
www.aging-us.com 2582 AGING 

INTRODUCTION 
 

Cancer is a global health problem that involves diverse 

genetic diseases. Over the past years, there has been an 

alarming increase in the occurrence of cancer, which 
continues to be the top cause of death globally [1]. 

Publicly available databases such as the Cancer Cell 

Line Encyclopedia (CCLE) and The Cancer Genome 
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ABSTRACT 
 

Background: Allograft Inflammatory Factor 1 (AIF-1) is a member of the allograft inflammatory factor gene 
family and plays an essential role in the occurrence and development of malignant tumors. However, little is 
known about the expression pattern, predictive value, and biological function of AIF-1 across cancers. 
Materials and Methods: We first analyzed AIF-1 expression across cancers based on data from public databases. 
Univariate Cox regression and Kaplan-Meier analyses were used to explore the predictive value of AIF-1 
expression in various cancers. Moreover, gene set enrichment analysis (GSEA) was applied to determine the 
cancer hallmarks associated with AIF-1 expression. Spearman correlation analysis was performed to investigate 
the association between AIF-1 expression and tumor microenvironment scores, immune cell infiltration, 
immune-related genes, TMB, MSI, and DNA methyltransferases. 
Results: AIF-1 expression was upregulated in most cancer types and exhibited prognosis-predictive ability. AIF-1 
expression was positively correlated with immune infiltrating cells and immune checkpoint-related genes in 
most cancers. Additionally, the promoter methylation level of AIF-1 was different in distinct tumors. High 
methylation levels of AIF-1 were associated with a worse prognosis in UCEC and melanoma, whereas they were 
associated with a better prognosis in GBM, KIRC, OV, and UVM. Finally, we found that AIF-1 was significantly 
highly expressed in KIRC tissues. Functionally, silencing AIF-1 dramatically decreased proliferation, migration, 
and invasion abilities. 
Conclusion: Our results reveal that AIF-1 acts as a robust tumor biomarker and is closely correlated with tumor 
immune infiltration. Furthermore, AIF-1 may function as an oncogene and promote tumor progression in KIRC. 
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Atlas (TCGA) have been thoroughly analyzed and 

summarized to achieve a more comprehensive 

comprehension of the molecular mechanisms of human 

malignancy [2, 3]. With the continuous accumulation 

and development of multiomics data in various cancers, 

pan-cancer analysis has gained popularity as a research 

focus. Pan-cancer analysis has become a hot research 

direction [4, 5]. More importantly, unlike a study that 

analyzed a single and specific tumor type, pan-cancer 

research not only reveals similarities, heterogeneity, and 

breadth of analysis among different cancers but also 

provides a holistic overview of various aspects of 

cancer biology [6, 7]. 

 

Peptides generated by AIF-1 can bind calcium ions 

across lymphocytes, macrophages, and monocytes [8]. 

Therefore, the dysregulated AIF-1 expression has been 

strongly linked to a range of diseases, including cardiac 

allograft vasculopathy [9], rheumatoid arthritis [10], 

hemangioma [11], gastric cancer, glioma [12, 13], 

malignant breast tumor [14, 15], pancreatic carcinoma 

[16], and hepatocellular carcinoma [17]. Although the 

importance of AIF-1, its expression profile, prognostic 

significance, and functional implications in the majority 

of cancer types have yet to be systematically 

investigated. As such, there is a crucial need to take a 

fresh and comprehensive approach to examine the 

involvement of AIF-1 across different cancers.  

 

In our analysis, we first analyzed the expression and 

gene mutation patterns of AIF-1 across cancers by 

integrating multiple databases. Subsequently, the clinical 

prognosis and functional analysis of AIF-1 were further 

explored. Furthermore, the link between AIF-1 

expressions and specific studies, such as immune 

infiltration, immunological checkpoint genes (ICGs), 

tumor mutational burden (TMB), microsatellite 

instability (MSI), mismatch repair (MMR), and DNA 

methylation, was also thoroughly examined. Finally, 

AIF-1 was confirmed to be a strong oncogene in clinical 

specimens and in vitro experiments. AIF-1 reduction 

dramatically slowed the growth and occurrence of 

cancers. Therefore, the results of our pan-cancer analysis 

demonstrated that AIF-1 has the potential to be taken as 

a predictive biomarker for prognosis and immunotherapy 

response, which needs further investigation. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The UCSC Xena database (https://xenabrowser.net/ 

datapages/) was taken to analyze the mRNA expression 

and clinical information of cancer patients in the TCGA 

cohort and the Genotype-Tissue Expression (GTEx) 

datasets. The transcriptomic profile of cancer cell lines 

was analyzed from the CCLE public database. The 

Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) section of the University of ALabama at 

Birmingham CANcer data analysis Portal (UALCAN) 

(http://ualcan.path.uab.edu/index.html) was taken to 

explore AIF-1 expression profile in various cancers. In 

this study, we evaluated the protein expression 

profiling of AIF-1 in cancer patients with different 

grades, stages, ages, and weights. MMR gene mutation 

and DNA methylation analyses were also performed 

using the Sangerbox online platform. The correlation 

of five MMR genes or four methyltransferases with 

AIF-1 levels was evaluated by Spearman’s correlation 

method. 

 

Genomic variation analyses 

 

The genomic alteration frequency, mutation type, 

mutation count, and copy number alteration of AIF-1 in 

the various cancer were investigated using the web tool 

cBioPortal (http://cbioportal.org) and are displayed in 

the module of “Cancer Types Summary” [18]. 

Additionally, the “Mutations” module presented the 

mutated site information of AIF-1 through a schematic 

or 3D representation of its protein structure. Using the 

“Comparison” module, we compared the overall 

survival, disease-free survival, progression-free survival, 

and disease-free survival differences between TCGA 

cancer cases with or without AIF-1 genetic alteration. 

 

Single-cell analysis of AIF-1 

 

The Tumor Immune Single-cell Hub website (TISCH, 

http://tisch.comp-genomics.org/documentation/) utilized 

single-cell analysis to examine AIF-1 expression levels 

in different cell types, using major lineage as cell-type 

annotation and all cancers as cancer type. The results 

were presented through a heatmap and scatter diagrams. 

For more information on the data collection and steps, 

please refer to the documentation section on the TISCH 

website [19]. 

