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INTRODUCTION 
 

Esophageal cancer (EC) ranks 6th among all factors 

inducing cancer-associated mortality worldwide and 

exhibits a growing incidence. EC is divided into 

esophageal adenocarcinoma and esophageal squamous 

cell carcinoma (ESCC). In Asia, ESCC represents a 

predominant histological subtype [1]. ESCC patients 

still have a dismal prognosis despite great progress in 

treatments. Moreover, some ESCC cases develop 

resistance to targeted therapies, immunotherapy, and 

chemotherapy, leading to cancer recurrence and 

mortality [2, 3]. Such cases of treatment failure may be 

caused by ESCC heterogeneity [4, 5]. Therefore, 

identifying ESCC subtypes is of great significance for 

predicting patient prognostic outcomes and developing 

individualized treatments. 
 

Pyroptosis is a form of gasdermin-mediated programmed 

cell death that causes persistent swelling of cells when the 
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ABSTRACT 
 

Advanced esophageal squamous cell carcinoma (ESCC) still has a dismal prognostic outcome. However, the 
current approaches are unable to evaluate patient survival. Pyroptosis represents a novel programmed cell death 
type which widely investigated in various disorders and can influence tumor growth, migration, and invasion. 
Furthermore, few existing studies have used pyroptosis-related genes (PRGs) to construct a model for predicting 
ESCC survival. Therefore, the present study utilized bioinformatics approaches for analyzing ESCC patient data 
obtained from the TCGA database to construct the prognostic risk model and applied it to the GSE53625 dataset 
for validation. There were 12 differentially expressed PRGs in healthy and ESCC tissue samples, among which eight 
were selected through univariate and LASSO cox regression for constructing the prognostic risk model. According 
to K-M and ROC curve analyses, our eight-gene model might be useful in predicting ESCC prognostic outcomes. 
Based on the cell validation analysis, C2, CD14, RTP4, FCER3A, and SLC7A7 were expressed higher in KYSE410 and 
KYSE510 than in normal cells (HET-1A). Hence, ESCC patient prognostic outcomes can be assessed by our PRGs-
based risk model. Further, these PRGs may also serve as therapeutic targets. 
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Table 1. Clinical information of ESCC patients from TCGA and GEO. 

 TCGA GEO 

n = 96 n = 179 

Age 
≥60 39 90 

<60 57 89 

Gender 
Female 15 33 

Male 81 146 

T 
T1~2 41 39 

T3~4 55 140 

N 
N0 52 83 

N1~2, x 44 96 

M 
M0 86 179 

M1, x 10 0 

Stage 

Stage I 7 10 

Stage II 57 77 

Stage III 27 92 

Stage IV 5 0 

 

cytomembrane ruptures, leading to cellular content 

leakage [6, 7]. Cancer cells can generate massive 

antigens during pyroptosis that induce systemic 

immunity and inhibit cancer growth [8]. Moreover, 

Gasdermin E (GSDME), a crucial pyroptosis-related 

protein, induces tumor adaptive immunity by promoting 

macrophage-mediated phagocytosis, thereby adding to 

the difficulty of immune evasion of cancer cells [9, 10]. 

Immune cells infiltrate more readily into GSDME over-

expressing tumors compared to GSDME-deficient ones 

[7, 9]. Therefore, pyroptosis is a significant direction of 

antitumor therapy. However, there are few studies on 

the relationship of ESCC prognosis with pyroptosis-

related gene (PRG) levels [11], and no further study has 

been conducted to stratify ESCC into different 

molecular subtypes to explore the relationship with 

immune response. 

 

With the development of high-throughput sequencing 

(HTS), we have gained a comprehensive understanding 

of tumor gene expression patterns, and ESCC cases 

show great heterogeneity in the prognosis of combined 

immunotherapy, and it is greatly significant to provide 

personalized therapy for subtype classification of 

patients with ESCC [12, 13]. The present study 

conducted preliminary research to identify ESCC-

related PRGs subtypes based on HTS data. This study 

investigated the functions of pyroptosis in diverse 

subtypes, which is beneficial for diagnosis, prognosis, 

and individualized treatment for ESCC cases. 

