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INTRODUCTION 
 

Lung cancer is one of the most commonly diagnosed 

types of cancer and poses a major threat to health 

worldwide [1]. Annually, ~2.1 million new lung 

cancer cases are reported globally with >1.8 million 

mortalities [2]. Nonsmall-cell lung cancer (NSCLC) 

constitutes the predominant histological subtype, 

accounting for ~85% of all lung cancers, and is 

characterized by high aggressiveness and poor 

prognosis [3]. Despite marked improvement in 

treatment strategies, including surgical excision, 

radiochemotherapy, and immunotherapy, the clinical 

outcome of NSCLC remains poor [4]. The 5-year 

overall survival rate of patients with NSCLC is 

~20%, partially because most cases are diagnosed at 

advanced stages [5]. Moreover, the complicated 

pathogenesis of NSCLC and absence of a promising 

therapeutic target are considered major obstacles 

preventing better clinical outcomes [6]. Therefore, 

there is an urgent need to discover the detailed 
mechanisms underlying NSCLC initiation and 

progression to identify and evaluate new therapeutic 

targets for NSCLC. 
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ABSTRACT 
 

The role of the majority of long noncoding RNAs (lncRNAs) in the progression of nonsmall-cell lung cancer 
(NSCLC) remains elusive, despite their potential value, thus warranting in-depth studies. For example, detailed 
functions of the lncRNA POU6F2 antisense RNA 2 (POU6F2-AS2) in NSCLC are unknown. Herein, we investigated 
the expression status of POU6F2-AS2 in NSCLC. Furthermore, we systematically delineated the biological roles 
of POU6F2-AS2 in NSCLC alongside its downstream molecular events. We measured the expression levels of 
POU6F2-AS2 using quantitative real-time polymerase chain reaction and performed a series of functional 
experiments to address its regulatory effects in NSCLC cells. Using bioinformatic platforms, RNA 
immunoprecipitation, luciferase reporter assays, and rescue experiments, we investigated the potential 
mechanisms of POU6F2-AS2 in NSCLC. Subsequently, we confirmed the remarkable overexpression of POU6F2-
AS2 in NSCLC using The Cancer Genome Atlas database and our own cohort. Functionally, inhibiting POU6F2-
AS2 decreased NSCLC cell proliferation, colony formation, and motility, whereas POU6F2-AS2 overexpression 
exhibited contrasting effects. Mechanistically, POU6F2-AS2 acts as an endogenous decoy for microRNA-125b-5p 
(miR-125b-5p) in NSCLC that causes the overexpression of the E2F transcription factor 3 (E2F3). Moreover, 
suppressing miR-125b-5p or increasing E2F3 expression levels sufficiently recovered the anticarcinostatic 
activities in NSCLC induced by POU6F2-AS2 silencing. Thus, POU6F2-AS2 aggravates the oncogenicity of NSCLC 
by targeting the miR-125b-5p/E2F3 axis. Our findings suggest that POU6F2-AS2 is a novel therapeutic target for 
NSCLC. 
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Long noncoding RNAs (lncRNAs) comprise a group of 

RNA molecules that are >200 nucleotides in length [7]. 

Although they do not act as templates for protein 

biosynthesis, their functions in biological and patho-

logical processes have been extensively investigated 

[8]. Recently, numerous studies have implicated the 

dysregulation of lncRNAs in almost all types of human 

diseases, including cancer [9–11]. Reportedly, NSCLC 

involves the aberrant expression of several lncRNAs, 

and their dysregulation contributes to the oncogenesis 

of NSCLC [12–14]. For instance, an lncRNA named 

SNHG7 aggravates the malignancy and promotes the 

cisplatin resistance of NSCLC [15]. Furthermore, the 

ablation of the lncRNA DLGAP1-AS1 decreases the 

cell viability and motility of NSCLC cells and 

promotes their apoptosis [16]. LncRNAs perform pro-

oncogenic or antioncogenic regulatory activities and 

play unique roles in mediating cell biological functions 

[17]. 

 

MicroRNAs (miRNAs) are a family of regulatory 

single-stranded RNA molecules with a transcript length 

of 17–22 nucleotides [18]. Although they do not encode 

proteins, numerous studies have highlighted their major 

contribution to NSCLC genesis and progression [19]. 

Recently, a competing endogenous RNA (ceRNA) 

network has been proposed and reported to exhibit 

considerable regulatory activity in human cancers [20]. 

LncRNAs sequester miRNAs, forming a ceRNA pattern 

that modulates the expression levels of miRNA target 

genes [21]. Thus, the ceRNA pathway is an attractive 

and potential therapeutic target for NSCLC. 