 

Tumor immune infiltration analysis 

 

To explore the relationship between AIF-1 expression 

and immune infiltrates in the pan-cancer, the “Immune-

Gene” module of the TIMER2 web server was 

employed. Specifically, the study analyzed the 

correlations between AIF-1 mRNA expression and 21 

different immune cell subsets, including CD4+ T cells, 

cancer-associated fibroblasts (CAFs), lymphoid 

progenitors, myeloid progenitors, monocyte pro-

genitors, endothelial cells (Endos), eosinophils (Eos), 
hematopoietic stem cells (HSCs), T-cell follicular 

helper cells, γ/δ T cells, NK T cells, regulatory T cells 

(Tregs), B cells, neutrophils, monocytes, macrophages, 
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dendritic cells, NK cells, mast cells, and CD8+ T cells. 

To estimate immune infiltration, various algorithms 

were employed. The purity-adjusted Spearman’s rank 

correlation test was used to calculate P and partial 

correlation (cor) values. The data were represented as a 

heatmap. 

 

AIF-1-related gene analysis 

 

To investigate the protein-protein interaction network 

(PPI) of AIF-1, we utilized the GeneMANIA database 

to create the PPI network (http://www.genemania.org) 

[20]. Various bioinformatics approaches, such as 

physical interaction, coexpression, colocalization, gene 

enrichment analysis, and genetic interaction, were 

employed. Additionally, we examined the top 100 AIF-

1-associated target genes from TCGA datasets of all 

tumors and normal tissues using the “correlation 

analysis” section of the GEPIA2 website. We used the 

“Gene_Corr” module to present the heatmap data of the 

target genes. 

 

Gene set enrichment analysis 

 

The hallmark gene set, consisting of 50 gene sets,  

was obtained in the form of a “gmt” file 

(h.all.v7.4.symbols.gmt) from the Molecular Signatures 

Database (MSigDB, http://www.gsea-msigdb.org/ 

gsea/index.jsp). We utilized this file to compute the 

normalized enrichment score (NES) and false discovery 

rate (FDR) of each biological process for each cancer 

type. GSEA analysis was performed with the R package 

“clusterProfiler,” and the findings were presented in a 

bubble plot generated using the “ggplot2” R package 

[21]. 

 

Immunotherapy prediction analysis 

 

The correlations between AIF-1 and immunotherapy 

biomarkers, including immune checkpoint genes 

(ICGs), tumor mutation burden (TMB), and 

microsatellite instability (MSI), were calculated using 

Spearman correlation analysis across various types of 

cancers [22, 23]. To investigate the correlation between 

ICGs, TMB, and MSI, we utilized Sangerbox 

(http://www.sangerbox.com/). 

 

Survival prognosis analysis of AIF-1 

 

We utilized the survival analysis module available in 

GEPIA2 to generate a forest plot of overall survival 

(OS) and disease-specific survival (DSS) for AIF-1 

across all TCGA tumors. The expression thresholds 
were set at a high cut-off value of 50% and a low cut-

off value of 50% to partition the cohorts into high and 

low-expression groups. Additionally, we conducted a 

Kaplan-Meier curve analysis on the AIF-1 expression 

levels using the Sangerbox online platform. 

 

Epigenetic methylation analysis 

 

To investigate the variation in methylation levels of 

AIF-1 between tumor and paired normal tissues across 

different TCGA cancer types, we employed the TCGA 

methylation module available in the UALCAN 

interactive web resource. We further examined the 

impact of methylation on prognoses by using the TIDE 

server, which can be accessed via the website 

http://tide.dfci.harvard.edu/. 

 

Cell lines, reagents, and plasmids 

 

The Cell Bank of the Chinese Academy of Sciences 

(Shanghai, China) provided the 786-O cell line, a 

hyperdiploid renal cell carcinoma (RCC) cell line. The 

786-O cell line was routinely maintained in Roswell 

Park Memorial Institute medium supplemented with 

10% fetal bovine serum (Gibco, USA) at 37°C in a 

humidified atmosphere containing 5% CO2. A plasmid 

encoding shRNA against AIF-1 was synthesized by 

Genepharma Company (Shanghai, China). The cells 

were transfected with shRNA or vector plasmids using 

Lipofectamine 3000 (Invitrogen), following the 

guidelines provided by the manufacturer. 

 

Quantitative real-time (qRT)-PCR 

 

Total RNA was isolated according to the Trizol Reagent 

protocol. The cDNA was synthesized from RNA using 

the PrimeScript RT Reagent Kit (Invitrogen) through 

reverse transcription. Subsequently, for qRT-PCR, the 

cDNA was amplified using the SYBR Green PCR Kit 

(Takara, China). Primer sequences were as follows: 

AIF-1 (5′-GTCCCTGAAACGAATGCT-3′ and 5′-

GGAGCCACTGGACACCT-3′). GAPDH 5′-

CCTGCCGGTGACTAACCCTG-3′ and 5′-

AGTTAAAAGCAGCCCTGGTG-3′) were used as 

internal control. 

 

Cell proliferation and colony formation assays 

 

Several cultures of 786-O cells were seeded onto 96-

well plates at a density of 5.0 × 10^3 cells/well. The 

CCK-8 reagent (KeyGEN, Shanghai, China) was 

employed at specific time intervals to evaluate cell 

viability according to the manufacturer’s methods. 

Meanwhile, the Cell-Light EdU DNA Cell Proliferation 

Kit (RiboBio, Guangzhou, China) was used for the EdU 

assay. The cell proliferation rate of 786-O cells was 
determined by calculating the ratio of the EdU-positive 

cells to the total cell count. For the colony formation 

assay, cells transfected with the shRNA plasmid of  

http://www.genemania.org/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.sangerbox.com/
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AIF-1 were plated in 6-well plates at a density of 500 

cells/well and cultured for 2 weeks. Then, the leaves 

were fixed and stained with 0.5% crystal violet. 

 

Western blotting  

 

The exact quantity of protein added to each well of 12% 

SDS-PAGE gels. Briefly, the bands were blocked using 

5% milk and then separated and transferred to 

membranes. The corresponding primary antibody was 

added to the membranes and then incubated overnight at 

4°C. This step allows the antibody to specifically bind 

to the target molecule of interest on the membrane 

surface. Following this, the membranes were incubated 

with secondary antibodies, and the resulting bands were 

visualized using an ECL kit. Rabbit polyclonal anti-

AIF-1 (10904-1-AP, Proteintech, China) and rabbit 

polyclonal anti-Tubulin (11224-1-AP, Proteintech) were 

purchased and used for western blot assays at diluted 

concentrations of 1:1,000 and 1:2,000, respectively. 

