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INTRODUCTION 
 

An ideal anti-cancer therapy is still an ongoing pursuit 

for most researchers and clinicians. The extensive 

research efforts in past decades have resulted in the 
emergence of immune-checkpoint inhibitors (ICIs) and 

various types of targeted therapy. However, not all 

patients, even with the same tumor type and at the same 

stage, responded well to these anti-tumor agents. For 

instance, only 4% uveal melanoma patients with 

metastasis showed partial response to nivolumab plus 

ipilimumab, as reported in a recent published real-life, 

retrospective study [1]. In a multicenter, randomized 

phase 3 study, only 36-37% and 13% of melanoma 

patients at advanced stage showed an objective response 

to pembrolizumab and ipilimumab, respectively [2]. 

Given the complexity of the human genome and the 

heterogeneity of the tumor itself, personalized therapy 
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ABSTRACT 
 

Background: Immunogenic cell death (ICD) is a form of regulated cell death (RCD) which could drive the 
activation of the innate and adaptive immune responses. In this work, we aimed to develop an ICD-related 
signature to facilitate the assessment of prognosis and immunotherapy response for melanoma patients. 
Methods: A set of machine learning methods, including consensus clustering, non-negative matrix factorization 
(NMF) method and least absolute shrinkage and selection operator (LASSO) logistic regression model, and 
bioinformatics analytic tools were integrated to construct an ICD-related risk score (ICDscore). CIBERSORT and 
ESTIMATE algorithm were used to evaluate the infiltration of immune cells. The 'pRRophetic' package in R and 6 
cohorts of melanoma patients receiving immunotherapy were used for therapy sensitivity analyses. The 
predictive performance between ICDscore with other mRNA signatures were also compared. 
Results: The ICDscore could predict prognosis and immunotherapy response in multiple cohorts, and displayed 
superior performance than other forms of cell death-related signatures or 52 published signatures. The 
melanoma patients with low ICDscore were marked with high infiltration of immune cells, high expression of 
immune checkpoint inhibitor-related genes, and increased tumor mutation burden. 
Conclusions: In conclusion, we constructed a stable and robust ICD-related signature for evaluating the 
prognosis and benefits of immunotherapy, and it could serve as a promising tool to guide decision-making and 
surveillance for individual melanoma patients. 
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might be an alternative option to deal with the 

aforementioned problem. Some efforts have been made 

to classify patients into subgroups with a different risk 

score, based on the generation of gene expression 

signatures [3]. The most successful signature might be 

the 21-gene expression assay, which helps to identify  

a subgroup of hormone-receptor–positive, HER2-

negative, axillary node–negative breast cancer patients 

with a high risk of recurrence and to guide adjuvant 

chemotherapy for these patients [4, 5]. 

 

Inducing the death of tumor cells is the ultimate purpose 

of cancer treatment. Multiple forms of regulated cell 

death (RCD) have been identified in cancer, including 

apoptosis, autophagy, ferroptosis, necroptosis, and 

proptosis [6]. Immunogenic cell death (ICD) is one kind 

of RCD but unique in its capability to trigger antigen-

specific adaptive immunological responses [7]. Various 

types of anti-cancer therapy, including chemotherapy 

and radiotherapy, could drive the occurrence of ICD [7]. 

In addition, induction of ICD also becomes a strategy in 

the design of anti-cancer agents in various types of 

tumors including melanoma. For example, Li et al. 

generated polymer micelles (named PPIR780-ZMS) 

containing IR780 dye and manganese zinc sulfide 

nanoparticles (ZMS), and revealed that PPIR780-ZMS 

could maximize ICD in melanoma and augment the 

infiltration of cytotoxic T cells (CD8+) and helper T 

cells (CD4+) [8]. Zhang et al. synthesized a nano-

inducer (named DOX/ADS NP) via the self-assembly of 

doxorubicin (DOX) and dermatan sulphate derivative 

(ADS) grafted by aromatic thioketal (ATK) [9]. This 

nano-inducer could enhance ICD and activate the 

immune response in melanoma, leading to shrinkage of 

tumor [9].  

 

Although some previous studies have attempted to 

develop signatures, based on some form of RCD, like 

autophagy and ferroptosis [10–13], and classify 

melanoma patients into subgroups with a different risk 

score, little is known about the application of ICD-

based signature in melanoma. Since melanoma  

is supposed to be an immunogenic tumor whose 

proliferation and progression have a tight relationship 

with immune cells [14, 15], and ICIs have been shown 

by clinical trials to improve the survival benefits of 

melanoma patients and have been approved for clinical 

use globally [16–18], we hypothesize that a novel ICD-

based risk score might be a better signature in 

predicting prognosis and immunotherapy efficiency of 

melanoma patients. 

 

In this work, unsupervised clustering of melanoma 
patients, based on 34 ICD-related genes summarized by 

a previous study [19], indicated that these patients could 

be classified into two subgroups with distinct overall 

survival (OS). Subsequently, we constructed an ICD-

related risk score (ICDscore) and found that melanoma 

patients with high ICDscore had apparently shorter OS 

and poor sensitivity to immunotherapies. More 

importantly, we compared ICDscore with other 

signatures developed on other forms of RCD and 

noticed that ICDscore had better performance in 

predicting OS and immunotherapy efficiency. We also 

compared ICDscore with 52 previously published 

signatures, and the results indicated that ICDscore had 

certain advantages over these signatures regarding 

prognosis predictability.  

