatt (n = 1487) 

ESA (n = 1477) 

Daprodustat vs. 

ESA 

Hemoglobin level; 

Hypertension 

Thrombosis; Iron 

parameters 

Mean ± SD 

Odds ratio 

high 

risk 

Akizawa/2020 [47] 

NCT02952092 
301 24 weeks 65y RCT 

Roxadustat (n = 150) 

Darbepoetin alfa (n = 151) 

Roxadustat vs. 

Darbepoetin alfa 

Hemoglobin level; 

Iron parameters 
Mean ± SD 

low 

risk 

Barratt/2021 [48] 

NCT02278341 
2796 36 weeks 56y RCT 

Roxadustat (n = 1379) 

ESA (n = 1417) 

Roxadustat vs. 

ESA 
Hemoglobin level Mean ± SD 

high 

risk 

Chen/2017 [29] 

NCT01596855 
96 8 weeks 62y RCT 

Roxadustat (n = 74) 

rhEPO (n = 22) 

Roxadustat vs. 

rhEPO 

Hemoglobin level; 

Hypertension 

Iron parameters 

Mean ± SD 

Odds ratio 

high 

risk 

Chen/2019 [27] 

NCT02652806 
304 27 weeks 49y RCT 

Roxadustat (n = 204) 

Epoetin alfa (n = 100) 

Roxadustat vs. 

Epoetin alfa 

Hemoglobin level; 

Hypertension 

Iron parameters 

Mean ± SD 

Odds ratio 

high 

risk 

Chen/2021 [49] 50 36 weeks 48y RCT 
Roxadustat (n = 12) 

EPO (n = 38) 

Roxadustat vs. 

EPO 

Hemoglobin level; 

Iron parameters 
Mean ± SD 

high 

risk 

Csiky/2021 [50] 

NCT02964936 
836 52 weeks 61y RCT 

Roxadustat (n = 415) 

ESA (n = 421) 

Roxadustat vs. 

ESA 

Hemoglobin level; 

Hypertension 

Thrombosis; Iron 

parameters 

Mean ± SD 

Odds ratio 

high 

risk 

Hou/2021 [51] 129 24 weeks 48y RCT 
Roxadustat (n = 86) 

ESAs (n = 43) 

Roxadustat vs. 

ESAs 

Hemoglobin level; 

Hypertension 

Iron parameters 

Mean ± SD 

Odds ratio 

low 

risk 

Provenzano/2016 [30] 

NCT02273726 
90 19 weeks 57y RCT 

Roxadustat (n = 67) 

Epoetin alfa (n = 23) 

Roxadustat vs. 

Epoetin alfa 

Hemoglobin level; 

Iron parameters 
Mean ± SD 

high 

risk 

Provenzano/2021 [52] 

NCT02052310 

NCT02174731 

1043 

2019 

52 weeks 

52 weeks 

54y 

54y 

RCT 

RCT 

Roxadustat (n = 522) 

Epoetin alfa (n = 521) 

Roxadustat (n = 1003) 

EPO (n = 1016) 

Roxadustat vs. 

Epoetin alfa 

Roxadustat vs. 

EPO 

Hemoglobin level; 

Hypertension 

Thrombosis; Iron 

parameters 

Hemoglobin level; 

Hypertension 

Mean ± SD 

Odds ratio 

Mean ± SD 

Odds ratio 

high 

risk 

Akizawa/2019 [53] 74 17 weeks 60y RCT 
Molidustat (n = 59) 

Control (n = 15) 

Molidustat vs. 

Control 
Hemoglobin level Mean ± SD 

high 

risk 
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Akizawa/2019 [54] 

NCT02064426 
87 52 weeks 60y RCT 

Molidustat (n = 57) 

Epoetin (n = 30) 

Molidustat vs. 

Epoetin 

Hemoglobin level; 

Hypertension 

Thrombosis; Iron 

parameters 

Mean ± SD 

Odds ratio 

high 

risk 

Akizawa/2021 [55] 

NCT03543657 
229 52 weeks 66y RCT 

Molidustat (n = 153) 

Darbepoetin (n = 76) 

Molidustat vs. 

Darbepoetin 

Hemoglobin level; 

Hypertension 

Iron parameters 

Mean ± SD 

Odds ratio 

low 

risk 

Macdougall/2018 [56] 

NCT01975818b 
199 16 weeks 59y RCT 

Molidustat (n = 157) 

Epoetin (n = 42) 

Molidustat vs. 