 

Transwell assay 

 

Transwell systems (BD Biosciences, USA) with 8-µm 

pore size performed migration and invasion assays. In 

brief, RPMI-resuspended cells (5 × 104) were seeded 

into the upper chambers of Transwell plates, either 

uncoated (for migration) or coated with Matrigel (for 

invasion). Medium containing 15% FBS was added to 

the lower chambers. After incubation for the specified 

duration, the chambers were taken out, and cells on the 

lower surface of the membrane were fixed, stained with 

0.1% crystal violet, and photographed. Five random 

visual fields were manually counted for each chamber. 

Both migration and invasion assays were independently 

repeated three times. 

 

Statistical analysis 

 

AIF-1 protein expression levels in clinical tumors and 

normal tissues were compared for statistical 

significance using a paired t-test. The predictive value 

of AIF-1 expression in each cancer was assessed using 

univariate Cox regression analysis and the Kaplan-

Meier method. Correlations between groups were 

investigated using Spearman’s correlation analysis. 

Differences were explored using Student’s t-test or one-

way analysis of variance. The significance level of p < 

0.05 was used. The data underwent GraphPad Prism 9.0 

software analysis and were repeated thrice. The findings 

are reported as the mean ± SD. 

 

Availability of data and materials 

 

Publicly available datasets were analyzed in this study. 

The public databases included the TCGA database 

(https://gdc.cancer.gov/), GTEx database, THPA 

database (https://www.proteinatlas.org/), UCSC Xena 

database (https://xenabrowser.net/datapages/), and 

cBioPortal web (https://www.cbioportal.org/). The 

abbreviations of cancers are presented in Supplementary 

Table 1. 

 

RESULTS 
 

Basic information on AIF-1 

 

The study incorporated samples from the TCGA database 

to be further analyzed. Figure 1 illustrates the flow chart 

of our study design. To examine the expression profile of 

AIF-1 across multiple tissues and cancer cell lines, we 

analyzed the mRNA expression levels of AIF-1 in 31 

normal human organs (Figure 2A) and 21 cancer cell 

lines (Figure 2B) by utilizing data retrieved from the 

GTEx and CCLE datasets. Subsequently, the results 

showed that AIF-1 was highly expressed in BRCA, 

CESC, CHOL, ESCA, GBM, HNSC, KIRC, LAML, 

LGG, LIHC, OV, PAAD, SKCM, STAD, TGCT, 

THCA, and UCS. In contrast, ACC, KICH, LUAD, 

LUSC, READ, and UCEC exhibited low expression 

levels of AIF-1 (Figure 2C). Compared with normal 

tissues, the mRNA (Figure 2D) and protein (Figure 2E) 

expression of AIF-1 in KIRC was significantly 

upregulated. Thus, we further conducted western blot and 

qRT-PCR assays in clinical KIRC samples. As expected, 

the findings indicated that AIF-1 expression was 

significantly elevated in KIRC samples compared with 

adjacent tissues (Figure 2F–2H). We further assessed 

AIF-1 expression in cancer stages, pathologic grades, age 

phases, and body weight. As illustrated in Figure 2I, the 

AIF-1 expression was significantly increased in stages 1–

4 of KIRC patients. We also found that those aged over 

20 years old or overweight/obese/extremely obese with 

KIRC had higher expression levels. Finally, 

the immunofluorescence experiment presented that 

the AIF-1 protein was primarily distributed in the 

endoplasmic reticulum in the U2-OS, NB-4, and REH 

cell lines (Figure 2J). 

 

Mutation landscape of AIF-1 and enrichment 

analysis of AIF-1-related partners in pan-cancer 

 

We analyzed genetic alterations of AIF-1 in tumor 

samples from the TCGA pan-cancer cohort. As 

represented in Figure 3A, “Amplification” was the 

primary alteration type in most cancers. The highest 

AIF-1 alteration frequency (>8%) appeared in the 

patients with DLBC with “Deep Deletion” as the major 

alteration type. In addition, the mutation counts of each 

type in different cancers, including not mutated, deep 

deletion, missense, shallow deletion, truncating, gain in 

the frame, diploid, splice, amplification, and structural 

https://gdc.cancer.gov/
https://www.proteinatlas.org/
https://xenabrowser.net/datapages/
https://www.cbioportal.org/
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variant, are shown in Figure 3B. Furthermore, our 

analysis revealed a cooccurrence of genetic alterations 

between AIF-1 and other genes, as depicted in Figure 

3C and 3D. These results suggested that these genes 

may act as functional partners in contributing to 

oncogenic effects AIF-1 across different cancer types. 

Furthermore, the sites and case numbers of AIF-1 

alterations are shown in Figure 3E. The “missense” was 

the primary type of genetic alteration, and G136C was 

detected in STAC, which can induce a missense 

mutation and translation from glycine to cysteine. 

P138Qfs*36 was observed in patients with COAD, 

 

 
 

Figure 1. Flow chart of the entire study. 
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resulting in a frameshift or deletion mutation. 

Subsequently, the 3D structure of G136C/P138Qfs*36 

in AIF-1 was observed, as shown in Figure 3F. 

Importantly, we investigated the possible correlation 

between AIF-1 genetic alterations and the clinical 

survival outcomes of the subjects. The results indicated 

 

 
 

Figure 2. Basic information of AIF-1. (A) AIF-1 expression in 31 types of tissues. (B) AIF-1 expression in the cancer cell lines. (C) The level 

of AIF-1 expression between tumor and normal tissues in each type of cancer is based on the integrated data from TCGA and GTEx 
datasets. (D) The expression level of AIF-1 between KIRC and normal tissues. (E) The protein expression level of AIF-1 between tumor and 
normal tissues. (F and G) Determination and quantification of AIF-1 expression levels in KIRC tissues and paired normal tissues by western 
blotting assay. Tubulin was used as a loading control. (H) qRT-PCR analysis of AIF-1 mRNA expression in KIRC tumors and paired normal 
tissues. (I) AIF-1 expression levels in different pathologic grades, TNM stages, age phases, and body weights. (J) The immunofluorescence 
images of AIF-1 protein, nucleus, endoplasmic reticulum (ER), microtubules, and the incorporative images in U2-OS, NB-4, and REH cell 
lines. (*P < 0.05, **P < 0.01, and ***P < 0.001). 
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that AIF-1 alteration showed a worse prognosis in 

disease-free survival (DFS) and progression-free 

survival (PFS) than patients without AIF-1 alteration. 