Data from The Cancer Genome Atlas (TCGA) database 

indicated the overexpression of POU6F2 antisense RNA 

2 (POU6F2-AS2) in lung adenocarcinoma (LUAD) and 

lung squamous cell carcinoma (LUSC). However, the 

detailed functions of POU6F2-AS2 in NSCLC remain 

unexplored. Herein, we investigated the expression 

status of POU6F2-AS2 in NSCLC. Furthermore, we 

systematically explored the biological roles of POU6F2-

AS2 in NSCLC alongside its downstream molecular 

events. Our data confirmed that the POU6F2-AS2/miR-

125b-5p/E2F transcription factor 3 (E2F3) axis plays a 

major role in NSCLC progression, suggesting that it can 

be a therapeutic target for managing NSCLC. 

 

RESULTS 
 

POU6F2-AS2 promotes the malignant phenotype of 

NSCLC cells 

 

To investigate the expression pattern of lncRNAs in 

human cancers, we initially analyzed the TCGA 

database, which showed that POU6F2-AS2 was the 

second most overexpressed lncRNA in LUSC 

(Figure 1A). Furthermore, we found remarkably 

elevated expression levels of POU6F2-AS2 in LUAD 

and LUSC (Figure 1B). To validate this observation, we 

performed real-time quantitative polymerase chain 

reaction (RT-qPCR) to determine the expression levels 

of POU6F2-AS2 in NSCLC tissues and the adjacent 

nontumorous tissues obtained from our cohort, which 

confirmed the upregulation of POU6F2-AS2 in NSCLC 

tissues (Figure 1C).  

 

 
 

Figure 1. POU6F2-AS2 is overexpressed in NSCLC. (A) POU6F2-AS2 ranks the 2nd overexpressed lncRNA in LUSC. (B) POU6F2-AS2 

level in LUAD and LUSC from TCGA database. **P < 0.001 vs. normal group. (C) POU6F2-AS2 level in NSCLC tissues compared with normal 
tissues from our own cohort. **P < 0.001 vs. normal group. (D) POU6F2-AS2 level in NSCLC cell lines. **P < 0.001 vs. BEAS2-2B.  
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Considering the upregulation of POU6F2-AS2 in 

NSCLC, we examined its regulatory activity in NSCLC 

progression. First, we explored the expression pattern of 

POU6F2-AS2 in NSCLC cell lines. All NSCLC cell 

lines exhibited higher expression levels of POU6F2-

AS2 than nontumorigenic BEAS-2B cells (Figure 1D). 

Particularly, among all the NSCLC cell lines, the 

elevated expression levels of POU6F2-AS2 were 

considerably more pronounced in the H460 cell line, 

which was selected for the subsequent loss-of-function 

experiments. Three small interfering RNAs (siRNAs) 

were designed to selectively knockdown POU6F2-AS2 

in NSCLC cells, and their silencing efficacy was 

assessed via RT-qPCR. Subsequently, two siRNAs, si-

POU6F2-AS2#1 and si-POU6F2-AS2#2, were selected 

for the loss-of-function experiments owing to their 

better silencing efficacy (Figure 2A). The Cell Counting 

Kit-8 (CCK-8) and colony formation assays revealed 

that POU6F2-AS2 downregulation impeded NSCLC 

cell proliferation (Figure 2B and 2C). Additionally,

 

 
 

Figure 2. Disturbing POU6F2-AS2 expression hampers the malignant phenotype of NSCLC cells. (A) The knockdown efficiency of si-

POU6F2-AS2 in H460 cells was uncovered by qRT-PCR. ***P < 0.001 vs. si-NC group. (B and C) The proliferation and colony-forming of POU6F2-
AS2-silenced H460 cells. **P < 0.001 vs. si-NC group. (D and E) The motility of H460 cells after POU6F2-AS2 downregulation. **P < 0.001 vs. si-NC 
group. 
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transwell migration and invasion assays revealed  

the limited migratory and invasive abilities of cells 

treated with si-POU6F2-AS2#1 or si-POU6F2-AS2#2 

(Figure 2D and 2E). 

 

Furthermore, the overexpression of POU6F2-AS2 with 

pc-POU6F2-AS2 in SK-MES-1 cells (Figure 3A) 

enhanced the proliferative (Figure 3B) and colony-

forming (Figure 3C) abilities of SK-MES-1 cells. 

Additionally, POU6F2-AS2 overexpression promoted 

the motility of SK-MES-1 cells (Figure 3D and 3E). 

Thus, POU6F2-AS2 functions as a tumor-promoting 

factor in NSCLC. 

 

POU6F2-AS2 acts as a sponge for miR-125b-5p in 

NSCLC 

 

To delineate the mechanisms through which POU6F2-

AS2 potentially affects tumor progression, we examined 

the subcellular localization of POU6F2-AS2 in NSCLC 

cells. Using the bioinformatics tool lncLocator, we 

predicted that POU6F2-AS2 was distributed in the 

cytoplasm (Figure 4A), which was further confirmed 

via nuclear–cytoplasmic fractionation assay in NSCLC 

cells (Figure 4B). This implies that POU6F2-AS2 exerts 

its regulatory effects by acting as miRNA sponge. 