 

MATERIALS AND METHODS 
 

Public data acquisition and processing 

 

The TCGA-SKCM cohort was downloaded from  

the Cancer Genome Atlas (TCGA) database 

(https://portal.gdc.cancer.gov). The GSE35640, 

GSE54467, GSE22153, and GSE65904 were obtained 

from the Gene Expression Omnibus (GEO) database 

(https://ncbi.nlm.nih.gov/gds). The gene expression data 

and clinical information of the Peking University 

Cancer Hospital (PUCH) study, Riaz17 study, Liu19 

study, VanAllen15 study and Gide19 study  

were downloaded from the GitHub website 

(https://github.com/), as reported in Cui’s study [20]. 

All datasets were processed as described in our previous 

work [21].  All datasets used in this work were 

downloaded from public databases, an extra ethical 

approval was not necessary. 

 

Construction of ICDscore 
 

The flow to generate the ICDscore is summarized in 

Figure 1. Specifically, melanoma patients were firstly 

stratified into two clusters (namely cluster A and B) via 

the consensus clustering and non-negative matrix 

factorization (NMF) clustering methods, based on the 

gene expression of 34 ICD-related genes. For the 

consensus clustering, the ‘ConcensusClusterPlus’ 

package in R was used [22], and the parameters used in 

the analyses were maxK = 10, reps = 1, 000, pItem = 

0.8, pFeature = 1, clusterAlg = “pam”, corUse = 

“complete.obs”, seed = 123456.  For the NMF 

clustering, the “NMF” package in R was used [23], and 

the ranks were set from 2 to 10 to do the NMF rank 

survey. The differentially expressed genes (DEGs) 

between cluster A and B were assessed by the “limma” 

package in R. Univariate Cox regression analyses were 

then performed to identify DEGs which had a 

significant p-value < 0.1 in the TCGA-SKCM and 

GSE65904 cohorts. Subsequently, a total of 182 DEGs 

were then input into a Least absolute shrinkage and 

selection operator (LASSO) regression model in 

https://github.com/
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Figure 1. The work flow for the construction of ICDscore. Two clustering methods (consensus clustering and NMF clustering) were 

used for the molecular subtyping of melanoma patients, based on the gene expression of 34 ICD related genes. Two clusters (named as 
Cluster A and B) were identified and DEGs between these two clusters were analyzed. The LASSO regression model, multivariate Cox analyses 
were then used for the construction of ICDscore. The association between the ICDscore and prognosis, tumor immune microenvironment, or 
immunotherapy response was comprehensively investigated. The performance between ICDscore and other signatures was compared. 
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GSE65904. 4 key genes were generated, and their 

corresponding coefficients were obtained via multi-

variate Cox analysis. The risk score for each patient was 

calculated by the following formula: score = - 0.17244 * 

GBP2 - 0.14202 * LYZ - 0.24610 * CST7 - 0.19525 * 

SIRPG. The ICDscore of patients in each cohort was 

calculated with the formula: ICDscore = (score-Min) / 

absolute (Max), as reported in our previous studies  

[21, 24]. 

 

Immune profile analysis 

 

The infiltration ratio of 22 immune cells in patients was 

calculated by the CIBERSORT algorithm in R software, 

as reported in our previous study [21]. The immune-

score and stromalscore of each patient were calculated 

by the ‘estimate’ package in R [25].  

 

Enrichment analysis 

 

Gene Set Enrichment Analysis (GSEA) of SKCM 

patients were performed by the ‘clusterProfiler’ package 

in R. The c5.go.bp.v2022.1.Hs.symbols.gmt was chosen 

as the gene set database. The ‘GseaVis’ package in R 

was used for visualization [26]. 

 

Statistical analysis 
 

All the data were processed, analyzed and visualized by 

R software (version 4.1.3). In addition to the packages 

mentioned above, other packages in R used in this work 

included “tidyverse”, “survival”, “msigdbr”, “dplyr”, 

“org.Hs.eg.db”, “ggplot2”, “glmnet”, “scales”, “aplot ”, 

“survivalROC”, “ggrepel”, “enrichplot”, “corrplot”, 

“survminer”, “timeROC”, “rms”, “pec”, “ggalluvial”, 

“VennDiagram”, “ggh4x”, “patchwork”, “pRRophetic”, 

and “CompareC”. The Kaplan-Meier method was used 

for prognosis analyses. The Correlation analyses were 

conducted with the Pearson method. The comparison of 

categorical variables between two groups was 

conducted with the chi-square test. The continuous 

variables were compared with the Wilcoxon rank-sum 

test. A value of p < 0.05 was considered to be 

statistically significant (*, p < 0.05; **, p < 0.01; ***, p 

< 0.001; ****, p < 0.0001). 

 

RESULTS 
 

Unsupervised clustering of ICD-related genes in 

melanoma 
 

Based on the expression of 34 ICD-related genes 

identified by Abhishek D. Garg et al. [19], two 
unsupervised clustering methods were employed to 

stratify melanoma patients in the TCGA-SKCM cohort. 