Nevertheless, there was no noteworthy distinction 

observed in the overall survival (OS) or disease-specific 

survival (DSS) (Figure 3G). 

 

 
 

Figure 3. Mutation landscape of AIF-1 in pan-cancer. (A) The AIF-1 alteration frequency and mutation type in various cancers were 

displayed. (B) The entire mutation count of AIF-1 from the TCGA dataset is based on the cBioPortal tool. (C) Waterfall plot showing the 
cooccurrence pattern of AIF-1 alteration with genetic alterations of HSPA1L, PRRC2A, C2, MICB, SLC44A4, MSH5, VWA7, C4A, LTA, and 
NELFE. (D) Bar plot showing the frequencies of IGHV1-58, TRBV3-1, KRT19P2, SOCS2-AS1, CRADD-AS1, FAM170B-AS1, TRBV6-7, C10ORF71-
AS1, ERCC6-PGBD3, and FAM21EP alteration cooccurrence with AIF-1 alteration. (E) Mutation sites are displayed in the AIF-1 structural 
domain. (F) The highest alteration frequency (G136C/P138Qfs*36) was displayed in the 3D structure of AIF-1 (labeled in yellow). (G) The 
potential correlation between AIF-1 mutation status and overall, disease-specific, disease-free, and progression-free survival. The original 
description lacked a comma between overall and disease specific survival. 
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To unravel the potential molecular pathways by which 

AIF-1 contributes to cancer carcinogenesis, we created 

a PPI network for the AIF-1 gene by utilizing the 

GeneMANIA database in Figure 4A. The results 

showed that AIF-1 significantly interacted with CASP8, 

PLS3, LCP1, PHB, etc. We observed a positive 

 

 
 

Figure 4. Enrichment analysis of AIF-1-related partners. (A) The GeneMANIA database showed the AIF-1-interacting gene network. 

The size of the node indicates the intensity of the connections. The internode connection lines represent gene-gene interactions, and the 
line color represents the types of interactions. The node color represents the possible functions of the respective genes. (B) The AIF-1-
correlated genes in TCGA projects and the expression correlation between AIF-1 and the top 10 selected genes, including TYROBP, GMGF, 
LAPTM5, SELPLG, C1orf162, LST1, SPI1, TNFAIP8L2, and MS4A6A, were analyzed. (C) The corresponding heatmap data in the exact cancer 
types are displayed. 
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correlation between the AIF-1 and TYROBP, GMGF, 

HCST, LAPTM5, SELPLG, C1orf162, LST1, SPI1, 

TNFAIP8L2, and MS4A6A genes (Figure 4B). The 

corresponding heatmap data showed a positive 

correlation between AIF-1 and the 10 genes mentioned 

above in most TCGA cancer types (Figure 4C). 

 

Single-cell analysis of AIF-1 in cancers 

 

To gain insight into the primary cell types expressing 

AIF-1 within tumor microenvironments, we conducted 

a single-cell analysis of AIF-1 in cancer sample 

datasets. The results indicated that (Figure 5A) AIF-1 

was mainly expressed in monocytes/macrophages and 

malignant cells. The GSE132509 dataset, which 

contains 37,936 cells from 11 ALL patients treated with 

immune checkpoint inhibitors, was described in the 

immune cells types such as T cells, monocytes, 

macrophages, or malignant cells in the ALL 

microenvironment (Figure 5B). In the GSE145281 

KIRC dataset with 44,220 cells and the GSE111360 

KIRC dataset with 23,130 cells, AIF-1 was mainly 

expressed in malignant cells, monocytes, and 

macrophages in the KIRC microenvironment  

(Figure 5C and 5D). Furthermore, in the GSE139555 

KIRC dataset with 49,907 cells, AIF-1 was highly 

expressed in DC and monocytes/macrophages cells 

(Figure 5E). The results showed that AIF-1 expression 

levels significantly increased in the mononuclear/ 

macrophage cells of KIRC patients. 

 

 
 

Figure 5. Single-cell expression of AIF-1 across cancers. (A) Summary of AIF-1 expression in various cell types in single-cell datasets. 

(B) Scatter plot showing the distributions of 7 different cell types in the GSE132509 ALL dataset. (C) Scatter plot showing the AIF-1 
expression levels of cells in the GSE145281 KIRC dataset (D) Scatter plot showing the distributions of 12 different cell types in the 
GSE111360 KIRC dataset. (E) Scatter plot showing the distributions of 11 different cell types in the GSE139555 KIRC dataset. 
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TIMER immune cell infiltration analysis 

 

We conducted further analysis to evaluate the 

connections between AIF-1 and cancer immunity by 

examining the correlations between AIF-1 expression 

and infiltration of immune cells. We revealed the 

landscape of AIF-1 associated with immune cell 

infiltration, including CD8+ T, CD4+ T, Tregs, B cells, 

monocytes, macrophages, dendritic, mast, CAFs, 

progenitors, Endo, HSC, Tfh cells, γ/δ T cells, NKT cells, 

MDSCs, neutrophils (Figure 6). AIF-1 was positively 

linked with the infiltration levels of CD8+ T cells, 

 

 
 

Figure 6. TIMER immune cell infiltration analyses. Correlations between AIF-1 expression and the infiltration levels of CD8+ T cells, 

CD4+ T cells, regulatory T cells (Tregs), B cells, monocytes, macrophages, NK cells, dendritic cells, mast cells, CAFs, progenitors, Endo, Eos, 
HSCs, TFH cells, γdT cells, NKT cells, MDSCs, and neutrophils in cancers. Positive correlation in red and negative correlation in blue. 
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Tregs, monocytes, macrophages, and CAFs in most 

TCGA cancers. In contrast, AIF-1 expression was 

negatively related to the infiltration levels of MDSCs in 

most cancers, except for LIHC and THYM. In general, 

AIF-1 showed a positive correlation with the degree of 

immune infiltration exhibited by various types of 

infiltrating cells, including MDSCs, CD8+ T cells, 

macrophages, monocytes, and dendritic cells, in 

multiple cancers. In addition, we observed a significant 

correlation between the expression of AIF-1 and various 

types of infiltrating immune cells, including CD8+ T 

cells, CD4+ T cells, B cells, macrophages, NK cells, 

and dendritic cells in both thymic carcinoma (THYM) 

and thyroid carcinoma (THCA). Nonetheless, the nature 

of this correlation exhibited some variations, which 

could be attributed to the varying levels of immune 

infiltration in specific tumor types. Furthermore, 

ImmuneScore, EstimateScore, StromalScore, and 

neoantigens were integrated, suggesting that AIF-1 was 

associated with immune infiltration in some cancers 

(Supplementary Figures 1–4). Hence, these findings 

indicate that AIF-1 could potentially influence cancer’s 

progression, prognosis, and treatment through its 

interaction with immune cells. 