Using miRcode, we predicted 10 miRNAs that 

exhibited high binding potential to POU6F2-AS2 

(Table 1), among which two miRNAs, miR-125b-5p 

and miR-223-3p (Figure 4C), were expressed at low 

levels in LUAD and LUSC (TCGA data); thus, they 

were selected for further experimental validation. 

 

Subsequently, RT-qPCR revealed increased expression 

of miR-125b-5p in H460 cells following POU6F2-AS2 

depletion, whereas transfection with pc-POU6F2-AS2 

downregulated miR-125b-5p in SK-MES-1 cells 

(Figure 4D). These results indicate that miR-125b-5p is 

sponged by POU6F2-AS2. The sequences predicted to 

be involved in the binding between POU6F2-AS2 and 

miR-125b-5p are presented in Figure 4E. Additionally, 

the luciferase reporter assay confirmed that POU6F2-

AS2 directly targeted miR-125b-5p in NSCLC, as 

indicated by a marked decrease in luciferase activity  

in miR-125b-5p–overexpressing NSCLC cells co-

transfected with wild-type (WT)-POU6F2-AS2 (Figure 

4F). Moreover, RNA immunoprecipitation (RIP) assay 

revealed that POU6F2-AS2 and miR-125b-5p were 

enriched by the Ago2 antibody in NSCLC cells (Figure 

4G), which confirmed that POU6F2-AS2 can

 

 
 

Figure 3. POU6F2-AS2 upregulation promotes the aggressiveness of NSCLC cells. (A) The transfection efficiency of pc-POU6F2-

AS2 in SK-MES-1 cells. **P < 0.001 vs. pcDNA3.1 group. (B and C) The proliferation and colony formation of POU6F2-AS2-overexpressed  
SK-MES-1 cells. *P < 0.01 vs. pcDNA3.1 group. **P < 0.001 vs. pcDNA3.1 group. (D and E) The motility of SK-MES-1 cells after POU6F2-AS2 
upregulation. **P < 0.001 vs. pcDNA3.1 group. 
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Table 1. The potential targets of POU6F2-AS2. 

Target rank miRNA name 

1 hsa-miR-137 

2 hsa-miR-187 

3 hsa-miR-223-3p 

4 hsa-miR-375 

5 hsa-miR-383 

6 hsa-miR-125a-5p 

7 hsa-miR-125b-5p 

8 hsa-miR-351 

9 hsa-miR-670 

10 hsa-miR-4319 

 

 
 

Figure 4. POU6F2-AS2 executes as a miR-125b-5p sponge in NSCLC. (A) The location of POU6F2-AS2 predicted by lncLocator. 

(B) The detection of the POU6F2-AS2’s subcellular location by nuclear–cytoplasmic fractionation assay. (C) Expression of miR-125b-5p and 
miR-223-3p in LUAD and LUSC samples from TCGA database. *P < 0.01 and **P < 0.001 vs. normal group. (D) Expression of the 
aforementioned candidates in NSCLC cells after disturbing POU6F2-AS2 level. **P < 0.001 vs. si-NC group. (E) The binding sequences 
between POU6F2-AS2 and miR-125b-5p. (F) Luciferase activity induced by WT-POU6F2-AS2 or MUT-POU6F2-AS2 was examined in NSCLC 
after miR-NC or miR-125b-5p mimic transfection. **P < 0.001 vs. miR-NC group. (G) RIP experiment corroborated the interaction between 
POU6F2-AS2 and miR-125b-5p. **P < 0.001 vs. IgG group. 
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function as a ceRNA to adsorb miR-125b-5p. Thus, 

these findings indicate that POU6F2-AS2 functions as 

an miR-125b-5p sponge in NSCLC. 

 

POU6F2-AS2 controls E2F3, a downstream miR-

125b-5p target, in NSCLC cells 

 

Next, we aimed to address the effect of POU6F2-AS2–

miR-125b-5p interaction in NSCLC, for which we first 

assessed the efficiency of miR-125b-5p mimic 

(Figure 5A). Functional experiments revealed that the 

overexpression of miR-125b-5p inhibited the pro-

liferative (Figure 5B), colony-forming (Figure 5C), 

migratory (Figure 5D), and invasive (Figure 5E) 

abilities of NSCLC cells. While searching for the 

putative targets of miR-125b-5p using a bioinformatics 

approach, we identified a potential binding site between 

miR-125b-5p and E2F3 (Figure 6A), which was 

selected for the subsequent experiments to determine 

the role of E2F3 in affecting NSCLC malignancy [22, 

23]. Subsequently, to confirm the biophysical binding 

between miR-125b-5p and E2F3, we performed 

luciferase reporter assay, which revealed that the WT-

E2F3–induced luciferase activity was downregulated by 

miR-125b-5p mimic, whereas almost no change was 

observed in the control mutant (MUT)-E2F3 (Figure 6B). 