For the Consensus Clustering method, k = 2 was selected 

as the optimal parameter for further analyses, based on 

the consensus matrix for k = 2 to 10 and the consensus 

cumulative distribution function (CDF) plot (Figure 2A, 

2B and Supplementary Figure 1A–1H). Two hundred 

thirty-five melanoma patients were classified into C1 

cluster and showed significantly prolonged median 

overall survival (OS) than those in the C2 cluster (Figure 

1C). For the Nonnegative Matrix Factorization (NMF) 

method, rank = 2 was chosen as the most suitable number 

of subgroups according to the cophenetic coefficient and 

the consensus matrix for different rank numbers (Figure 

2D, 2E and Supplementary Figure 1I, 1J). 194 patients 

were stratified into C1 cluster and exhibited better 

prognosis (Figure 2F, p < 0.0001). No matter which 

method was applied, an obviously different distribution 

between was observed the C1 and C2 clusters via the 

PCA plots (Figure 2G and Supplementary Figure 1K). As 

shown in Figure 2H, 192 melanoma patients were 

stratified in the C1 cluster by both methods and named 

Cluster A. Meanwhile, 210 patients were grouped in the 

C2 cluster by both methods and were named as Cluster B. 

The median OS of melanoma patients in Cluster A 

reached 4634 days, and was considerably longer than that 

of patients in Cluster B (1766 days, Supplementary 

Figure 1L, p < 0.0001). In addition, the transcriptional 

expression of most of the ICD-related genes was 

significantly elevated in patients of Cluster A (Figure 2H). 

 

The biological features of melanoma patients in the 

two clusters 

 

Besides ICD, various other forms of cell death have 

been identified, such as autophagy, ferroptosis and 

necroptosis [27]. These forms of cell death have some 

shared regulators or signaling components, but also 

have unique biological characteristics. Some previous 

studies tried to classify melanoma patients into high- 

and low-risk subgroups based on the features of these 

forms of cell death [10–13]. As shown in Figure 3A, 

most the melanoma patients in Cluster A were labeled 

as low risk when they were classified based on the 

ferroptosis-, autophagy-, proptosis-, or necroptosis-

related signatures. The concordance between ICD-based 

classification and other forms of cell death-based 

classification was 75.62% (ferroptosis), 58.71% 

(autophagy), 74.38% (proptosis), and necroptosis 

(84.33%). To characterize the biological features of 

patients in Cluster A and Cluster B, GSEA was 

employed. The results showed that melanoma patients 

in Cluster A showed enrichment in immune related 

pathways (Supplementary Table 1) like lymphocyte 

mediated immunity (Figure 3B) and activation of 

immune response (Figure 3C). On the other hand, 
patients in the Cluster B showed an enrichment in the 

processing and translation of RNA (Supplementary 

Table 1 and Figure 3D, 3E), and in DNA repair 
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Figure 2. Clustering of melanoma patients based on ICD related genes. (A) The cumulative distribution function (CDF) curve of 

consensus clustering for k = 2 to 10. (B) Heatmap depicts consensus clustering solution (k = 2) for 34 ICD related genes in melanoma patients 
from the TCGA-SKCM dataset. (C) Kaplan–Meier curves of OS in the C1 and C2 subtypes (the consensus clustering method) of melanoma 
patients. (D) The optimal rank was selected as 2 since the cophenetic coefficient firstly started decreasing at this point. (E) Heatmap of NMF 
clustering results of melanoma patients from the TCGA-SKCM dataset. (F) Kaplan–Meier curves of OS in the C1 and C2 subtypes (the NMF 
method) of melanoma patients. (G) Principal component analysis (PCA) on the expression level of 34 ICD related genes in clusters classified 
by NMF method. (H) Venn diagram to identify melanoma patients in the C1 cluster (Cluster A) and C2 cluster (Cluster B) defined by both 
clustering methods. (I) Gene expression comparison of 34 ICD related genes between Cluster A and B in the TCGA-SKCM cohort. Ns, not 
significant; *p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 



www.aging-us.com 2672 AGING 

 
 

Figure 3. Biological features of melanoma patients in Cluster A and B. (A) Sankey diagram showed the connection degree between 
ICD-based classification and other forms of cell death-based classification. (B–F) Examples of GSEA results of melanoma patients in Cluster A 
(B, C) and B (D–F). (G) Distribution of 22 types of infiltrating immune cells in melanoma patients in the Cluster A and B. Ns, not significant; *p 
< 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 



www.aging-us.com 2673 AGING 

(Supplementary Table 1 and Figure 3F). Consistently, 

melanoma patients had an obviously higher level of 

infiltration of anti-tumor immune components, such as 

CD8 T cells, M1 macrophage, and activated memory 

CD4 T cells (Figure 3G), whereas some pro-tumor 

immune components, like M2 macrophage, resting mast 

cells, and resting memory CD4 T cells, showed a 

significantly higher infiltration in patients from the 

Cluster B (Figure 3G).  

 

Construction of ICD-related signature in melanoma 

 

Unsupervised clustering revealed that ICD-related 

genes could help to stratify melanoma patients into 

subgroups with distinct prognoses and tumor 

microenvironment (TME) (Figures 2, 3). To construct a 

signature that help to recognize these two subgroups, 

we first analyzed the differentially expressed genes 

(DEGs) between the patients in Cluster A and those in 

Cluster B. A total of 1, 038 DEGs were identified in the 

TCGA-SKCM cohort with the criteria of absolute 

logFC (fold change) ≥ 1 and adjusted p-value < 0.05 

(Supplementary Table 2). To better reflect the 

difference between these two clusters, only DEGs 

(genes marked with red, Supplementary Table 2) with 

absolute logFC ≥ 2 were selected for further analyses. 

The subsequent univariate Cox analyses in TCGA-

SKCM and GSE65904 indicated that 182 DEGs had a 

significant p-value < 0.1 in both datasets (Figure 4A). 