Epoetin 

Hemoglobin level; 

Hypertension  

Iron parameters 

Mean ± SD 

Odds ratio 

low 

risk 

Akizawa/2019 [57] 82 24 weeks 62y RCT 
Enarodustat (n = 60) 

Placebo (n = 22) 

Enarodusta vs. 

Placebo 

Hemoglobin level; 

Iron parameters 
Mean ± SD 

low 

risk 

Akizawa/2021 [58] 172 24 weeks 64y RCT 
Enarodustat (n = 86) 

Darbepoetin alfa (n = 86) 

Enarodusta vs. 

Darbepoetin alfa 

Hemoglobin level; 

Hypertension 

Thrombosis; Iron 

parameters 

Mean ± SD 

Odds ratio 

low 

risk 

Eckardt/2021 [59] 

NCT02892149 
3554 116 weeks 58y RCT 

Vadadustat (n = 1777) 

Darbepoetin alfa (n = 1777) 

Vadadustat vs. 

Darbepoetin alfa 

Hemoglobin level; 

Hypertension 

Thrombosis 

Mean ± SD 

Odds ratio 

high 

risk 

Nangaku/2020 [60] 

NCT03054350 
58 18 weeks 64y RCT 

Vadadustat (n = 44) 

Placebo (n = 14) 

Vadadusta vs. 

Placebo 

Hemoglobin level; 

Iron parameters 
Mean ± SD 

low 

risk 

Nangaku/2021 [61] 

NCT03439137 
323 52 weeks 65y RCT 

Vadadustat (n = 162) 

Darbepoetin alfa (n = 161) 

Vadadustat vs. 

Darbepoetin alfa 

Hemoglobin level; 

Hypertension 

Thrombosis; Iron 

parameters 

Mean ± SD 

Odds ratio 

low 

risk 

Abbreviations: RCT: randomized controlled trial; SD: standard deviation; ESA: erythropoiesis-stimulating agent; EPO: erythropoietin. 

 

CI 0.17 to 2.31) and reduced ferritin (MD −97.72, 95% 

CI −187.72 to −7.71) as well as hepcidin (MD −46.02, 

95% CI −75.64 to −16.41). Roxadustat reduced ferritin 

(MD −145.68, 95% CI −256.90 to −34.47) and hepcidin 

(MD −47.73, 95% CI −82.78 to −12.68). In conclusion, 

TSAT concentrations were reduced by HIF-PHIs and 

ESAs. Roxadustat and daprodustat decreased ferritin. 

Four drugs reduced hepcidin: daprodustat, vadadustat, 

roxadustat, and enarodustat. Vadadustat, daprodustat, 

and enarodustat all had significantly higher TIBC 

levels. Comparing these four HIF-PHIs, ferritin, 

hepcidin, TSAT, and serum iron levels weren’t

 

 
 

Figure 2. Network of the study treatments. Nodes represent intervention comparisons. The size of the nodes is proportional to 
participant numbers. The width of the lines was in direct ratio to the number of trials. 
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significantly changed. Vadadustat increased TIBC much 

more than daprodustat (SMD 2.66, 95% CI 0.94 to 

4.38) (Supplementary Figures 2–6).  

 

SUCRA ranked all groups in the influence on the iron 

parameters (Supplementary Figures 7–11 and 

Supplementary Table 3). Roxadustat was ranked first in 

decreasing ferritin and second in reducing hepcidin, 

with SUCRA values of 90.9% and 74%. Enarodustat 

was ranked first in the reduction of hepcidin (80.9%) 

and TSAT (88.7%). Vadadustat performed the best 

effect on increased TIBC (98.7%). 

 

Hypertension and thrombosis  

 

A lower incidence of hypertension was observed in 

vadadustat than in roxadustat (1.36, 1.01 to 1.82) and 

ESAs (0.74, 0.60 to 0.91). Daprodustat (2.52, 1.28 to 

4.94) and roxadustat (1.61, 1.22 to 2.12) induced higher 

thrombosis than ESAs (Supplementary Figures 12 and 

13). From the SUCRA value, we found that the top two 

drugs with the lowest risk of hypertension were 

molidustat (80.7%) and vadadustat (76.5%). ESAs 

(88.5%) and enarodustat (67.9%) ranked first two 

positions, respectively, in the safety of thrombosis 

(Supplementary Figures 14 and 15). 

 

Small-study effect analysis 

 

We found no evidence of small study effects across 

outcomes (Figure 5, Supplementary Figures 16–22). 