 

 
 

Figure 5. miR-125b-5p exerts anti-tumor actions in NSCLC cells. (A) The efficiency of miR-125b-5p mimic in NSCLC cells. **P < 0.001 

vs. miR-NC group. (B and C) The proliferation and colony-forming of NSCLC cells after miR-125b-5p overexpression. **P < 0.001 vs. miR-NC 
group. (D and E) The motility of NSCLC cells after being transfected with miR-NC or miR-125b-5p mimic. **P < 0.001 vs. miR-NC group. 
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Furthermore, the presence of miR-125b-5p mimic 

evidently decreased the expression levels of E2F3 in 

NSCLC cells (Figure 6C and 6D). 

 

After identifying E2F3 as a downstream target of miR-

125b-5p, we attempted to explore whether E2F3 was 

under the regulation of POU6F2-AS2. Notably, the 

expression levels of E2F3 were suppressed in POU6F2-

AS2–depleted H460 cells, whereas it was remarkably 

increased in pc-POU6F2-AS2–transfected SK-MES-1 

cells (Figure 6E and 6F). Furthermore, we observed 

that coexpression with miR-125b-5p inhibitor rescued 

the inhibitory effect of si-POU6F2-AS2 on E2F3 in 

H460 cells. Moreover, miR-125b-5p mimic restored 

the expression levels of E2F3 to normal, which  

was elevated by pc-POU6F2-AS2 overexpression in 

SK-MES-1 cells (Figure 6E and 6F). These findings 

suggest that POU6F2-AS2 decoys miR-125b-5p in 

 

 
 

Figure 6. E2F3, a target of miR-125b-5p, is controlled by POU6F2-AS2 in NSCLC cells. (A) miR-125b-5p possessed binding 

sequences within E2F3. (B) Luciferase activity induced by WT-E2F3 or MUT-E2F3 was examined in NSCLC after miR-125b-5p upregulation. 
**P < 0.001 vs. miR-NC group. (C and D) MTDH mRNA and protein levels in miR-125b-5p overexpressed-NSCLC cells. **P < 0.001 vs. miR-NC 
group. (E and F) H460 cells were transfected with si-NC, si-POU6F2-AS2, si-POU6F2-AS2+NC inhibitor, or si-POU6F2-AS2+miR-125b-5p 
inhibitor. SK-MES-1 cells were transfected with pcDNA3.1, pc-POU6F2-AS2, pc-POU6F2-AS2+miR-NC, or pc-POU6F2-AS2+miR-125b-5p 
mimic. After transfection, the quantification of E2F3 levels was conducted. **P < 0.001 vs. si-NC and pcDNA3.1 groups. ##P < 0.001 vs. si-
POU6F2-AS2+NC inhibitor and pc-POU6F2-AS2+miR-NC groups. 
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NSCLC cells, thereby regulating E2F3 expression 

levels. 

 

Regulatory activities of POU6F2-AS2 in NSCLC are 

dependent on the miR-125b-5p/E2F3 axis 

 

To explore whether the miR-125b-5p/E2F3 axis was 

involved in the function of POU6F2-AS2 in NSCLC 

cells, we performed rescue experiments. First, we 

examined the efficiency of miR-125b-5p inhibitor and 

pc-E2F3 in H460 cells (Figure 7A and 7B), following 

which they were transfected with si-POU6F2-AS2 

alongside miR-125b-5p inhibitor or pc-E2F3. Cell 

growth analysis using CCK-8 and colony formation 

assays revealed that the decreased H460 proliferation 

due to si-POU6F2-AS2 was restored following miR- 

 

 
 

Figure 7. miR-125b-5p inhibition or E2F3 upregulation reverses the repressing effects of si-POU6F2-AS2 in NSCLC cells. (A) 

The interference efficiency of miR-125b-5p inhibitor in H460 cells. **P < 0.001 vs. NC inhibitor group. (B) The transfection efficiency of pc-
E2F3 in H460 cells by western blotting. **P < 0.001 vs. pcDNA3.1 group. (C–E) H460 cells were transfected with si-NC, si-POU6F2-AS2, si-
POU6F2-AS2+NC inhibitor, si-POU6F2-AS2+miR-125b-5p inhibitor, si-POU6F2-AS2+pcDNA3.1, or si-POU6F2-AS2+pc-E2F3. The capacities of 
proliferative and colony formation were, respectively, measured by CCK-8 and colony formation assays. (F) Transwell migration and 
invasion assays of the motility of H460 cells treated as abovementioned. **P < 0.001 vs. si-NC group; ##P < 0.001 vs. si-POU6F2-AS2+NC 
inhibitor group; &&P < 0.001 vs. si-POU6F2-AS2+pc-E2F3 group. 



www.aging-us.com 2697 AGING 

125b-5p inhibitor or pc-E2F3 treatment (Figure 7C–

7E). Additionally, the depletion of POU6F2-AS2 

expression levels impeded the motility of H460 cells, 

and this inhibitory effect was reversed by down-

regulating the expression of miR-125b-5p or 

upregulating that of E2F3 (Figure 7F). 