The 182 DEGs were then input into a LASSO 

regression model in GSE65904 as described in the 

Method section (Figure 4B, 4C). Four crucial genes 

were generated, and they were guanylate binding 

protein 2 (GBP2), lysozyme (LYZ), cystatin F (CST7), 

and signal regulatory protein gamma (SIRPG). The 

ICDscore was calculated based on the transcriptional 

expression and coefficient of these 4 genes, as 

demonstrated in the Method section. When melanoma 

patients were divided into two groups based on the 

median value of ICDscore in each cohort, those patients 

in the high-ICDscore subgroup showed a significantly 

shorter OS in the training (GSE65904, Figure 4D) and 

validating (TCGA-SKCM, GSE54467, and GSE22153, 

Figure 4E–4G) datasets. The forest plot of meta-

analysis (Supplementary Figure 2A) also indicated 

ICDscore as a vital risk factor for melanoma patients. 

Besides, melanoma patients with high ICDscore also 

exhibited considerably shorter progression-free survival 

(PFS, Supplementary Figure 2B, 2C). As shown in 

Figure 4H, patients with low ICDscore had apparently 

higher expression of all the four genes. In addition, the 

high-ICDscore subgroup had a significantly higher 

percentage of melanoma patients with deeper Breslow 
depth (p < 0.01), advanced Clark level (p < 0.001), 

advanced T stage (p < 0.01), and dead status (p < 

0.0001). Correspondingly, melanoma patients with 

deeper Breslow depth (Supplementary Figure 2G), 

advanced Clark level (Supplementary Figure 2H), 

advanced T stage (Supplementary Figure 2I) exhibited a 

significantly higher level of ICDscore, and no 

difference of ICDscore level was observed in melanoma 

patients divided by gender (Supplementary Figure 2E), 

age (Supplementary Figure 2F), N stage (Sup-

plementary Figure 2J), M stage (Supplementary Figure 

2K) or clinical stage (Supplementary Figure 2L). 

Besides, univariate and subsequent multivariate Cox 

analyses revealed that ICDscore could serve as an 

independent prognostic factor (Figure 4I, 4J). 

 

Immune landscape of ICDscore-stratified melanoma 

patients 
 

As shown in Supplementary Figure 2C, 94.79% of 

patients in the Cluster A were classified into low-

ICDscore subgroup, while 90.52% of patients in the 

Cluster B were into the high-ICDscore subgroup. Most 

of ICD-related genes showed a significantly elevated 

expression in patients from the low-ICDscore group 

(Figure 5A). Correlation analyses in both the TCGA-

SKCM and GSE65904 cohorts revealed that ICDscore 

had a strong negative correlation with CD8 T cells (R = 

-0.65 in TCGA-SKCM cohort and -0.53 in GSE65904 

cohort, Figure 5B), and significantly positive correlation 

with NK cells resting, M0 macrophage, M2 macrophage, 

or mast cell resting (Figure 5B). In addition, melanoma 

patients from the ICDscore-low subgroup had an 

apparently higher immunescore and stromalscore 

(Figure 5C, 5D), suggesting a higher infiltrative level of 

immune and stromal cells.  
 

The relationship between ICDscore-based classification 

and other method-based classification was also 

investigated. TCGA research network divided cancer 

patients into six clusters [28]. As shown in Figure 5E, 

the C2 cluster (INF-gamma dominant) had the lowest 

ICDscore, whereas the C4 (lymphocyte depleted) and 

C1 (wound healing) clusters had relatively high 

ICDscore. Besides, most melanoma patients in the low-

ICDscore subgroup were categorized into the immune 

cluster, which was defined on the basis of consensus 

hierarchical clustering of 1500 genes [29]. Similarly, 

83.26% of patients in the low-ICDscore subgroup were 

labeled as ‘Immune-Enriched, Fibrotic’ (IE/F) or 

‘Immune-Enriched, Non-Fibrotic’ (IE), based on the 

characterization of TME by 29 functional gene 

expression signatures (Fges) [30]. In addition, 

melanoma patients were also divided into four subtypes 

based on some mutated genes, and they were B-Raf 

Proto-Oncogene, Serine/Threonine Kinase (BRAF) 

hotspot, RAS hotspot, Neurofibromin 1 (NF1) mutant, 

and Triple-WT (wild-type) [29]. The distribution of 

ICDscore-high or ICDscore-low patients in BRAF 
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Figure 4. Construction of ICDscore. (A) Venn diagram to screen DEGs with a significant prognostic p-value < 0.1 in the TCGA-SKCM and 
GSE65904 cohorts. (B, C) The LASSO Cox regression model was constructed from 182 DEGs, and the tuning parameter (λ) was calculated 
based on the partial likelihood deviance with ten-fold cross validation. 4 signature genes were identified according to the best fit profile.  
(D–G) Kaplan–Meier curves of OS in melanoma patients from ICDscore-high and ICDscore-low subgroups of GSE65904 (D), TCGA-SKCM (E), 
GSE54467 (F), and GSE22153 (G) datasets. (H) Clinical characteristics and RNA expression level of 4 crucial genes in melanoma patients from 
ICDscore-high and ICDscore-low subgroups of the TCGA-SKCM dataset. (I) Univariate analysis of ICDscore and other clinical characteristics in 
TCGA-SKCM dataset. (J) Multivariate analysis shows ICDscore, breslow depth, M stage and age were independent prognostic factors. Ns, not 
significant; *p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Figure 5. Immune profile of ICDscore-based classification. (A) Gene expression comparison of 34 ICD related genes between ICDscore-