 

DISCUSSION 
 

Principal findings 
 

This systematic review and network meta-analysis 

demonstrated the impact of ESAs and HIF-PHIs on 

clinical outcomes in patients with CKD-DD. Roxadustat 

performed significantly more than ESAs and daprodustat 

and ranked first in hemoglobin improvement. According 

to the SUCRA ranking, roxadustat and daprodustat were 

the most effective medications for reducing ferritin. For 

lowering hepcidin levels, enarodustat and roxadustat

 

 
 

Figure 3. Forest plot of hemoglobin levels. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: vadadustat; F: 

roxadustat; G: enarodustat. 
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came in first and second, respectively. The previous two 

medications for the improvement of TIBC were 

vadadustat and enarodustat. Enarodustat and ESAs had 

the lowest TSAT of all the drugs. Daprodustat and 

roxadustat lead to higher thrombosis events than ESAs. 

Molidustat and ESAs were the safest drugs with the 

lowest hypertension and thrombosis risk. 

 

Comparison with other studies  

 

This study provided sufficient evidence supporting the 

efficacy of five HIF-PHIs in hemoglobin improvement 

in CKD-DD patients. Roxadustat performed better 

efficacy in elevating hemoglobin levels than ESAs in 

CKD-DD patients. This result is consistent with 

previous meta-analyses [23–25]. One meta-analysis 

investigated roxadustat on hemoglobin in six studies 

[26–31]. It presented that in CKD-DD patients, 

hemoglobin levels increased in roxadustat (0.52, 0.38 to 

0.66) compared to EPO. The other meta-analysis 

included ten RCTs with 3031 patients in the roxadustat 

group and 2737 in the ESAs group. It demonstrated that 

roxadustat was associated with increased hemoglobin 

levels (0.2, 0.02 to 0.39, P = 0.03) compared with the 

ESAs group. A meta-analysis investigated daprodustat 

in CKD-DD patients [32]. It reported that hemoglobin 

change was significantly higher in the daprodustat 

group than that in the placebo (1.88, 0.68 to 3.09, P = 

0.002). There was no significant difference between 

daprodustat and EPO (0.12, −0.28 to 0.52, P = 0.55). 

This study supports this finding. Moreover, this study 

discovered that roxadustat is much more effective in 

hemoglobin improvement than daprodustat in CKD-DD 

patients. Although roxadustat ranked the best medical 

intervention in hemoglobin, its higher risk of 

hypertension and thrombosis can’t be ignored [33, 34]. 

Higher hemoglobin level is a risk factor for thrombosis. 

The increase in hemoglobin will raise blood viscosity, 

slow blood flow, and possibly result in thrombosis. 

High hemoglobin may be hyperplastic cell disease, 

which may cause platelet rise and thrombosis. The 

APSN reported an association between iron deficiency 

and thrombosis events. Iron supplements probably 

reduce the roxadustat-related thrombosis risk. 

Molidustat and ESAs are appropriate drugs for patients 

with hypertension and thrombosis risk. 

 

 
 

Figure 4. The surface under the cumulative ranking curve for hemoglobin. (A) placebo/control; (B) ESAs; (C) daprodustat; 

(D) molidustat; (E) vadadustat; (F) roxadustat; (G) enarodustat. 
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There is no meta-analysis about the efficacy and risk 

of vadadustat, molidustat, and enarodustat in patients 

with CKD-DD. This study first demonstrated the 

benefit of vadadustat, molidustat, and enarodustat on 

clinical outcomes. However, these three HIF-PHIs 

presented comparable hemoglobin improvement to 

ESAs. The top two drugs with the lowest rate of 

hypertension were molidustat and vadadustat, and 

thrombosis was ESAs and enarodustat. These results 

provide clinicians with evidence to select appropriate 

medicine considering the benefits and risks for CKD-

DD patients. 

 

Previous studies did not examine the effect of five HIF-

PHIs on iron parameters in CKD-DD patients. This 

research investigated the impact of five HIF-PHIs on 

iron parameters. As an iron-regulating protein, hepcidin 

is essential in iron balance. Ferroportin is the only 

known exporter of iron from mammalian cells. 

Hepcidin degrades ferroportin to inhibit the release of 

stored iron from reticuloendothelial cells. Therefore, 

hepcidin-mediated iron depletion limits erythropoiesis 

[35–37]. Patients with CKD-DD experience an increase 

in hepcidin, particularly during inflammation. Higher 

hepcidin levels correlate with lower hemoglobin levels 

and a greater likelihood of anemia [38, 39]. Except for 

molidustat, HIF-PHIs in this study reduce hepcidin. 