 

Furthermore, POU6F2-AS2–overexpressing SK-MES-

1 cells were cotransfected with miR-125b-5p mimic or 

si-E2F3, following the determination of adequate si-

E2F3 transfection efficiency (Figure 8A). The 

upregulation of miR-125b-5p or downregulation of 

E2F3 abrogated the pro-proliferative actions of pc-

POU6F2-AS2 in SK-MES-1 cells (Figure 8B and 8C). 

Additionally, the effects of pc-POU6F2-AS2 on the 

motility of SK-MES-1 cells were reversed in  

the presence of miR-125b-5p mimic or si-E2F3 

(Figure 8D). Hence, we concluded that POU6F2-AS2 

exacerbated the oncogenicity of NSCLC via the miR-

125b-5p/E2F3 pathway. 

 

 

 
Figure 8. miR-125b-5p overexpression or E2F3 knockdown counteracts the actions triggered by pc-POU6F2-AS2 in NSCLC 
cells. (A) E2F3 level in SK-MES-1 cells after pc-E2F3 or pcDNA3.1 transfection. **P < 0.001 vs. si-NC group. (B and C) POU6F2-AS2-

overexpressed SK-MES-1 cells were treated with miR-125b-5p mimic or pc-E2F3. The assessment of cell proliferation and colony formation 
was implemented applying CCK-8 and colony formation assays, respectively. *P < 0.01 and **P < 0.001 vs. pcDNA3.1 group. ##P < 0.001 vs. 
pc-POU6F2-AS2+miR-NC and pc-POU6F2-AS2+si-NC groups. (D) Transwell migration and invasion assays were operated to measure cell 
motility in abovementioned cells. **P < 0.001 vs. si-NC group. ##P < 0.001 vs. pc-POU6F2-AS2+miR-NC group. &&P < 0.001 vs. pc-POU6F2-
AS2+si-NC group. 
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POU6F2-AS2 ablation inhibits tumor growth in vivo 

 

To analyze whether POU6F2-AS2 ablation impaired 

NSCLC tumor growth, we performed a tumor xenograft 

experiment. The tumors of the sh-POU6F2-AS2 group 

exhibited reduced tumor growth (Figure 9A and 9B) 

and weight (Figure 9C) compared with those of the 

control sh-negative control (NC) group. Additionally, 

miR-125b-5p was overexpressed in POU6F2-AS2–

depleted tumor xenografts (Figure 9D). Furthermore, 

POU6F2-AS2 was ablated in tumor xenografts 

following stable sh-POU6F2-AS2 transfection. More-

over, the E2F3 expression levels were decreased in 

tumor xenografts of the sh-POU6F2-AS2 group (Figure 

9E). Thus, POU6F2-AS2 inhibition suppressed the 

growth of NSCLC tumors in vivo. 

 

DISCUSSION 
 

Recently, numerous studies have reported that the 

pathogenesis of NSCLC is controlled by both protein-

coding and nonprotein-coding genes [24, 25]. The 

aberrant expression levels of lncRNAs markedly affect 

the onset and development of NSCLC by regulating 

multiple pathological behaviors [26, 27]. Therefore, 

determining the specific functions and underlying 

molecular events of lncRNAs in NSCLC can help 

identify novel diagnostic and therapeutic targets for this 

disease. However, to the best of our knowledge, there 

has been no systematic clarification regarding the 

contribution of several identified lncRNAs to the 

progression of NSCLC, thereby necessitating further 

research. Herein, we demonstrated that POU6F2-AS2 

exerted pro-oncogenic activities in NSCLC by targeting 

the miR-125b-5p/E2F3 axis. 

 

Recently, several lncRNAs have been reported to be 

closely associated with NSCLC progression [12, 28]. 

For example, the lncRNAs PLAC2 [29], NUBE2R2-

AS1 [30], and OXCT1-AS1 [31], which are upregulated 

in NSCLC, promote tumor oncogenicity. Conversely, 

the lncRNAs HAR1A [32], LSAMP-1 [33], and 

LINC00174 [34] were underexpressed in NSCLC and 

inhibited cancer aggressiveness. Our literature survey 

revealed that studies focused on the expression status 

and detailed roles of POU6F2-AS2 in NSCLC are not 

extant. Herein, a considerable upregulation of POU6F2- 

AS2 in NSCLC tissues and cell lines was confirmed. 