high and ICDscore-low subgroups in the TCGA-SKCM cohort. (B) Correlation analyses between ICDscore and infiltration level of 22 immune 
cells in the TCGA-SKCM and GSE65904 datasets. (C, D) Comparison of immunescore (C) and stromalscore (D) between ICDscore-high and 
ICDscore-low subgroups in the TCGA-SKCM and GSE65904 datasets. (E) Box plot showing a difference in the value of ICDscore across the five 
subtypes for melanoma patients in the TCGA_SKCM dataset. (F) Sankey diagram showed the connection degree between ICDscore-based 
classification and Akbani cluster, TME subtype and mutation subtype in the TCGA-SKCM dataset. (G) Box plot showing a difference in the 
expression of multiple exhausted T cell markers or immune-checkpoint markers between ICDscore-high and ICDscore-low subgroups in the 
TCGA-SKCM cohort. (H) Box plot showing a difference in the TMB between ICDscore-high and ICDscore-low subgroups in the TCGA-SKCM 
cohort. Ns, not significant; *p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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hotspot, NF1 mutant, or RAS hotspot subtype was 

similar (Figure 5F, Chi-square test, p > 0.05), but a 

significantly higher ratio of ICDscore-high patients was 

Triple-WT (Figure 5F, Chi-square test, p = 0.0465).  

 

Meanwhile, the expression of multiple exhausted T cell 

markers or immune-checkpoint markers, including 

CD27, CD274 (also referred as PDL1), cytotoxic T-

lymphocyte associated protein 4 (CTLA4),  

programmed cell death 1 (PDCD1), hepatitis A virus 

cellular receptor 2 (HAVCR2, also named as TIM3), T 

cell immunoreceptor with Ig and ITIM domains 

(TIGIT), thymocyte selection associated high mobility 

group box (TOX), TNF receptor superfamily member  

9 (TNFRSF9), and ectonucleoside triphosphate di-

phosphohydrolase 1 (ENTPD1) [31, 32], were 

dramatically elevated in patients with low ICDscore 

(Figure 5G), suggesting these patients might be able to 

benefit from immune checkpoint inhibitors (ICIs). 

Further, tumor mutation burden (TMB), another 

biomarker in predicting immunotherapy efficiency [33], 

was also significantly higher in the ICDscore-low 

subtype (Figure 5H, p < 0.05). 

 

Evaluation of anti-tumor therapy in ICDscore-based 

subgroups 

 

To support the hypothesis that ICDscore might help to 

predict immunotherapy efficiency, several cohorts of 

melanoma patients receiving various forms of 

immunotherapy were investigated. As shown in Figure 

6A, melanoma patients who responded to adoptive T-

cell therapy (ACT) treatment (GSE35640), anti-PD-1 

(PUCH, Gide19, and Liu19 cohorts) or anti-CTLA-4 

(VanAllen15 cohort) showed a significant lower 

ICDscore than those who were non-responders to 

immunotherapies. In the Riaz17 cohort, melanoma 

patients who responded to nivolumab (anti-PD-1 agent) 

had lower ICDscore than the non-responders, but the 

difference did not reach significance (Figure 6A). When 

melanoma patients were divided into ICDscore-high 

and ICDscore-low subgroups by the median value of 

ICDscore in each cohort, the patients in the ICDscore-

low subgroup showed a higher object responsive rate 

(ORR) to immunotherapies, and the difference reached 

significance in the PUCH (p = 0.037), Gide19 (p = 

0.018), and Liu19 (p = 0.014) cohorts (Figure 6B). In 

four cohorts with survival information available, 

patients in the ICDscore-low subgroup showed 

apparently longer OS than those in the ICDscore-high 

subgroup (Figure 6C–6F).  
 

We further manipulated the ‘pRRophetic’ package in R 
software to estimate the drug sensitivity of melanoma 

patients in ICDscore-classified subgroups. As shown in 

Supplementary Table 3, ICDscore had a strong 

correlation (absolute R > 0.5, p-value < 0.05) with 

patients’ sensitivity to 34 anti-cancer agents. The top 8 

agents, according to the coefficiency, were JW-7-52-1, 

Roscovitine (CDK inhibitor), Rapamycin (mTOR 

inhibitor), CGP-60474 (CDK inhibitor), Erlotinib 

(EGFR inhibitor), CAL-101 (PI3K inhibitor), STF-

62247 (autophagy inducer), Sunitinib (Multi-kinase 

inhibitor), and melanoma patients with high ICDscore 

had a dramatically higher IC50 value than those with 

low ICDscore (Figure 6G–6N).  

 

Comparison of ICDscore and other gene expression-

based prognostic signatures 

 

As shown in Figure 3A, unsupervised clustering of 

melanoma patients based on ICD-related genes had 

58.71% to 84.33% concordance with other forms of cell 

death-based classification. The C-index [95% 

confidence interval] of ICDscore was 0.669 [0.641 – 

0.697], 0.614 [0.592 – 0.636], 0.690 [0.649 – 0.732], 

and 0.648 [0.605 – 0.692] in GSE65904, TCGA-SKCM, 

GSE54467 and GSE22153 cohort, respectively. When 

compared with clinical features of melanoma patients, 

the C-index of ICDscore was lower than that of Breslow 

depth, T stage, and Clark level, but higher than that of 

the rest clinical features (Supplementary Figure 2M). 