ESAs do not participate in the regulation of hepcidin. 

Therefore, this study suggested that HIF-PHIs, except 

for molidustat, could replace ESAs in treating CKD-DD 

patients with inflammation or high hepcidin levels. 

Enarodustat and roxadustat were the two HIF-PHIs 

most effective at lowering hepcidin. 

 

Daprodustat and roxadustat both showed reduced 

ferritin levels. As a form of iron storage in the liver, 

ferritin monitoring is important in daprodustat and 

roxadustat administration. Clinicians can evaluate  

the necessity of the iron supplement by ferritin 

examination. Besides ferritin, TSAT and serum iron are 

the most common biomarkers of stored iron. In patients 

with functional iron deficiency on ESA therapy, enteral 

iron absorption or release from reticuloendothelial cells 

is insufficient to meet erythropoiesis demands. These 

 

 
 

Figure 5. Funnel plots assessing hemoglobin levels. The red line represents the null hypothesis. The yellow/blue line represents the 

regression line. Different colours correspond to different comparisons. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: 
molidustat; E: vadadustat; F: roxadustat; G: enarodustat. 
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patients frequently exhibit low TSAT results and may 

benefit from IV iron treatment. In all HIF-PHIs and 

ESAs, the effectiveness of lowering TSAT was 

observed in this study. We should focus on the TSAT 

levels to determine whether patients with functional 

iron deficiency need IV iron supplements. Consistent 

with a report [16], HIF-PHIs and ESAs showed no 

significant change in serum iron. This evidence 

indicates that only serum iron measure is insufficient to 

evaluate patients’ iron condition. 

 

A previous network meta-analysis reported no 

difference in hemoglobin improvement between 

roxadustat and ESAs in CKD-NDD patients [22]. It is 

contrary to this study. This inconsistency may 

indicate higher hemoglobin improved by roxadustat 

in patients with CKD-DD than in CKD-NDD. This 

hypothesis achieves support from the other analysis 

[33]. It conducted a subgroup analysis on hemoglobin 

levels to compare CKD-DD patients with NDD 

patients. The result presented that HIF-PHIs induced 

higher hemoglobin than ESAs in CKD-DD patients 

(0.16, 0.05 to 0.27). However, HIF-PHIs weren’t 

significantly different from ESAs in CKD-NDD 

patients (−0.02, −0.26 to 0.22). This distinction 

between the two kinds of populations probably 

results from disease conditions and excretory 

capacity. The kidney eliminates approximately 40% 

of roxadustat, and roxadustat cannot be removed by 

dialysis. The majority of CKD-DD patients have little 

to no kidney function left. As a result, the roxadustat 

excretion rate in CKD-DD patients may be much 

slower than in CKD-NDD patients. However, ESA 

pharmacokinetics in CKD-DD patients are 

comparable to those in CKD-NDD patients. In CKD-

DD patients, higher roxadustat concentrations 

probably result in better efficacy. 

 

CONCLUSIONS 
 

We anticipate this study’s findings to provide 

implications for drug selection in renal anemia of CKD-

DD patients. In treating patients with ESAs-resistant, 

clinicians can prescribe roxadustat to improve 

hemoglobin. CKD patients with inflammation and high 

hepcidin levels can benefit from enarodustat and 

roxadustat. Clinicians need to be aware of thrombosis 

and hypertension when prescribing roxadustat. 

Molidustat is a relatively safe medication for patients 

with hypertension. Regarding lowering thrombosis risk, 

ESAs are better than other therapies. Ferritin and TSAT 

are biomarkers for iron storage. Ferritin levels should  

be monitored while taking roxadustat and daprodustat. 

Reduced TSAT indicates that IV iron therapy is 

required for patients with HIF-PHIs and ESA 

administration. 

Limitations of this study 
 

This study exits some limitations. First, the results of 

this study come from CKD-DD participants. It is not 

suitable for CKD-NDD patients’ applications. Second, 

whether iron supplements should be prescribed in CKD-

DD patients during HIF-PHIs intervention is unknown. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Bias assessment. The Cochrane risk-of-bias tool assessed the risk of bias in included studies. 
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Supplementary Figure 2. Forest plot of ferritin. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: vadadustat; 

F: roxadustat; G: enarodustat. 
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Supplementary Figure 3. Forest plots of hepcidin. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: vadadustat; 