Moreover, while POU6F2-AS2 inhibition decreased 

NSCLC cell proliferation, colony formation, and 

 

 
 

Figure 9. POU6F2-AS2 downregulation represses tumor growth in vivo. (A) The representative image of xenografted tumor tissues.  

(B and C) The growth curves and weight of xenografted tumor tissues. **P < 0.001 vs. sh-NC group. (D) miR-125b-5p and POU6F2-AS2 levels in 
xenografted tumor tissues. **P < 0.001 vs. sh-NC group. (E) E2F3 protein level in xenografted tumor tissues. **P < 0.001 vs. sh-NC group. 
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motility, POU6F2-AS2 upregulation demonstrated the 

opposite effects. Overall, these results improve our 

understanding of the complicated molecular events 

underlying NSCLC genesis and progression. 

 

Mechanistically, although lncRNAs possess no protein-

coding potential, they can affect gene expression 

through diverse mechanisms [35]. LncRNAs can 

interact with different entities, such as miRNAs, 

mRNAs, proteins, or DNAs, and subsequently alter 

their distribution and expression levels, thereby 

influencing their roles [36]. The mechanisms by which 

lncRNAs exert their effects are chiefly determined by 

their subcellular localization [37]. Accordingly, we 

determined the location of POU6F2-AS2 in NSCLC 

cells and found that it is primarily distributed in the 

cytoplasm. The cytoplasmic presence of lncRNAs has 

attracted substantial research, consequently establishing 

the ceRNA theory, which suggests that lncRNAs can 

sequester miRNAs through the miRNA response 

element and suppress the effect of miRNA functions on 

their targets [38]. 

 

To further explain the action mechanism of POU6F2-

AS2, bioinformatics prediction was performed, which 

revealed that miR-125b-5p harbors complementary 

sequences that can pair with POU6F2-AS2, which was 

subsequently confirmed via luciferase reporter and RIP 

assays. Furthermore, when the downstream target of 

miR-125b-5p in NSCLC was explored, E2F3 was 

identified as a direct target of the miRNA. Notably, 

E2F3 was positively regulated by the decoy action of 

POU6F2-AS2 for miR-125b-5p. Thus, POU6F2-AS2 

acts as an endogenous decoy for miR-125b-5p in 

NSCLC, thereby modulating E2F3 expression levels. 

These results indicate that POU6F2-AS2, miR-125b-5p, 

and E2F3 RNAs constitute a novel ceRNA pathway in 

NSCLC. 

 

The role of miR-125b-5p has been well studied in 

human cancers and is reportedly downregulated in 

laryngeal squamous cell carcinoma [39], breast cancer 

[40], hepatocellular carcinoma [41] and ovarian cancer 

[42]. Furthermore, miR-125b-5p is reportedly expressed 

at low levels in LUAD, which was associated with poor 

prognosis [43]. Additionally, serum miR-125b-5p was 

found to be remarkably correlated with NSCLC stage 

and prognosis [44]. Multivariate analysis revealed that 

the elevated expression levels of miR-125b-5p are  

an independent prognostic factor for survival [44]. 

Herein, miR-125b-5p downregulation in NSCLC was 

confirmed. Functionally, miR-125b-5p was involved in 

modulating numerous malignant properties in NSCLC 
cells. Mechanistically, multiple targets of miR-125b-5p 

have been identified, including HK2 [39], KIAA1522 

[40], TXNRD1 [41], CD147 [42], VEGFA [45], and 

TNFR2 [46]. We discovered E2F3, a key regulator of 

the G1/S phase transition, as a downstream target of 

miR-125b-5p in NSCLC. Earlier, E2F3 expression was 

reportedly increased in NSCLC and closely associated 

with early lymphatic spread [22]. Moreover, E2F3 

expression was confirmed to be an independent factor 

for predicting patient prognosis in NSCLC [22]. Via 

rescue experiments, we have further proved that 

suppressing miR-125b-5p or increasing E2F3 

expression levels sufficiently recovered POU6F2-AS2 

depletion–induced anticarcinostatic activities in 

NSCLC. Briefly, the miR-125b-5p/E2F3 axis 

constitutes the downstream effector of POU6F2-AS2 

and influences the aggressiveness of NSCLC. 

However, we did not explore the regulation of NSCLC 

metastasis in vivo by POU6F2-AS2 or the factors that 

caused the aberrant expression of POU6F2-AS2  

in NSCLC; therefore, further investigations are 

warranted. 

 

In conclusion, we have found that the expression levels 

of POU6F2-AS2 were notably elevated in NSCLC, 

potentially aggravating its oncogenicity and serving as a 

molecular sponge for miR-125b-5p through the ceRNA 

pattern, consequently upregulating E2F3 expression 

levels. Our findings indicate that POU6F2-AS2 is an 

attractive diagnostic biomarker and therapeutic target 

for NSCLC. 