 

MATERIALS AND METHODS 
 

Datasets and patients 

 

We obtained mRNA expression profiles (Workflow 

Type: HT seq-FPKM) and matched clinical data of 

ESCC cases at the Cancer Genome Atlas (TCGA) 

website (https://portal.gdc.cancer.gov/repository) as a 

training cohort. Simultaneously, 99 ESCC case samples 

(including 11 healthy and 88 ESCC tissue samples) 

were also obtained. The GSE53625 dataset of Gene 

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih. 

gov/geo/) was adopted to be a validation cohort. There 

were 275 ESCC cases enrolled altogether, excluding 

adenocarcinoma, and their details are in Table 1. This 

work adopted Affymetrix Human Genome U133 Plus 

2.0 Array platform to study GEO samples. 

Clinicopathological characteristics (age, sex, grade, 

TNM stage, tobacco, alcohol) of cases were also 

extracted. Samples without detailed clinical or 

prognostic information were eliminated from these two 

databases. 

 

DEGs identification 

 

We obtained 27 PRGs in Gene Set Enrichment Analysis 

(GSEA) (https://www.gsea-msigdb.org/gsea). Their 

expression patterns were obtained from the TCGA 

database. Moreover, DEGs were identified using the R 

software “limma” package with a P < 0.05 threshold. 

Furthermore, potential gene-gene interactions were 

searched, and the DEGs-based protein-protein 

interaction (PPI) network was built based on the 

STRING database (http://string-db.org/). 

 

Risk score model establishment based on univariate 

Cox as well as LASSO Cox regression 

 

This work conducted univariate regression to screen the 

prognostic PRGs upon the threshold of P < 0.2 to 

prevent omissions. Additionally, the R software 

“glmnet” function was utilized for LASSO analysis to 

construct a risk score model upon univariate regression. 

https://portal.gdc.cancer.gov/repository
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea
http://string-db.org/
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Table 2. Primers of genes. 

C2 
F: GGGGACAAGGTCCGCTATC 

R: GAAGTCATAAGAGTAGGGTTGGC 

CD14 
F: ACGCCAGAACCTTGTGAGC 

R: GCATGGATCTCCACCTCTACTG 

C1QB 
F: ATGGGGCAGCATCCCAGTA 

R: CTCCCTTCTCTCCGAACTCAC 

B2M 
F: GAGGCTATCCAGCGTACTCCA 

R: CGGCAGGCATACTCATCTTTT 

FCER1G 
F: AGCAGTGGTCTTGCTCTTACT 

R: TGCCTTTCGCACTTGGATCTT 

FCGR3A 
F: CCTCCTGTCTAGTCGGTTTGG 

R: TCGAGCACCCTGTACCATTGA 

RTP4 
F: ACATGGACGCTGAAGTTGGAT 

R: TACGTGTGGCACAGAATCTGC 

SLC7A7 
F: CCCAAGGGTGTGCTCATATACA 

R: CCAGTTCCGCATAACAAAGGG 

 

Later, our constructed model was adopted to determine 

the risk score for every ESCC case, and the median was 

adopted to classify cases as high- or low-risk groups. A 

forest was used to show the P-value, HR and 95% CI of 

each gene through the “forestplot” R package. 

Thereafter, the R software “stats” package was applied 

in PCA and tSNE. 

 

Development of the pyroptosis-related gene 

prognostic model 

 

The survival probability was compared between the 

two subgroups via Kaplan-Meier analysis in TCGA. 

The predictive accuracy of each gene and the risk 

score were evaluated by performing survival 

probability analysis. Considering the clinical 

characteristics, a predicted nomogram was developed 

to predict the 1-, 3-, and 5-year overall survival. In 

addition, we verified whether our constructed risk 

model could predict prognosis based on the GSE53625 

dataset. 