F: roxadustat; G: enarodustat. 
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Supplementary Figure 4. Forest plots of TIBC. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: vadadustat; F: 

roxadustat; G: enarodustat. 
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Supplementary Figure 5. Forest plots of TSAT. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: vadadustat; F: 
roxadustat; G: enarodustat. 
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Supplementary Figure 6. Forest plots of serum iron. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: 

vadadustat; F: roxadustat; G: enarodustat. 
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Supplementary Figure 7. The surface under the cumulative ranking curve for ferritin. (A) Placebo/control; (B) ESAs; (C) daprodustat; 
(D) molidustat; (E) vadadustat; (F) roxadustat; (G) enarodustat. 
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Supplementary Figure 8. The surface under the cumulative ranking curve for hepcidin. (A) Placebo/control; (B) ESAs; (C) daprodustat; 
(D) molidustat; (E) vadadustat; (F) roxadustat; (G) enarodustat. 
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Supplementary Figure 9. The surface under the cumulative ranking curve for TIBC. (A) Placebo/control; (B) ESAs; (C) daprodustat; 

(D) molidustat; (E) vadadustat; (F) roxadustat; (G) enarodustat. 
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Supplementary Figure 10. The surface under the cumulative ranking curve for TSAT. (A) Placebo/control; (B) ESAs; (C) daprodustat; 
(D) molidustat; (E) vadadustat; (F) roxadustat; (G) enarodustat. 
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Supplementary Figure 11. The surface under the cumulative ranking curve for serum iron. (A) Placebo/control; (B) ESAs; 

(C) daprodustat; (D) molidustat; (E) vadadustat; (F) roxadustat; (G) enarodustat. 
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Supplementary Figure 12. Forest plots of hypertension. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: 
vadadustat; F: roxadustat; G: enarodustat. 
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Supplementary Figure 13. Forest plots of thrombosis. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: 
vadadustat; F: roxadustat; G: enarodustat. 

 



www.aging-us.com 2264 AGING 

 
 

Supplementary Figure 14. The surface under the cumulative ranking curve for hypertension. (A) Placebo/control; (B) ESAs; 
(C) daprodustat; (D) molidustat; (E) vadadustat; (F) roxadustat; (G) enarodustat. 
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Supplementary Figure 15. The surface under the cumulative ranking curve for thrombosis. (A) Placebo/control; (B) ESAs; 
(C) daprodustat; (D) molidustat; (E) vadadustat; (F) roxadustat; (G) enarodustat. 
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Supplementary Figure 16. Funnel plot assessing ferritin. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: 

vadadustat; F: roxadustat; G: enarodustat. 
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Supplementary Figure 17. Funnel plot evaluating hepcidin. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: 

vadadustat; F: roxadustat; G: enarodustat. 
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Supplementary Figure 18. Funnel plot evaluating TIBC. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: 

vadadustat; F: roxadustat; G: enarodustat. 
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Supplementary Figure 19. Funnel plot evaluating TSAT. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: 

vadadustat; F: roxadustat; G: enarodustat. 
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Supplementary Figure 20. Funnel plot evaluating serum iron. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; 

E: vadadustat; F: roxadustat; G: enarodustat. 
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Supplementary Figure 21. Funnel plot evaluating hypertension. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: 
molidustat; E: vadadustat; F: roxadustat; G: enarodustat. 

 



www.aging-us.com 2272 AGING 

 
 

Supplementary Figure 22. Funnel plot evaluating thrombosis. Abbreviations: A: placebo/control; B: ESAs; C: daprodustat; D: 
molidustat; E: vadadustat; F: roxadustat; G: enarodustat. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Baseline characteristics of the study populations. 

 

Supplementary Table 2. Node-splitting approach for inconsistency assessment of all comparisons. 

Side 
Direct Indirect Difference 

P 
Coef Std Coef Std Coef Std 

A vs. C 1.07 0.21 1.54 0.34 −0.48 0.39 0.23 

A vs. E 1.54 0.28 0.94 0.31 0.59 0.41 0.15 

A vs. G 1.51 0.49 1.62 0.39 −0.11 0.62 0.86 

B vs. C −0.06 0.17 −0.54 0.36 0.48 0.39 0.23 

B vs. D −0.05 0.20 −2.68 314.9 2.62 314.9 0.99 

B vs. E −0.20 0.20 0.39 0.36 −0.59 0.41 0.15 

B vs. F 0.32 0.11 −2.76 111.1 3.08 111.1 0.98 

B vs. G 0.27 0.32 0.16 0.54 0.11 0.86 0.86 

Abbreviations: Coef: coefficient; Std: standard deviation; A: placebo/control; B: ESAs; C: daprodustat; D: molidustat; E: vadadustat; 
F: roxadustat; G: enarodustat. 