 

MATERIALS AND METHODS 
 

Clinical specimens 
 

This study was approved by the Ethics Committee of 

The People’s Hospital of Liaoning Province. All 

patients provided written informed consent before the 

implementation of the study. The study included 47 

patients with NSCLC from whom NSCLC and adjacent 

nontumorous tissues were collected. The inclusion 

criteria were as follows: (1) patients who were 

diagnosed with NSCLC; (2) patients who had not been 

treated with radiotherapy, chemotherapy, or immuno-

therapy; and (3) patients who had not been diagnosed 

with other human cancers. The exclusion criteria were 

as follows: (1) patients who had received radiotherapy 

or chemotherapy; (2) patients who received immuno-

therapy; and (3) patients who presented with other 

cancers. All clinical specimens were immersed in 

liquid nitrogen following collection until further use. 

 

Cell lines and transfection 
 

The human nontumorigenic bronchial epithelial cell line 
BEAS-2B (ATCC, Manassas, VA, USA) was 

maintained in bronchial epithelial cell growth media 

(Lonza, Walkersville, MD, USA). The NSCLC cell 
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lines A549, SK-MES-1, and H460 were cultured in 

RPMI-1640, F-12K (Gibco, Thermo Fisher Scientific, 

Inc.), and Minimum Essential Medium (Gibco) media, 

respectively. All the NSCLC cell lines were purchased 

from ATCC. Additionally, 10% fetal bovine serum 

(FBS) and 1% penicillin/streptomycin mixed reagent 

(Gibco) were added to the culture media. The 

aforementioned cells were maintained at 37°C and 

grown in a humidified incubator with 5% CO2 

atmosphere. 

 

Three siRNAs against POU6F2-AS2 (si-POU6F2-AS2) 

expression, NC siRNA (si-NC), E2F3 siRNA (si-E2F3), 

POU6F2-AS2 overexpression vector (pc-POU6F2-

AS2), and E2F3 overexpression vector pcDNA3.1-

E2F3 (pc-E2F3), were obtained from GenePharma 

Company (Shanghai, China). miR-125b-5p mimic, 

miRNA NC mimic (miR-NC), miR-125b-5p inhibitor, 

and NC inhibitor were obtained from RiboBio Co., Ltd. 

(Guangzhou, China). Transient transfection was 

performed using Lipofectamine 2000 (Invitrogen). 

 

Quantitative real-time polymerase chain reaction 

 

The total RNA was extracted from tissues or cells using 

TRIzol (Takara, Dalian, China). To determine POU6F2-

AS2 and E2F3 expression levels, the total RNA was 

reverse-transcribed into complementary DNA using 

PrimeScript™ RT reagent kit (Takara). Next, PCR 

amplification was performed using TB Green® Premix 

Ex Taq™ II (Takara). Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was used for normalization. 

To quantify miR-125b-5p expression levels, reverse 

transcription and PCR were performed using miRcute 

miRNA First-Strand cDNA Synthesis Kit and miRcute 

miRNA qPCR Detection Kit SYBR Green (Tiangen 

Biotech, Beijing, China), respectively. U6 was used as 

the internal control to analyze miR-125b-5p expression 

levels. We used the 2−ΔΔCq method to calculate gene 

expression levels. 

 

Colony formation assay 

 

The cells were harvested 24 h following transfection. 

Cell suspension (2 mL) containing 500 cells were 

layered on the wells of six-well plates. On day 15, the 

culture media was discarded, and the newly formed 

colonies were fixed with methanol and stained with 

crystal violet. After extensive washing, the colonies 

were imaged and counted under a light microscope 

(Olympus, Tokyo, Japan). 

 

Cell counting Kit-8 assay 

 

The transfected cells were harvested and seeded onto 

96-well plates with an initial density of 2 × 103 

cells/well. After culturing for different periods, cell 

proliferation was detected via incubation with 10 µL 

CCK-8 solution (Dojindo, Kumamoto, Japan) at 37°C 

for 2 h, following which the optical density value was 

determined by measuring the absorbance at 450 nm 

using a microplate reader. 

 

Transwell migration and invasion assays 

 

For the migration assay, 5 × 104 cells diluted in 200 μL 

basal media without FBS were added into the apical 

chambers (Corning Costar, Cambridge, MA, USA). The 

transwell basolateral chambers were loaded with 700 μL 

media culture supplemented with 10% FBS. After 

culturing for 24 h, the non-migrated cells were washed 

away, and the migrated cells were fixed and stained 

with 4% paraformaldehyde and crystal violet, 

respectively. The stained cells were imaged and counted 

under a light microscope. For the invasion assay, 

Matrigel (BD Bioscience) was coated on the upper side 

of the membranes, and the rest of the procedure was 

performed same as mentioned above. 