 

Associations between AIF-1 and immune regulators, 

TMB, and MSI 

 

Figure 7A depicts the relationships between AIF-1 

expression and the immune regulators in various 

cancers. In most cancers, a significant positive 

correlation was observed between AIF-1 and the 

majority of immune regulators, especially in ACC, 

BLCA, CESC, COAD, KIRC, LIHC, SKCM, TGCT, 

THCA, and UVM. Conversely, AIF-1 demonstrated a 

pronounced negative association with most immune 

 

 
 

Figure 7. Relationships between AIF-1 and immune regulators, TMB, and MSI. (A) The Spearman correlation heatmap depicts the 

relationships between AIF-1 expression and the 47 different types of immune regulators in pan-cancer. Red color denotes a positive 
correlation, whereas blue color signifies a negative correlation. (B) Correlations between AIF-1 expression and tumor mutation burden 
(TMB) across cancers. (C) Correlations between AIF-1 expression and microsatellite instability (MSI) across cancers. (*P < 0.05, **P < 0.01, 
and ***P < 0.001). 
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regulators in THYM. In addition, a significant positive 

correlation observed between AIF-1 and several 

immune regulators, including LAIR1, CD244, LAG3, 

ICOS, CD48, CD28, HAVCR, CD80, PDCD1, CD27, 

VSIR, CD86, and TNFRSF9 in most cancers. To 

investigate the potential role of AIF-1 in predicting the 

efficacy of ICIs, we conducted additional analyses to 

evaluate the association between AIF-1 expression and 

TMB and MSI. Positive correlations with TMB were 

shown in UCEC, SARC, OV, and COAD. Negative 

correlations were observed in UVM, THYM, THCA, 

LUAD, LAML, HNSC, GBM, and DLBC (Figure 7B). 

Moreover, for the correlation between AIF-1 expression 

and MSI, positive associations were discovered in 

COAD, LAML, and READ. Negative correlations were 

found in HNSC, LUSC, LUAD, OV, PCPG, SKCM, 

STAD, and TGCT (Figure 7C). Based on our findings, 

it appears that AIF-1 may be able to serve as a predictor 

of the efficacy of immune checkpoint inhibitors (ICIs) 

in the specific types of cancers being studied. 

 

Prognostic analysis of AIF-1 in pan-cancer 

 

We utilized the Kaplan-Meier method and univariate 

Cox regression to investigate the predictive potential of 

AIF-1 in the pan-cancer analysis. The forest plot results 

(Figure 8A) showed that downregulating AIF-1 had 

unique relationships with OS time prolongation in LGG 

(HR = 1.18 [95% CI, 1.00 to 1.39], p = 0.05) and UVM 

(HR = 1.56 [95% CI, 1.18 to 2.06], p = 0.0013). The 

overexpression of AIF-1 expression was related to the 

time delay of OS in CESC (HR = 0.80 [95% CI, 0.67 to 

0.95], p = 0.01) and SKCM (HR = 0.83 [95% CI, 0.77 

to 0.90], p < 0.0001). In addition, the relationships 

between AIF-1 expression and DSS in pan-cancer were 

also investigated. The results revealed a significant HR 

only in SKCM, THCA, and UVM (Figure 8B). In 

particular, SKCM had the most potent protective effect 

(HR = 0.84). Furthermore, the Kaplan–Meier curve 

analysis of KIRC CESC and SKCM showed that 

(Figure 8C) higher AIF-1 expression was associated 

with poor survival outcomes in KIRC and good survival 

outcomes in SKCM and CESC. Kaplan–Meier curve 

analysis for DSS in KIRC, CESC, and SKCM achieved 

consistent results (Figure 8D). The Kaplan-Meier curve 

analysis revealed that in KIRC, CESC, and SKCM, the 

expression of AIF-1 was associated with distinct 

survival outcomes. Specifically, higher expression of 

AIF-1 was linked to poor survival outcomes in KIRC. 

In contrast, in CESC and SKCM, higher expression of 

AIF-1 was associated with favorable survival outcomes. 

Consistent results were obtained from the Kaplan-Meier 

analysis of disease-specific survival (DSS) in KIRC, 
CESC, and SKCM, suggesting that AIF-1 may be a 

prognostic biomarker for these cancers. Figure 8C 

provides a visual representation of these findings. To 

further understand the prophetic role of AIF-1 in SKCM 

and UVM, univariate and multivariate Cox regression 

analyses were subsequently used to examine whether 

AIF-1 is an independent prognostic factor. The 

multivariate Cox regression analysis showed that AIF-1 

was an independent protective factor for SKCM and an 

independent risk factor for UVM (Supplementary 

Figure 5). 

 

Correlation analysis with methylation profile 

 

According to the findings, AIF-1 demonstrates 

hypermethylation in CHOL, THCA, PRAD, UCEC, 

BRCA, LUSC, and LUAD. However, it exhibits 

hypomethylation in several other cancer types, such as 

COAD, HNSC, TGCT, KIRC, and BLCA (Figure 9A). 

We discovered that hypomethylation of AIF-1 is 

correlated with shorter survival durations in GBMLGG, 

KIRC, OV, and UVM. Conversely, hypomethylation of 

AIF-1 is linked with a favorable prognosis in UCEC 

and melanoma (Figure 9B). In addition, our findings 

revealed a correlation between the methylation levels of 

AIF-1 and dysfunctional T-cell phenotypes in the 

glioma, uveal, ovarian, head and neck cancer, DLBC, 

breast cancer, and endometrial cancer cohorts (Figure 

9C). Taken together, these results suggest that 

epigenetic methylation of AIF-1 in cancer patients is 

connected with dysfunctional T-cell phenotypes through 

various mechanisms, leading to distinct prognoses. 

Following our analysis of the association between  

AIF-1 methylation and prognosis, we investigated the 

relationship between AIF-1 expression and 

tumorigenesis mechanisms, specifically MMR defects 

and DNA methylation of crucial tumorigenesis genes. 