 

Functional annotation and changes in eight genes 

incorporated into the model 

 

This work utilized the cBioPortal (https://www. 

cbioportal.org) dataset containing genome information 

of 104 cancer types for examining genetic variations of 

those genes incorporated into the model. GeneMANIA 

(http://www.genemania.org) provides genetic data, gene 

list information, functional annotation of key genes, and 

algorithms with great prediction ability. Hence, we 

adopted GeneMANIA for analyzing genes related to 

gene models and enrichment activities. 

Associations between genes/risk score and 

clinicopathological factors/immune cells/immune 

pathways 

 

This study utilized the R package “beeswarm” function 

for evaluating the associations between genes/risk score 

and clinicopathological factors. Notably, the tumor 

immune microenvironment (TIME) represents an 

essential factor for antitumor immunity in the tumor. 

ssGSEA was conducted using the R package “gsva” 

function for calculating tumor-infiltrating immune cells 

(TIICs) scores and evaluating activities of immune 

pathways. 

 

Quantitative real-time PCR (qRT-PCR) 

 

TRIzol reagent (Invitrogen, CA, USA) was used for 

extracting total RNA, which was later prepared into 

cDNA using the Prime Script RT Master Mix (TaKaRa, 

China). Thereafter, qRT-PCR was performed using 

SYBR Premix Ex Taq II (TaKaRa, China) for detecting 

target mRNA expression, while Bio-Rad CFX Manager 

software (Bio-Rad, USA) was used for data analysis, 

using GAPDH as the endogenous reference. Primer 

preparation was performed by Tsingke Biotechnology 

Co., Ltd. (China) 2−ΔCt approach was employed for 

assessing mRNA expression. The sequences of primers 

used in this study are listed in Table 2. 

 

Statistical analysis 

 

The statistical analysis was carried out using R version 

4.0.5, GraphPad Prism 9.0.0, and Perl version 5.28. 

Excel Office 2019 was used for GEO and TCGA 

https://www.cbioportal.org/
https://www.cbioportal.org/
http://www.genemania.org/
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databases. In univariate regression, prognostic PRGs 

were selected at P < 0.2. The significance level was set 

at P < 0.05 for the rest of analysis. 

 

RESULTS 
 

DEGs identification 

 

In total, 12 PRGs were selected through TCGA 

database analysis (Figure 1A). There were several of 

these genes upregulated in tumors compared to healthy 

samples, including Gasdermin C (GSDMC), Tumor 

Protein P63 (TP63), Nucleotide Binding 

Oligomerization Domain Containing 2 (NOD2), 

GSDME, Interleukin 1 Alpha (IL1A), PYD And CARD 

Domain Containing (PYCARD), Absent in Melanoma 2 

(AIM2), Caspase 1 (CASP1), Granzyme B (GZMB), 

Tumor Necrosis Factor (TNF) and NLR Family Pyrin 

Domain Containing 1 (NLRP1), whereas Elastase, 

Neutrophil Expressed (ELANE) were downregulated. 

Using STRING database, we constructed a PPI network 

that CASP1, TNF, IL1A, NLRP1, AIM2 NOD2, and 

PYCARD as critical genes interacting with additional 

genes (Figure 1B). Figure 1C demonstrates a correlation 

network that contains 12 PRGs. 

 

Tumor classification according to differentially 

expressed PRGs (DEPRGs) 

 

This work conducted consensus clustering analysis for 

analyzing the relations of 12 PRGs with ESCC subtypes 

based on TCGA-derived cases, and cases with < 30-day 

follow-up time were eliminated. With an increase in the 

clustering variable (k = 2–10), there were the greatest 

and smallest intragroup and intergroup connections, 

respectively, found at k = 2, which indicated that ESCC 

 

 
 

Figure 1. Results of differential gene analysis. (A) Heatmap of differentially expressed pyroptosis-related genes. The vertical axis 

refers to genes; the horizontal axis refers to differences in the gene expression between tissues, the red denotes high expression, and the 
blue denotes low expression. (B) PPI network showing the interactions of differentially expressed pyroptosis-related genes. (C) Correlation 
of the differentially expressed pyroptosis-related genes (Red line: Positive correlation; Blue line: Negative correlation. The depth of the 
colors reflects the strength of the relevance). 
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cases were classified as two clusters based on 12 DEGs 

(Figure 2A). Moreover, we compared the overall 

survival (OS) of both clusters, which exhibited 

significant differences (Figure 2B). 