 

Tumor xenograft experiment 

 

Short-hairpin RNAs (shRNAs) against POU6F2-AS2 

(sh-POU6F2-AS2) and NC shRNA (sh-NC) were 

designed and synthesized by GenePharma and inserted 

into the pLKO.1 vector (Addgene, Inc.). The final 

construct was transfected into 293T cells. After 2 days 

of incubation, the lentivirus was transduced into H460 

cells. H460 cells with stable POU6F2-AS2 knockdown 

were selected using puromycin. 

 

Animal experiments were performed with approval 

from the Institutional Animal Care and Use 

Committee of The People’s Hospital of Liaoning 

Province. Male BALB/c nude mice (SLAC 

Laboratory Animal Co., Ltd., Shanghai, China) aged 

4–6 weeks were housed under specific pathogen-free 

conditions at 25°C and 50% humidity, with a 10:14 

light/dark cycle and ad libitum access to food and 

water. The mice were injected with 2 × 106 H460 cells 

with the stable expression of sh-POU6F2-AS2 or sh-

NC. Each group had three mice. After tumor cell 

injection, the size of the tumor xenografts was 

monitored weekly using a caliper. On day 35, all mice 

were euthanized, and subcutaneous xenografts were 

collected and weighed. 

 

Nuclear–cytoplasmic fractionation assay 

 

To assess the cellular localization of POU6F2-AS2 in 
NSCLC cells, Cytoplasmic and Nuclear RNA 

Purification Kit (Norgen, Thorold, ON, Canada) was 

used. After extracting POU6F2-AS2 from the 
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cytoplasm and nucleus, RT-qPCR was performed to 

determine its expression levels in NSCLC cells. 

 

Bioinformatics prediction 

 

TCGA database (https://tcga-data.nci.nih.gov/tcga/) was 

used to analyze the expression of POU6F2-AS2 in 

LUAD and LUSC. lncLocator (http://www.csbio. 

sjtu.edu.cn/bioinf/lncLocator/) was used to predict the 

location of POU6F2-AS2. miRcode (http://www. 

mircode.org/) was used to predict the binding  

between POU6F2-AS2 and miR-125b-5p. TargetScan 

(http://www.targetscan.org) and Starbase3.0 (https:// 

starbase.sysu.edu.cn/) were employed to determine the 

downstream target of miR-125b-5p. 

 

Luciferase reporter assay 

 

The POU6F2-AS2 fragment containing the WT miR-

125b-5p binding site was synthesized by GenePharma 

and cloned into the psiCHECK™-2 vector (Promega). 

The generated luciferase reporter vector was designated 

as WT-POU6F2-AS2. Meanwhile, the luciferase 

reporter vectors, namely MUT-POU6F2-AS2, WT-

E2F3, and MUT-E2F3, were synthesized and used for 

the subsequent experiments. WT and MUT alongside 

miR-125b-5p mimic or miR-NC were cotransfected into 

NSCLC ells. The transfected cells were collected and 

their luciferase activity was measured using a dual-

luciferase reporter assay system (Promega). 

 

RNA immunoprecipitation 

 

RIP was performed using EZ-Magna RIP™ RNA 

Binding Protein Immunoprecipitation Kit (Millipore, 

Billerica, MA, USA). Cell lysates were produced by 

cultivating NSCLC cells with complete RIP buffer. 

Next, 100 μL cell lysate was treated with magnetic 

beads conjugated with anti-Ago2 or control IgG 

(Millipore). Following overnight incubation at 4°C, the 

magnetic beads were collected and subjected to 

Proteinase K buffer for protein digestion. The 

immunoprecipitated RNA was extracted and analyzed 

using RT-qPCR. 

 

Western blotting 

 

The total protein was extracted using RIPA buffer 

(Beyotime, Shanghai, China) supplemented with 

phosphatase and protease inhibitors (KeyGEN 

BioTECH; Nanjing, China) and quantified using 

Enhanced BCA Protein Assay Kit (Beyotime). 

Subsequently, 10% sodium dodecyl sulfate–
polyacrylamide gel electrophoresis was used to separate 

equal amounts of proteins, followed by their transfer 

onto a polyvinylidene fluoride (PVDF) membrane. 

Nonspecific proteins were blocked with 5% skim milk 

at room temperature for 2 h. After overnight incubation 

with a primary antibody, anti-E2F3 (1:1,000 dilution; 

ab152126) or anti-GAPDH (1:1,000 dilution; ab128915; 

Abcam, Cambridge, UK), the PVDF membrane was 

incubated with a secondary antibody (Abcam) for 2 h. 

Protein blots were subsequently visualized using 

BeyoECL Plus Kit (Beyotime). 
 

Statistical analysis 
 

The results from three independent experiments were 

expressed as mean ± standard deviation. The treatment 

groups were compared using paired and unpaired 

Student’s t-test (two groups) or one-way analysis of 

variance followed by Duncan’s test (multiple groups). A 

p value of <0.05 was considered statistically significant. 
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