However, no significance was observed in the 

comparison of ICDscore and clinical features of 

melanoma patients (Supplementary Figure 2M). As 

displayed in Figure 7A–7D, ICDscore showed certain 

improved accuracy than ferroptosis-, autophagy-, 

proptosis-, or necroptosis-based signature (except for 

comparison between ICDscore and ferroptosis-related 

risk score in TCGA-SKCM, Figure 7B). Besides, the 

AUC of ICDscore in predicting efficiency to 

immunotherapies was 0.701, 0.689, 0.765, 0.673, and 

0.782 in GSE35640, VanAllen15, PUCH, Liu19, and 

Gide19 cohorts, respectively (Figure 7E–7I), and was 

the highest in these cohorts except for GSE35640, 

suggesting a stable and robust performance in various 

independent datasets. 

 

In addition to cell death-based signatures, many other 

gene expression signatures, for example, hypoxia- or 

CD8 T cell-related signatures, had been constructed to 

predict the prognosis of melanoma patients [24, 34]. By 

searching the PubMed website with the following query 

method “((signature[Title]) OR (classifier[Title])) AND 

(melanoma[Title])”, 52 mRNA signatures were 

ultimately enrolled for further comparison (Sup-

plementary Table 4). These signatures were associated 

with DNA methylation, RNA methylation, oxidative 

stress, immune cell infiltration, metastasis, ferroptosis, 
proptosis or other biological process. Univariate Cox 

analyses revealed that only ICDscore, tumor immune-

relevant (TIR) signature (Mei_2021) [35] and   
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Figure 6. Sensitivity evaluation to anti-cancer therapy. (A) ICDscore of melanoma patients receiving immunotherapy in GSE35640, 
PUCH, Gide19, Liu19, VanAllen16, and Riaz17 cohorts. (B) Ratio of patients responding or not responding to immunotherapy in ICDscore-high 
and ICDscore-low subgroups of GSE35640, PUCH, Gide19, Liu19, VanAllen16, and Riaz17 cohorts. (C–F) Kaplan–Meier curves of OS in 
melanoma patients from ICDscore-high and ICDscore-low subgroups of VanAllen15 (C), PUCH (D), Liu19 (E), and Gide19 (G) cohorts. (G–N) 
Box plot showing a difference in the IC50 values of STF-62247 (G), Erlotinib (H), Rapamycin (I), Sunitinib (J), CGP-60474 (K), JW-7-52-1 (L), 
Roscovitine (M), CAL-101 (N) between ICDscore-high and ICDscore-low melanoma patients. Ns, not significant; *p < 0.05; **, p < 0.01. 
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immune-associated genes (IAGs) signature (Song_2021) 

[36] had significant prognostic relevance across the four 

datasets (Figure 8A). The C-index of ICDscore 

displayed the best performance in GSE65904 and 

GSE54467 (Figure 8B, 8D), and ranked the fifth in the 

GSE22153 cohort (Figure 8E). In the TCGA-SKCM 

cohort, the C-index of ICDscore was not the highest, 

but was greater than 0.6 (Figure 8C). Besides, ICDscore 

had the highest average C-index (0.655) in all the four 

datasets (Figure 8F). 

 

 
 

Figure 7. Comparison between ICDscore and other forms of cell death-based signatures. (A–D) The performance of ICDscore was 
compared with other forms of cell death-based signatures in predicting prognosis in the GSE65904 (A), TCGA-SKCM (B), GSE54467 (C), and 
GSE22153 (D) datasets. Statistic tests: two-sided z-score test. Data were presented as mean ± 95% confidence interval [CI]. (E–I) The 
performance of ICDscore was compared with other forms of cell death-based signatures in predicting immunotherapy efficiency in GSE35640 
(E), VanAllen15 (F), PUCH (G), Liu19 (H), and Gide19 (I) cohorts. Ns, not significant; *p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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DISCUSSION 
 

The capability of ICD to drive anti-cancer immune 

response provokes researchers’ interest in developing 

ICD-related risk model that predicts prognosis and 

response to immunotherapy in tumors [37, 38]. In both 

these two studies, ICD-associated subtyping systems 

were helpful for the development of precision immuno-

therapy. According to several published clinical studies, 

the ORR of previously untreated patients with 

metastatic melanoma is from about 10% to 57.6%, 

suggesting most of melanoma patients are insensitive to 

 

 
 

Figure 8. Comparison between ICDscore and other published signatures. (A) Univariate Cox regression analysis of ICDscore and 52 

published signatures in GSE65904, TCGA-SKCM, GSE54467, and GSE22153 datasets. (B–E) C-index analyses of ICDscore and 52 published 
signatures in GSE65904 (B), TCGA-SKCM (C), GSE54467 (D), and GSE22153 (E) datasets. Statistic tests: two-sided z-score test. Data are 
presented as mean ± 95% confidence interval [CI]. (F) The average C-index of ICDscore and 52 published signatures across all the 4 datasets. 
Ns, not significant; *p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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the ICIs [16, 18]. Given the tight association between 

ICD and immune response, ICD-related risk score 

might be helpful to identify melanoma patients 

potentially benefiting from immunotherapy. 