 

Risk score model 

 

For the present study, we used LASSO Cox regression to 

develop a risk model based on those eight PRGs (Figure 

3A, 3B), and calculated risk scores for each case as 

follows, risk score = β1 × ExpmRNA1 + β2 × 

ExpmRNA2 + … + βn × ExpmRNAn. Furthermore, this 

work conducted univariate Cox regression by 

incorporating those chosen DEPRGs based on 275 ESCC 

cases. At p = 0.2, there eight genes were discovered 

(Figure 3C). By using principal component analysis 

(PCA) and T-Distribution Stochastic Neighbour 

Embedding (tSNE), TCGA and GEO cases with diverse 

risks were grouped into 2 clusters (Figure 3D, 3E, 3H, 

3I). With the increase in risk score value, the mortality 

risk elevated accordingly, while survival time was 

shortened (Figure 3F, 3G, 3J, 3K). Moreover, based on 

our validation dataset, our constructed PRGs-based risk 

model performed well in predicting the patient prognosis 

(Figure 3L, 3N). In TCGA, the AUC values of 1-, 3-, and 

5-year ROC curves were 0.729, 0.783, 0.882, 

respectively (Figure 3M), whereas those in GEO were 

0.580, 0.605, 0.590, respectively (Figure 3O). 

 

Establishment of the PRG-based prognosis gene 

model 

 

For constructing the prognosis gene model, this work 

used univariate Cox regression to select prognostic 

PRGs. Consequently, we detected eight prognostic 

PRGs altogether. Figure 4 represents K-M survival 

curves, indicating the dismal survival of ESCC. Cases 

showing upregulation of B2M (Figure 4A, P = 0.01), 

C1QB (Figure 4B, P = 6.4 × 10−3), C2 (Figure 4C, P = 

0.002), CD14 (Figure 4D, P = 2.0 × 10−3), FCER1G 

(Figure 4E, P = 0.006), FCGR3A (Figure 4F, P = 6.8 × 

10−3), RTP4 (Figure 4G, P = 0.03), SLC7A7 (Figure 

4H, P = 0.02) are also represented. 

 

Univariate as well as multivariate Cox regression for 

risk score 

 

Figure 5A represents eight gene expressions of ESCC 

cases and associated clinical data. Meanwhile, the 

heatmap described 12 diverse clinicopathological feature 

distributions depending on our risk model-determined 

risk scores of cases. Univariate and multivariate Cox 

regression was applied in assessing whether our as-

constructed risk model independently predicted ESCC 

prognosis. According to Figure 5B–5E, our constructed 

risk model independently predicts ESCC prognosis. 

 

Functional annotation and construction of the novel 

prognosis signature according to ESCC molecular 

subtypes 

 

For better understanding functions of candidate genes 

and pathways across diverse molecular subtypes, 293 

DEGs were obtained from the TCGA cohort upon the 

thresholds of |log2FC|≥1 and FDR < 0.05. Thereafter, 

the selected DEGs were subjected to GO functional 

annotation and KEGG pathway enrichment. Figure 6A 

and 6B represents significantly enriched biological 

 

 
 