Our results revealed that AIF-1 was significantly 

correlated with the five MMR genes in pan-cancer 

(Figure 9D). Remarkably, most cancer types exhibited a 

negative correlation with these MMR genes, which 

could imply a potential role of MMR regulation in 

tumorigenesis. Additionally, we examined the 

expression of four methyltransferase genes (DNMT 1, 

2, 3A, and 3B) in various cancer types and investigated 

their relationship with AIF-1. Our findings 

demonstrated coexpression between AIF-1 and these 

methyltransferase genes in almost all cancer types 

except for SKCM, PCPG, MESO, ESCA, DLBC, and 

ACC. The correlation coefficient was highest in TGCT, 

CESC, and KICH (Figure 9E). 

 

Gene set enrichment analysis of AIF-1 

 

To identify the cancer hallmarks associated with AIF-1 

expression, we used differentially expressed genes 
(DEGs) between low-AIF-1 and high-AIF-1 subgroups 

in each cancer to conduct GSEA. This enabled them to 

determine which cancer hallmarks were enriched in the 
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low- or high-AIF-1 subgroups, providing insight into 

the molecular mechanisms underlying cancer 

development and progression. The study revealed a 

significant correlation between AIF-1 expression and 

various immune-related pathways, including but not 

limited to TNFA signaling via NFKB, KRAS signaling, 

IL6-JAK-STAT3 signaling, IL2-STAT5 signaling, 

epithelial–mesenchymal transition, compliment, and 

allograft rejection pathways (Figure 10). The data 

obtained from the study suggest a possible correlation 

 

 
 

Figure 8. Prognostic analysis of AIF-1 in pan-cancer. (A) The forest plot shows the association between AIF-1 expression and 
OS by the univariate Cox regression method. (B) The forest plot shows the association between AIF-1 expression and cancer 
DSS by the univariate Cox regression method. (C) Kaplan-Meier OS curves of AIF-1 in CESC, KIRC, and SKCM. (D) Kaplan-Meier 
DSS curves of AIF-1 in CESC, KIRC, and SKCM. 
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between AIF-1 expression and immune activation in the 

tumor microenvironment (TME). In addition, the IFN-a 

response, IFN-g response, and EMT were significantly 

enriched in the high-AIF-1 subgroup of all cancers. 

Earlier research has demonstrated that epithelial-

mesenchymal transition (EMT) is associated with 

cancer onset, spread, and drug resistance [24], implying 

that AIF-1 may have a crucial role in the formation and 

 

 
 

Figure 9. Correlation analysis with methylation profile. (A) Boxplots showing differential AIF-1 methylation levels (beta values) 

between tumors and adjacent tissues across the TCGA dataset. (B) Kaplan-Meier curves of OS differences between TCGA cancer cohorts 
with high methylation levels and those with low methylation levels of AIF-1. Only cancers with statistically significant differences between 
cohorts are presented. (C) Heatmap showing the roles of AIF-1 methylation in cytotoxic T-cell levels (CTLs), dysfunctional T-cell phenotypes, 
and risk factors in TCGA cancer cohorts. (D) Correlation between AIF-1 expression level and the expression of five MMR genes. The left 
bottom triangle in each unit denotes the coefficient of association calculated by Pearson’s correlation test. The top right triangle indicates 
the P value. (E) Correlation between AIF-1 expression level and four methyltransferase genes (DNMT1: red; DNMT2: blue; DNMT3A: green; 
DNMT3B: purple). 
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metastasis of cancer by participating in the EMT 

process. To summarize, the study’s results suggest that 

the abnormal expression of AIF-1 may be linked to the 

immune response in cancers, which could offer insights 

for further exploration of the functions and roles of 

AIF-1 in the onset and progression of cancer. 

AIF-1 promotes the ability of cell proliferation and 

invasion 

 

The following assays were designed to investigate the 

impact of AIF-1 on the proliferation and invasion of 

clear cell renal cells. First, western blotting was 

 

 
 

Figure 10. Gene set enrichment analysis (GSEA) of AIF-1 in pan-cancer. The circle size represents the FDR value of the enriched 

term in each cancer, and the color indicates each term’s normalized enrichment score (NES). 
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conducted to verify the knockdown status of AIF-1  

in the 786-O cells. The Western blot analysis 

demonstrated that using sh-1 and sh-2 shRNA 

effectively reduced the protein level of AIF-1 in 786-O 

cells (Figure 11A). To investigate the possible role of 

AIF-1 in regulating cell proliferation and invasion, we 

conducted colony formation and Transwell assays to 

evaluate the proliferative and invasive capabilities of 

the cells. CCK-8 (Figure 11B) and colony formation 

(Figure 11C and 11D) analyses suggested that the 

proliferative ability of 786-O cells decreased after AIF-

1 was knocked down. Edu experiment attained the same 

results (Figure 11E and 11F). Furthermore, the 

Transwell assays provided evidence that suppressing the 

expression of AIF-1 resulted in a notable decrease in the 

invasive capacity of 786-O cells. (Figure 11G and 11H). 

Therefore, we believe that AIF-1 expression plays a 

crucial role in promoting the proliferation and invasion 

of clear-cell renal cells. 
 

DISCUSSION 
 

The analysis of gene expression through transcriptome 

analysis presents the most significant potential to 

 

 
 

Figure 11. AIF-1 promotes RCC cell proliferation and invasion. (A) The protein expression levels of AIF-1 in 786-O cells after 

transfection with shAIF-1 or shNC. (B) CCK-8 assay showing proliferation of cells following knockdown of AIF-1. (C and D) Representative 
images and quantification of colony formation assays of 786-O cells transfected with shAIF-1. (E and F) Representative images and 
quantification of EdU assays of 786-O cells transfected with shAIF-1. Scale bar, 50 μm. (G and H) Transwell assays showed the suppressed 
migration and invasion ability of 786-O cells transfected with shAIF-1. (*P < 0.05, **P < 0.01, and ***P < 0.001). 
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investigate the intricate and diverse nature of different 

cancers and to pinpoint novel prognostic and 

therapeutic biomarkers. A substantial body of research 

has linked the expression of AIF-1 to cancer 

progression, metastasis, and prognosis, indicating that 

AIF-1 could serve as a valuable biomarker and 

therapeutic target. Consequently, it is essential to 

evaluate the role of AIF-1 across various cancer types 

thoroughly. In this study, we extensively examined 

AIF-1 expression levels in multiple databases, covering 

a wide range of cancers. Our analysis revealed that  

AIF-1 exhibited a significant upregulation in 17 types of 

tumor tissues compared to their normal tissue 

counterparts. It was found to be closely associated with 

the prognosis of several cancer types. 