 

 

Supplementary Table 3. Ranking probabilities, mean ranks, and SUCRA values. 

 placebo ESAs daprodustat molidustat vadadustat roxadustat enarodustat 

Hemoglobin        

Best 0 0 0.2 3.1 1.7 57.4 37.5 

2nd 0 7.1 2.6 11.3 8.7 36.9 33.4 

3rd 0 33 9.1 20.7 20.1 5.1 12 

SUCRA 0 53.9 33.7 46.4 44.8 91.8 79.4 

PrBest 0 0 0.2 3.1 1.7 57.4 37.5 

Mean Rank 7 3.8 5 4.2 4.3 1.5 2.2 

Ferritin        

Best 0 0.3 10 6 11.5 63.9 8.3 

2nd 0.1 13.6 23.6 11.6 15.7 22.8 12.6 

3rd 0.6 30.4 21.9 10.9 14.2 9.2 12.8 

SUCRA 6.5 54.7 60.9 40.3 51.0 90.9 45.8 

PrBest 0 0.3 10.0 6.0 11.5 63.9 8.3 

Mean Rank 6.6 3.7 3.3 4.6 3.9 1.5 4.3 

Hepcidin        

Best 0 0 18.9 2.1 10.6 23.5 44.9 

2nd 0 0.1 26 6.0 15.8 28.5 23.5 

3rd 0 2.8 25.4 11.3 21.5 24.4 14.7 

SUCRA 1.7 29.8 69.6 37.9 56.2 74 80.9 

PrBest 0 0 18.9 2.1 10.6 23.5 44.9 

Mean Rank 6.9 5.2 2.8 4.7 3.6 2.6 2.1 

TSAT        

Best 0 17.2 6.1 0 0.5 6.7 69.5 

2nd 0 55.5 13.2 0.3 2.4 17.8 10.8 

3rd 0 21.8 22.1 2.2 8.5 37.3 8.1 
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SUCRA 0 80.7 56.3 20.6 39.9 63.7 88.7 

PrBest 0 17.2 6.1 0 0.5 6.7 69.5 

Mean Rank 7.0 2.2 3.6 5.8 4.6 3.2 1.7 

TIBC        

Best 0 0 0 0 92.6 0 7.3 

2nd 0 0 7.7 3.1 7.3 3.1 78.7 

3rd 0.4 0 50.7 15.3 0.1 24.6 8.8 

SUCRA 12.2 14.0 58.1 37.3 98.7 48.7 80.9 

PrBest 0 0 0 0 92.6 0 7.3 

Mean Rank 6.3 6.2 3.5 4.8 1.1 4.1 2.1 

Serum iron        

Best 5.6 27.2 4.7 0.9 25.6 11.7 24.3 

2nd 11.2 36.3 8.8 2.0 8.5 22.7 10.5 

3rd 11.2 21.0 19.1 5.7 7.5 23.1 12.4 

SUCRA 41.0 78.3 48.0 20.5 48.0 61.3 52.9 

PrBest 5.6 27.2 4.7 0.9 25.6 11.7 24.3 

Mean Rank 4.5 2.3 4.1 5.8 4.1 3.3 3.8 

Hypertension        

Best 36.8 0 0.1 45 12.4 0.2 5.6 

2nd 17.4 0.4 3.1 29.9 42.3 1.7 5.2 

3rd 9.1 5.7 20.4 10.6 38 11.1 5.1 

SUCRA 63.3 33.2 45.6 80.7 76.5 33.9 16.9 

PrBest 36.8 0 0.1 45 12.4 0.2 5.6 

Mean Rank 3.2 5.0 4.3 2.2 2.4 5.0 6.0 

Thrombosis        

Best 1.0 43.6 0.2 23.5 1.7 0.0 30.0 

2nd 0.7 44.4 1.0 5.8 26.3 3.8 18.0 

3rd 0.7 11.4 3.4 5.2 43.4 22.4 13.5 

SUCRA 4.6 88.5 29.6 44.2 65.9 49.3 67.9 

PrBest 1.0 43.6 0.2 23.5 1.7 0.0 30.0 

Mean Rank 6.7 1.7 5.2 4.4 3.0 4.0 2.9 

Abbreviations: SUCRA: surface under the cumulative ranking curve; ESAs: erythropoiesis- stimulating agents; TSAT: transferrin 
saturation; TIBC: total iron-binding capacity. 

 

 