Figure 2. Tumor classification as per the pyroptosis-related DEGs. (A) ESCC patients were grouped into two clusters based on the 

consensus clustering matrix (k = 2). (B) Kaplan–Meier OS curves for the two clusters. 
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Figure 3. Construction of a prognostic ESCC model. (A) Distribution of LASSO coefficients for eight genes. Two vertical lines represent 

lambda. min and lambda. Lse. (B) Coefficients for eight genes analyzed by LASSO. (C) The hazard ratio of univariate Cox analysis for pyroptosis-
related DEGs. (D) PCA plot for ESCC based on the risk score in TCGA. (E) tSNE plot for ESCC based on the risk score in TCGA. (F, G) Distribution of 
risk score, survival status in TCGA. (H) PCA plot for ESCC based on the risk score in GEO. (I) tSNE plot for ESCC based on the risk score in GEO. (J, 
K) Distribution of risk score, survival status in GEO. (L) Survival analysis to verify the prognostic model in TCGA. (M) Time-dependent ROC curves 
for ESCC in TCGA. (N) Survival analysis to verify the prognostic model in GEO. (O) Time-dependent ROC curves for ESCC in GEO. 

 

 
 

Figure 4. The prognostic value of eight pyroptosis-related genes in ESCC. In TCGA, the overall survival curve of B2M (A), C1QB (B), 

C2 (C), CD14 (D), FCER1G (E), FCGR3A (F), RTP4 (G), and SLC7A7 (H) in ESCC patients in the high-/low-expression group. PRG 

pyroptosis‑related gene. Adjusted P-value < 0.05 is considered significant. 
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processes (BPs). Therefore, DEGs were associated with 

several biological and cellular activities, like G protein-

coupled receptor binding, the external side of the 

plasma membrane, response to the virus, ABC 

transporters, fatty acid degradation, metabolic pathways 

and so on. 

Association between risk score and immune 

cells/immune function 

 

All TCGA-derived cases were classified as high- or 

low-risk groups based on the median risk score value. 

ssGSEA was conducted to compare enrichment scores 

 

 
 

Figure 5. Univariate and multivariate Cox regression analyses for the risk score. (A) Heatmap (blue: low expression; red: high 

expression) for the connections between clinicopathological features and the risk groups (*P < 0.05). (B) Univariable Cox regression analysis 
for the risk score in TCGA. (C) Multivariable Cox regression analysis for the risk score in TCGA. (D) Univariable Cox regression analysis for the 
risk score in GEO. (E) Multivariable Cox regression analysis for the risk score in GEO. 
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for 16 TIICs and activities of 13 immune pathways 

between both groups. In TCGA-derived cases, high-risk 

patients had increased TIIC levels of activated dendritic 

cells (aDCs), B cells, CD8+T cells, DCs, macrophages, 

mast cells, neutrophils, plasmacytoid dendritic cells 

(pDCs), T-helper cells, Th1-cells, Tfh, Tregs and 

tumor-infiltrating lymphocytes (TILs) (Figure 7A). 

Figure 7B shows the enrichment of immune-related 

 

 
 

Figure 6. The functional enrichment analysis of pyroptosis-related genes in ESCC. (A) The enriched item in gene ontology analysis. 

The size of the circles represented the number of genes enriched. Abbreviations: BP: biological process; CC: cellular component; MF: molecular 
function; PRG: pyroptosis-related gene. The bigger bubble means more genes enriched, and the increasing depth of red denotes the 
differences were more obvious. q-value, the adjusted P-value. (B) The enriched item in Kyoto Encyclopedia of Genes and Genomes analysis. 

 

 
 

Figure 7. The immune landscape of two pyroptosis-related molecular subtypes. (A, B) Comparison of the enrichment scores of 16 

types of immune cells and 13 immune-related functions between low- (blue box) and high-risk (red box) groups in the TCGA cohort, (C, D) 
Comparison of the enrichment scores of 16 types of immune cells and 13 immune-related functions between low- (blue box) and high-risk 
(red box) groups in the GEO cohort. Adjusted P-values were shown as ns (not significant); *P < 0.05; **P < 0.01; ***P < 0.001. 
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functions for high-risk patients. High-risk patients were 

clearly associated with increased APC co-stimulation, 

checkpoint, CCR, HLA, cytolytic activity, para-

inflammation, inflammation-promoting, T cell-co-

stimulation, T cell co-inhibition, Type I and Type II 

IFN responses. In GEO-derived cases, high-risk patients 

had increased TIIC levels of aDCs, B cells, DCs, 

macrophages, mast cells, neutrophils, Th1-cells, T-

helper cells, Tregs, and TILs (Figure 7C). Figure 7D 

shows the enrichment of immune-related functions for 

high-risk patents. Clearly, high-risk patients were 

associated with the increased APC co-inhibition, 

checkpoint, CCR, parainflammation, inflammation-

promoting, T-cell-co-stimulation, Type I and Type II 

IFN responses. 