 

Additionally, we further investigated the correlation 

between AIF-1 expression and gene mutations, gene 

modifications, immune cell infiltration, TMB, and MSI 

in different cancers. Of equal importance, we carried 

out a series of experiments to investigate the expression 

of AIF-1 in KIRC tissues and renal cell carcinoma 

(RCC) cells. Our results indicated that AIF-1 was 

differentially expressed in these samples. We further 

demonstrated that AIF-1 exerted a pro-tumorigenic 

effect in RCC cells. 

 

In the current pan-cancer analysis, based on the TCGA 

and GTEx databases, the expression of AIF-1 was 

observed to be significantly upregulated in the majority 

of cancer types studied, including BRCA, CESC, ESCA, 

CHOL, GBM, HNSC, KIRC, LAML, LGG, LIHC, OV, 

PAAD, SKCM, STAD, TGCT, THCA, and UCS. We 

found lower expression of AIF-1 in ACC, KICH, LUAD, 

LUSC, READ, and UCEC compared with normal 

tissues. Previous reports have suggested that AIF-1 could 

be a valuable prognostic biomarker for patients with 

glioma [12]. To confirm the findings from the 

bioinformatic analyses, we carried out a clinical sample 

test using KIRC samples. Our results indicated that the 

expression of AIF-1 was significantly higher in KIRC 

tissues at both the mRNA and protein levels compared to 

the corresponding adjacent normal kidney tissue. Taken 

together, these findings indicate that AIF-1 is 

prominently upregulated and expressed in most cancers, 

which strongly implies that AIF-1 may play a crucial role 

in the initiation and progression of tumorigenesis. The 

genetic mutations in normal cells can lead to the 

progression from hyperplasia and dysplasia to invasive 

cancer and ultimately to metastatic disease [24]. 

Therefore, analysis of genetic alterations can provide 

further insights into cancer progression [25]. Thus, we 

explored the mutation landscape of AIF-1 across cancers. 
 

The findings of this study demonstrated that alterations 

in AIF-1 were not ubiquitous, with the most frequently 

affected cancer type being lymphoid neoplasm diffuse 

large B-cell lymphoma (DLBC), with over 8% of DLBC 

patients exhibiting alterations, mainly in the form of 

deep deletions. Amplification was the most common 

type of mutation in most cancers. Given that genetic 

alterations are a common feature in tumors, alterations 

observed in the precancerous stages are more likely to be 

pivotal events that trigger and propel cancer 

development [24]. However, it is worth noting that 

cancer progression cannot be attributed to mutations in a 

single gene. The cooccurrence of mutations in multiple 

genes is often observed as a typical driver to promote 

tumor progression and limit treatment response [26, 27]. 

Accordingly, we analyzed gene expression and alteration 

cooccurrence to identify potential functional partners of 

AIF-1 in various cancer types. Intriguingly, we found a 

remarkable correlation between AIF-1 expression and 

the expression of HSPA1L, PRRC2A, C2, MICB, 

SLC44A4, AMSH5, VWA7, C4A, LTA, and NELFE in 

pan-cancer analysis, which also suggested that they have 

a certain relationship in the carcinogenic mechanism. 

Notably, our results indicate that patients without 

alterations in AIF-1 exhibited improved disease-free and 

progression-free survival compared to those with AIF-1 

alterations. Nevertheless, additional experimental studies 

will be necessary to comprehensively elucidate the 

mechanisms by which AIF-1 mutations contribute to 

tumorigenesis and disease progression. 

 

Tumor immune escape is closely related to the 

prognosis and treatment of cancer patients [28]. Tumor 

immune escape mechanisms include two types. Tumor 

infiltration of immune cells leads to T-cell anergy or 

dysfunction [29], and the abnormal infiltration of 

immune cells into healthy tissues may facilitate the 

development and progression of tumors [30]. The 

second mechanism is T-cell rejection [31], through 

which tumors prevent immune cell infiltration. This 

process relies on immunosuppressive cells, including 

CAFs, Tregs, and MDSCs [32]. Studies have also found 

that AIF-1 plays a major role in infiltrating immune 

cells and mediating tumor progression, implying its 

high potential as a target molecule for breast cancer 

diagnosis, prognostication, and treatment [33]. In 

esophageal cancer, AIF-1 has emerged as a novel 

prognostic gene related to the tumor microenvironment, 

immune infiltration, and TIGIT expression. These 

findings suggest that AIF-1 holds great promise as a 

prognostic predictor [34, 35]. 

 

Importantly, our study found that AIF-1 is positively 

associated with the degree of infiltration of CD8+ T 

cells, monocytes, and macrophages but negatively 
associated with the degree of infiltration of dendritic 

cells and MDSCs in most cancers. Therefore, we 

speculate that T-cell rejection is the main mechanism by 
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which AIF-1 regulates immune cell tumor escape, 

tumor promotion, and metastasis. Correlation analysis 

between AIF-1 and immune regulators in various 

cancers revealed a positive association between AIF-1 

expression and numerous immune regulator genes in 

most tumors, except for THYM. This suggests that AIF-

1 may play a role in modulating the immune response in 

tumor microenvironments. Moreover, AIF-1 correlated 

with TMB in 12 cancers and MSI in 11 cancers, which 

suggested that AIF-1 can be used as a new biomarker to 

predict ICI response for certain cancers. In previous 

studies, targeting CD28 [36], CD84 [37], CD86 [38], 

and LAIRI [39]. Based on our findings that AIF-1 

expression is positively correlated with the expression 

of CD28, CD84, CD86, and LAIRI in several cancer 

types, we hypothesize that further investigation into the 

potential association between AIF-1 and these immune 

regulators would be promising. 

 

The results from OS and DSS analyses were highly 

consistent, showing that AIF-1 is significantly associated 

with the prognosis of cancer patients, and AIF-1 is a risk 

factor for LGG and UVM and a protective factor for 

CESC, SKCM, and THCA. Combined with the previous 

AIF-1 expression analysis, we determined that high 

expression of AIF-1 results in a worse prognosis in LGG 

and UVM. The findings of the OS and DSS analyses 

were extremely consistent, indicating that AIF-1 is 

significantly connected with cancer patient prognosis 

and that AIF-1 is a risk factor for LGG and UVM and a 

protective factor for CESC, SKCM, and THCA. 

Combined with the earlier AIF-1 expression 

investigation, we discovered that high AIF-1 expression 

results in a poor prognosis in LGG and UVM. 