 

In this work, two unsupervised clustering methods both 

showed that melanoma patients could be classified into 

two subgroups based on the expression of 34 ICD-

related genes (Figure 2B–2E). To minimize the 

potential bias of methodology, the clustering results of 

two methods were intersected, and melanoma patients 

grouped into C1 cluster by both methods were renamed 

as ‘Cluster A’, whereas those grouped into C2 cluster 

by both methods were renamed as ‘Cluster B’ (Figure 

2H). The patients in the Cluster A had significantly 

elevated expression of most innate or adaptive immune 

system-related genes (Figure 2I). Consistently, patients 

in the Cluster A had a significant enrichment in most 

immune-related pathways like activation of immune 

response (Figure 3C) and was marked by dramatically 

higher infiltration of CD8 T cells (Figure 3G). Once 

ICD was triggered by anti-cancer therapy, the release of 

many damage-associated molecular patterns (DAMPs), 

such as cell surface-exposed calreticulin (CALR), 

extracellular adenosine triphosphate (ATP), could drive 

the activation and maturation of innate and subsequent 

adaptive immune cells [39]. Thus, it would be 

reasonable to propose that a higher expression of innate 

or adaptive immune system-related genes and 

infiltration of CD8 T cells might facilitate the 

occurrence of ICD and cause the amplification of anti-

tumor effects induced by immune cells like cytotoxic T 

cells [37, 40, 41].  

 

Further, the DEGs between Cluster A and B were input 

into a LASSO regression model, and 4 crucial genes were 

generated for the construction of ICDscore (Figure 4A–

4C). All the 4 genes participate in immune activities. 

GBP2 is a member of the p65 guanine-binding protein 

(GBP) family, which includes interferon-induced large 

GTPase that exhibits antiviral activity through the innate 

immune response [42, 43]. Lysozymes, encoded by LYZ, 

has antibacterial activity and constitutes the first line of 

defense [44, 45].  CST7 is predominantly expressed in 

immune cells and tends to attenuate the granule-

dependent cytotoxicity of natural killer (NK) cells and T 

cells [46–48]. SIRPG is expressed by T cells and interacts 

with CD47 on the surface of the cell, and modulates 

immune responses [49, 50]. Prognostic analyses in the 

testing dataset and three independent validating datasets 

revealed that high ICDscore correlated with significantly 

shorter OS and PFS (Figure 4D–4G and Supplementary 

Figure 2B, 2C). In addition, ICDscore could serve as an 
independent prognostic factor (Figure 4I, 4J and 

Supplementary Table 5). Notably, ICDscore also had 

superior performance than other cell death related 

signatures in predicting prognosis of melanoma patients 

(Figure 7A–7D). Moreover, we retrieved another 52 

published mRNA signatures correlating with various 

biological activities. Univariate Cox regression displayed 

that only ICDscore and two other signatures maintained 

prognostic significance across all the four cohorts, 

suggesting most of the signatures have not been 

thoroughly validated (Figure 8A). It should be pointed out 

that many models had good performance in the training 

dataset but relatively poor performance in external 

validating datasets (Xu_2021-2 or Song_2020, for 

example) [51, 52]. Compared with other signatures, 

ICDscore exhibited stable performance across multiple 

cohorts and its average C-index was the highest, 

suggesting a better capability in predicting prognosis of 

melanoma patients (Figure 8B). 

 

The value of ICDscore in guiding anti-cancer therapy 

was also investigated. On one hand, melanoma 

patients with low ICDscore were marked with 

significantly high infiltration of immune cells, 

particularly CD8 T cells (Figure 5B, 5D), suggesting 

an “immune-hot” phenotype (Figure 5E, 5F) [53]. 

These patients also exhibited high expression of ICI-

related genes, such as PD-L1 (CD274) and CTLA4 

(Figure 5G), whose high expression is generally 

associated with response to immunotherapy [54]. In 

addition, patients in the ICDscore-low subgroup also 

had higher TMB (Figure 5H), which could increase the 

production of mutation-derived neoantigens and 

contribute to activation of cytotoxic T cells [55]. In 6 

independent cohorts in which melanoma patients 

receiving immunotherapy, patients who responded to 

immunotherapy displayed lower ICDscore (Figure 6A). 

Similarly, patients in the low-ICDscore subgroup 

generally had higher ORR to immunotherapy (Figure 

6B) and longer OS (Figure 6C–6F). The AUC of 

ICDscore in predicting response to immunotherapy 

was from 0.673 to 0.782, and was higher than that of 

other cell death related signatures (Figure 7E–7I), 

suggesting a better performance than these signatures. 

On the other hand, ICDscore exhibited strong positive 

correlation with multiple targeted drugs like rapamycin 

and sunitinib (Figure 6G–6N and Supplementary Table 

3). Although some preclinical models or clinical trials 

had been conducted to evaluate the benefit of some of 

these drugs in melanoma [56–58], the results are far 

from satisfactory in clinical practice. The ICDscore 

might be helpful in selecting suitable patients when 

conducting clinical trials.  