 

Eight genes expression at mRNA levels 

 

As confirmed by ESCC cells (KYSE410, KYSE510) 

and normal epithelium of esophagus (HET-1A) 

obtained from Hunan Fenghui Biotechnology Co., Ltd. 

(Changsha, China) through qPCR, C2, CD14, RTP4, 

FCER3A, and SLC7A7 were highly expressed in 

KYSE410 and KYSE510 than normal cells (Figure 8A–

8H). The expression of B2M, C1QB, and FCER1G did 

not show a significant difference, which could be a 

result of individual variability requiring an increased 

sample size. 

 

DISCUSSION 
 

The findings suggested that the PRG-based gene risk 

model might be adopted for predicting ESCC prognosis. 

Also, our as-constructed risk model was associated with 

clinicopathological characteristics, immune cells, as 

well as immune activities. Pyroptosis represents a novel 

type of programmed cell death that has been widely 

investigated in a number of disorders in recent years 

[14]. It may result from canonical caspase-1 

inflammasomes or from caspase-4/5/11 activation by 

cytosolic lipopolysaccharide [15]. Pyroptosis may affect 

cancer growth, migration, and invasion [16]. The effects 

of GSDME and Gasdermin A3 (GSDMA3) on 

suppressing cancer proliferation by promoting cytotoxic 

responses of lymphocytes are reported [12]. After 

chemotherapy, the degradation of GSDME by caspase-3 

can cause some cancer cells to scorch death [17]. PD-L1 

can alter TNFα-mediated tumor cell apoptosis into 

pyroptosis, leading to tumor necrosis [18]. When ESCC 

is treated with DHA, certain dying cells show the 

typical pyroptosis morphologies, such as blowing huge 

bubbles from the cell membrane, accompanied by 

reduced expression of pyruvate kinase isoform M2 

(PKM2), GSDME, and caspase-3/8 activation, together 

with GSDME-NT generation [19]. Cisplatin exposure 

increased ROS levels, which activated GSDME and 

caspase-3 and promoted ESCC cell pyroptosis [20]. 

PDT inhibited PKM2 expression, thereby activating 

caspase-3/8 and releasing N-GSDME while triggering 

ESCC pyroptosis [21]. BI2536 (PLK1 inhibitor) can 

enhance the DDP sensitivity of ESCC cells by 

promoting pyroptosis while suppressing the DNA 

damage repair pathway. A combination of BI2536 and 

DDP treatment led to ESCC cell pyroptosis via the 

caspase-3/GSDME pathway [22]. Metformin induces 

ESCC pyroptosis via miR-497/PELP1 pathway [23]. 

Disruption of circPUM1 resulted in pyroptosis of ESCC 

cell lines [24]. These studies suggested that many 

 

 
 

Figure 8. mRNA relative expression of genes in the risk model by the method of qPCR. (A) mRNA relative expression of B2M. (B) 

C1QB. (C) C2. (D) CD14. (E) FCER1G. (F) FCER3A. (G) RTP4. (H) SLC7A7. GAPDH expression was used as an internal control. qPCR, 
quantitative real-time polymerase chain reaction. 
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chemotherapies and targeted drugs work by causing 

ESCC cells to pyroptosis, and PRGs are possible 

biomarkers for ESCC. However, there is few article 

using PRGs for constructing the risk model of ESCC. In 

this work, the TCGA dataset was used to be the training 

set, whereas the GEO dataset to be the validation set for 

constructing an eight PRGs-based risk model based on 

univariable as well as LASSO Cox regression. 