Furthermore, the Kaplan-Meier survival curves for 

KIRC provided clear evidence of a correlation between 

elevated AIF-1 expression levels and unfavorable 

prognosis. An earlier investigation has confirmed that 

AIF-1 holds promise as a prognostic biomarker for 

individuals with glioma. AIF-1 participates in pro-

tumoral processes, governs immune status, and 

correlates with unfavorable prognoses [12]. The findings 

above indicate that AIF-1 has a crucial role in predicting 

the prognosis of patients and has the potential to serve as 

a robust biomarker for predicting certain types of cancer. 

 

Additionally, we found that AIF-1 is hypermethylated in 

CHOL, THCA, PRAD, UCEC, BRCA, LUSC, and 

LUAD. At the same time, it is hypomethylated in 

COAD, HNSC, TGCT, BLCA, and KIRC. There was a 

correlation between the varying methylation statuses of 

AIF-1 and differential mRNA overexpression levels in 

those cancer types, indicating that epigenetic 
methylation of AIF-1 might impact the transcriptome of 

diverse cancers. The methylation statuses of AIF-1 in 

TCGA tumors were found to be associated with the 

levels of mRNA overexpression in those tumors. 

Surprisingly, our findings revealed that hypomethylation 

of AIF-1 resulted in shorter life durations in GBMLGG, 

KIRC, OV, and UVM; however, hypermethylation of 

AIF-1 resulted in shorter life durations in UCEC and 

melanoma. As a result, epigenetic methylation of AIF-1 

may impact the transcriptome of TCGA tumor cells, 

which could, in turn, influence the development and 

progression of tumors. 

 

Remarkably, according to the GSEA findings, AIF-1 

was closely linked with immune-activated processes 

such as TNFA-signaling-via NFKB, KARAS-signaling-

up, IFN-a response, IFN-g response, inflammatory-

response, and allograft-rejection pathways. Still, the 

results differed significantly among various cancer 

types. For instance, AIF-1 was significantly negatively 

correlated with MYC-targets-V2, MITOTIC-signaling, 

G2-checkpoint, and E2F-targets in COAD, ESCA, and 

STAD. This discovery suggests that AIF-1 may have 

different functions in different types of cancer. Research 

by YANG et al. also demonstrated that AIF-1 was an 

independent prognostic indicator that regulates the β-

catenin signaling pathway in gastric cancer [40]. AIF-1+ 

CSF1R+ MSCs, induced by TNF-α, generate an 

inflammatory microenvironment and promote 

hepatocarcinogenesis [41]. Furthermore, the PAK5-AIF 

signaling pathway may play an essential role in 

mammary tumorigenesis, providing a new therapeutic 

target for breast cancer treatment [42]. 

 

In this pan-cancer study, we investigated various aspects 

of AIF-1 expression. We determined that AIF-1 has the 

potential as a valuable biomarker in diverse cancers, 

particularly in the age of immunotherapy. However, 

despite these promising findings, some limitations still 

need to be considered. First, the results of this pan-

cancer analysis were mainly derived from an integrated 

analysis of multiple databases. Due to the limited 

analysis method, this study may have some systematic 

errors. Second, this study presents the role of AIF-1 in 

various cancers through bioinformatics analysis, is 

validated by clinical specimens from KIRC, and uses a 

renal cell carcinoma cell line to perform functional cell 

testing in vitro. Third, we found that the AIF-1 

expression is associated with tumor immunity. However, 

the specific mechanism of action is still unclear and 

needs further exploration. Nevertheless, this pan-cancer 

study provides a deeper understanding of the role of 

AIF-1 in the functional nucleus of different tumors. 

 

CONCLUSION 
 

Our in-depth analysis of AIF-1 across multiple cancer 

types has shown its potential as a biomarker for 

predicting cancer prognosis. In addition, our research 
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revealed a significant correlation between AIF-1 

expression and the tumor microenvironment, tumor-

infiltrating immune cells, immune subtypes, and 

biomarkers of immune checkpoint inhibitors. These 

discoveries offer novel insights into the potential 

involvement of AIF-1 in tumor immunity, which could 

aid in the identification of innovative therapeutic targets 

and predictive biomarkers for immunotherapy. 

Moreover, our study established the first evidence of 

differential expression of AIF-1 in KIRC tissues. It 

explored the effects of AIF-1 on the proliferation and 

invasion of RCC cells, laying a preliminary groundwork 

for developing targeted therapies for KIRC based on 

AIF-1 as a potential biomarker. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Correlation analysis between AIF-1 expression across cancers and the number of tumors neoantigens. 
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Supplementary Figure 2. Correlation analysis between the expression levels of AIF-1 and the StromalScore across cancers. 
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Supplementary Figure 3. Correlation analysis between the expression levels of AIF-1 and the ImmuneScore across cancers. 

 



www.aging-us.com 2607 AGING 

 
 

Supplementary Figure 4. Correlation analysis between the expression levels of AIF-1 and EstimateScore across cancers. 
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Supplementary Figure 5. Prognostic value of AIF-1 expression. (A) Univariate Cox regression of AIF-1 in SKCM (OS). (B) Multivariate 

Cox regression of AIF-1 in SKCM (OS). (C) Univariate Cox regression of AIF-1 in UVM (OS). (D) Multivariate Cox regression of AIF-1 in 
UVM (OS). 
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Supplementary Table 
 

Supplementary Table 1. Abbreviations of cancers in the TCGA-Pan-cancer cohort. 

Abbreviation Unabbreviated form 

ACC Adrenocortical carcinoma 

AML Acute Myeloid Leukemia 

BLCA Bladder Urothelial Carcinoma 

BRCA Breast invasive carcinoma 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

CHOL Cholangiocarcinoma 

COAD Colon adenocarcinoma 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

ESCA Esophageal carcinoma 

GBM Glioblastoma multiforme 

HNSC Head and Neck squamous cell carcinoma 

KICH Kidney Chromophobe 

KIRC Kidney renal clear cell carcinoma 

KIRP Kidney renal papillary cell carcinoma 

LAML Acute Myeloid Leukemia 

LGG Brain Lower Grade Glioma 

LIHC Liver hepatocellular carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

MESO Mesothelioma 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PPGL Pheochromocytoma and Paraganglioma 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

SARC Sarcoma 

SKCM Skin Cutaneous Melanoma 

STAD Stomach adenocarcinoma 

TGCT Testicular Germ Cell Tumors 

THCA Thyroid carcinoma 

THYM Thymoma 

UCEC Uterine Corpus Endometrial Carcinoma 

UCS Uterine Carcinosarcoma 

UVM Uveal Melanoma 

 

 