 

At last, the limitation of this work should be pointed out 

that the ICDscore was developed and validated in a 
retrospective method; thus, evidence from a well-

designed perspective analysis is required before the 

model be applied in clinics. 
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CONCLUSIONS 
 

In conclusion, we constructed a stable and powerful 

ICD-related signature for evaluating the prognosis and 

benefits of immunotherapy, based on the integration of 

a set of bioinformatics tools. The ICDscore showed 

certain superiority than other mRNA signatures and 

served as a promising tool to guide decision-making and 

surveillance for individual melanoma patients. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A–H) Heatmap depicts consensus clustering solution for 34 ICD related genes in melanoma patients from the 

TCGA-SKCM dataset, when the k = 3 (A), 4 (B), 5 (C), 6 (D), 7 (E), 8 (F), 9 (G), and 10 (H). (I, J) Heatmap of NMF clustering results of melanoma 
patients from the TCGA-SKCM dataset, when the k = 3 (I) and 4 (J). (K) Principal component analysis (PCA) on the expression level of 34 ICD 
related genes in clusters classified by consensus clustering method. (L) Kaplan–Meier curves of OS in the Cluster A and B of melanoma 
patients. 
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Supplementary Figure 2. (A) Forest plot for the outcome of ICDscore in meta-analysis of melanoma patients using common or random 

model. (B, C) Kaplan–Meier curves of PFS in melanoma patients from ICDscore-high and ICDscore-low subgroups of GSE65904 (A) and TCGA-
SKCM (B). (C) Sankey diagram showed the connection degree between ICD-based classification and Cluster A/B. (D) Sankey diagram showed 
the connection degree between ICDscore and patient clustering and survival status. (E–L) The distribution of ICDscore in melanoma patients 
divided by gender (E), age (F), breslow depth (G), Clark level (H), T stage (I), N stage (J), M stage (K) and clinical stage (L). (M) The C-index of 
ICDscore and clinical features of melanoma patients. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2, 4. 

 

Supplementary Table 1. GSEA results of Cluster A and B in the TCGA-SKCM dataset. 

 

Supplementary Table 2. Differentially expressed genes between Cluster A and B in the TCGA-SKCM dataset. 

 

Supplementary Table 3. Correlation analyses between ICDscore and drug sensitivity. 

Drug R P Classification 

JW-7-52-1 R = 0.72 p < 2.2e−16 undefined group 

Roscovitine R = 0.71 p < 2.2e−16 CDK inhibitor 

Rapamycin R = 0.69 p < 2.2e−16 mTOR inhibitor 

CGP-60474 R = 0.62 p < 2.2e−16 CDK inhibitor 

Erlotinib R = 0.62 p < 2.2e−16 EGFR inhibitor 

CAL-101 R = 0.61 p < 2.2e−16 PI3K inhibitor 

STF-62247 R = 0.59 p < 2.2e−16 autophagy inducer 

Sunitinib R = 0.59 p < 2.2e−16 multi-kinase inhibitor 

Z-LLNle-CHO R = 0.58 p < 2.2e−16 Gamma secretase inhibitor 

5-Fluorouracil R = 0.57 p < 2.2e−16 chemotherapeutic agents 

DMOG R = 0.57 p < 2.2e−16 HIF-PH inhibitor 

A-770041 R = 0.56 p < 2.2e−16 Lck inhibitor 

AZD7762 R = 0.56 p < 2.2e−16 Chk inhibitor 

THZ-2-49 R = 0.56 p < 2.2e−16 CDK inhibitor 

Lestaurtinib (CEP-701) R = 0.55 p < 2.2e−16 multi-kinase inhibitor 

NU-7441 R = 0.55 p < 2.2e−16 DNA-PK inhibitor 

PIK-93 R = 0.55 p < 2.2e−16 PI4K inhibitor 

KIN001-260 R = 0.54 p < 2.2e−16 undefined group 

UNC1215 R = 0.54 p < 2.2e−16 MBT inhibitor 

BIX02189 R = 0.53 p = 2.5e−16 MEK inhibitor 

Ruxolitinib R = 0.53 p < 2.2e−16 JAK inhibitor 

TPCA-1 R = 0.53 p < 2.2e−16 IKK-2 inhibitor 

Y-39983 R = 0.53 p < 2.2e−16 ROCK inhibitor 

Ponatinib (AP-24534) R = 0.52 p = 6.7e−16 multi-kinase inhibitor 

JW-7-24-1 R = 0.52 p = 5e−16 undefined group 

KIN001-102 R = 0.52 p = 3.8e−16 Akt inhibitor 

QL-XI-92 R = 0.52 p = 1.1e−15 undefined group 

Tamoxifen R = 0.52 p = 1.1e−15 Selective Estrogen Receptor Modulator 

TG101348 R = 0.52 p = 4.8e−16 JAK inhibitor 

Bexarotene R = 0.51 p = 5e−15 RXR activator 

SNX-2112 R = 0.51 p = 1.7e−15 HSP90 inhibitor 

AICAR R = 0.5 p = 2e−14 AMPK activator 

Cyclopamine R = 0.5 p = 1.2e−14 Hedgehog signaling inhibitor 

VX-702 R = 0.5 p = 8.1e−15 MAPK inhibitor 

 

Supplementary Table 4. Previously published mRNA signatures. 
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Supplementary Table 5. Clinical information of patients from TCGA_SKCM dataset. 

 TCGA-SKCM 

(n=448) 

GSE65904 

(n=214) 

GSE22153 

(n=57) 

GSE54467 

(n=79) 

Age     

<60 238 80 21 44 

>=60 210 130 36 35 

Gender     

Female 168 89 26 29 

Male 280 124 31 50 

breslow depth (cm)     

<2 126  12  

>=2 222  26  

clark level     

I 5  3  

II 18  2  

III 75  11  

IV 162  15  

V 50  5  

T     

Tis-T0 30    

T1 41    

T2 76    

T3 89    

T4 145    

Tx 42    

N     

N0 222    

N1 73    

N2 49    

N3 55    

Nx 32    

M     

M0 402    

M1 22    

Stage     

0-II 225  0 58 

III 169  3 20 

IV 21  54  

Status     

Dead 220 102 47 48 

Alive 227 108 7 31 

 