Therefore, our prognostic model predicted prognosis 

well, which could be useful for clinical assessment and 

discovering novel therapeutic targets. Genes 

incorporated into our as-constructed risk model are 

recognized in cancer research. β2-microglobulin (B2M) 

mutation is found to be the immune escape genetic 

mechanism in anti-programmed cell death protein 1 

(PD-1) treatment [25]. HLA class I antigen deletion 

caused by B2M mutation mostly occurs under the 

activated PDCD1 (PD-1)-positive T cell infiltration 

condition [26]. C1QB is the diagnostic and prognostic 

biomarker for skin cutaneous melanoma patients [27], 

IRF4 could promote melanoma cell growth via 

upregulating C1QB [28]. The combination of C2 and 

additional therapeutic mAbs, such as type II anti-

CD20/CD22/CD38 samples, can overcome complement 

attack resistance in tumor cells [29]. Genetic variability 

in CD14 may play a role in developing gastric cancer 

precursor lesions over time and in gastric carcino-

genesis [25]. PD-L1 CD14 monocytes are markedly 

associated with OS of different cancers after anti-PD-1 

blockade treatments [30]. CD14+ monocytes from 

peripheral blood in renal cell carcinoma (RCC) cases 

show remarkable phenotypic changes, which are five 

times greater than the mean value found in normal 

subjects. CD14+ cells present around and inside the 

tumor might independently predict the patient prognosis 

[31]. Cancer cells with high CD14 expression show 

increased amounts of many inflammatory factors, 

resulting in greater tumor formation than cells with low 

CD14 expression. The inflammatory factors generated 

by the high CD14 expression bladder cancer cells 

recruit and polarize macrophages and monocytes to 

acquire immune-suppressive characteristics. Bladder 

cancer cells with high CD14 can mediate tumor-

promoting inflammation while driving cancer cell 

growth for promoting tumor development [32]. The 

expression of FCER1G increases within many cancers. 

FCER1G expression was positively associated with 

tumor prognostic outcome, growth, and migration; also, 

FCER1G was closely related to tumor immunity and 

tumor microenvironment (TME) [33]. FCGR3A usually 

shows upregulated in pan-cancer [34]. In survival 

analysis, FCGR3A has been found to be a major risk 

factor for many tumors [35]. Besides, FCGR3A 

expression is associated with infiltrating degrees of 

certain immune cells [36], levels of DNA mismatch 

repair genes, and numerous immune checkpoint genes. 

Based on the drug sensitivity analysis, FCGR3A 

upregulation predicts the decreased IC50 values of 

many drugs [34]. RTP4 depends on the infiltrating 

degrees of immune cells. Furthermore, it showed a close 

association with genes that encode immune checkpoint 

components (PDCD1, LAG3, TIM-3) [37]. Glioma risk 

may be affected by SLC7A7 genetic variants [38]. 

Based on the above findings, we identified eight PRGs 

related to the tumor. Our risk model built using these 

PRGs was associated with the infiltrating degrees of 

immune cells (such as neutrophils and macrophages). 

Thus, our as-constructed risk model is associated with 

TME and could be used to predict ESCC prognosis. 

However, there are some limitations associated with it. 

Firstly, this risk model needs to be further validated 

with more data. Secondly, certain PRGs incorporated in 

this model should be validated with more samples, and 

their underlying mechanisms ESCC should be further 

explored. 

 

In summary, this work suggested that PRGs were 

differentially expressed in healthy compared with ESCC 

samples. Furthermore, according to eight PRGs, our 

constructed risk score independently predicts the 

prognosis of ESCC. Therefore, our findings contribute 

to identifying early cases and offer candidate novel 

antitumor therapeutic targets. 
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FCGR3A: Fc Fragment of IgG, Low Affinity IIIa, 

Receptor; RTP4: Receptor Transporter Protein 4; 

SLC7A7: Solute Carrier Family 7 Member 7. 
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