
www.aging-us.com 2824 AGING 

INTRODUCTION 
 

Cellular senescence is a state of persistent cell cycle 

arrest of metabolically active cells that occurs in 

response to sublethal damage triggered by stimuli from 

outside and inside the cell [1, 2]. Senescent cells are 

characterized by altered gene expression programs  

that orchestrate key senescence-associated traits, such 

as resistance to apoptosis, an enlarged and flattened  

cell morphology, dysfunctional cellular organelles,  

and enhanced lysosomal function with increased 

senescence-associated (SA) β-galactosidase activity. In 

addition, they display a senescence-associated secretory 

phenotype (SASP) through which they secrete 

proinflammatory cytokines, growth factors, and tissue-

remodeling enzymes [3–5]. Despite these shared traits, 

the manifestation of specific senescence features differs 

depending on the type and intensity of the senescence-

triggering stimulus, the time elapsed since induction of 

senescence, the type and metabolic status of the cell, 

and the biological context. Accordingly, senescence is 

believed to be a highly heterogenous and dynamic 
developmental process [6]. 

 

With recognition that senescent cells accumulate in 

tissues and organs with advancing age, there is an 
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ABSTRACT 
 

Senescence is a state of enduring growth arrest triggered by sublethal cell damage. Given that senescent cells 
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phenotype. Second, we characterized the dynamic changes in the transcriptomes of cells as they developed 
etoposide-induced senescence; by tracking cell transitions across this process, we found two different 
senescence programs that developed divergently, one in which cells expressed traditional senescence markers 
such as p16 (CDKN2A) mRNA, and another in which cells expressed long noncoding RNAs and splicing was 
dysregulated. Finally, we obtained evidence that the proliferation status at the time of senescence initiation 
affected the path of senescence, as determined based on the expressed RNAs. We propose that a deeper 
understanding of the transcriptomes during the progression of different senescent cell phenotypes will help 
develop more effective interventions directed at this detrimental cell population. 
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increased appreciation that senescent cells are largely 

detrimental during aging, exacerbating age-associated 

disability and disease [6, 7]. Accordingly, selective 

removal of senescent cells with senolytic drugs has been 

shown to extend health span and improve age-associated 

disorders in mouse models, pointing to the value of 

senescent cells as therapeutic targets [8–11]. However, 

the task of identifying senescent cells has been 

challenging due to the heterogeneity of the senescent 

phenotype, which makes it difficult to find robust and 

consistent markers [5, 12, 13]. Thus, a comprehensive 

analysis of the senescent transcriptome at the individual-

cell level will be immensely valuable. 

 

Here, we used single-cell RNA sequencing (scRNA-seq) 

analysis to document both the diverse transcriptomes of 

human senescent fibroblasts at an individual-cell scale, 

and the changes in the transcriptome over time during 

etoposide-triggered senescence. We have applied this 

approach using different senescence-triggering stimuli: 

replicative senescence (RS, recapitulating the process 

exhaustion of cell division), and DNA damage inducers 

such as ionizing radiation (IR, used in cancer 

radiotherapy) and etoposide (ETO, an anti-cancer 

chemotherapy drug). Analysis of these cells revealed 

that RS populations displayed broad heterogeneity of 

transcriptomic patterns, while cells undergoing IR- and 

ETO-induced senescence showed gene expression 

patterns that were more similar to each other. By 

tracking the transitions during senescence initiation and 

progression in these paradigms, we uncovered the 

development of divergent senescence programs. 

Furthermore, we characterized two senescence paths 

with strikingly different transcriptomic profiles: one 

exhibiting increased levels of CDKN2A mRNA 

(encoding the tumor suppressor and senescence driver 

p16), and another characterized by dysregulation of 

splicing and expression of long noncoding RNAs 

(lncRNAs). These results advance our understanding of 

the complexity of senescence phenotypes and illustrate 

the different transcriptomic paths that characterize 

senescence programs. 

 

MATERIALS AND METHODS 
 

Cell culture and treatments, SA-β-Gal activity, and 

BrdU incorporation 

 

Human diploid WI-38 fibroblasts (NIGMS Human 

Genetic Cell Repository at the Coriell Institute for 

Medical Research; Repository ID AG06814-N) were 

cultured in Dulbecco’s modified Eagle’s medium 

(DMEM, Gibco) supplemented with 10% FBS, 1% 

antibiotics, and 1% non-essential amino acids (Gibco). 

Cell cultures were maintained in an incubator at 37° C and 

5% CO2. For replicative senescence (RS), cells were 

cultured until replicative exhaustion [reaching population 

doubling level (PDL) > 50]. To induce senescence by 

treatment with ionizing radiation (IR), proliferating (PDL 

24) fibroblasts were exposed to 10 Gray (Gy) and 

incubated for an additional 10 days. For etoposide (ETO)-

induced senescence, cells were treated with either DMSO 

or 50 μM ETO for six days, then cultured in regular 

medium without DMSO or ETO-containing medium for 

four additional days. In time course experiments, cells 

were collected at 0 (untreated), 1, 2, 4, 7, and 10 days 

after ETO treatment. For synchronization in G0/G1, cells 

were washed twice in 1× PBS and cultured in media 

containing 0.2% FBS for 48 h; cells were then treated 

with DMSO or ETO with DMSO or ETO. 

 

Senescence was confirmed by staining for senescence-

associated β-galactosidase (SA-β-Gal) activity and by 

measuring BrdU incorporation. SA-β-Gal activity was 

measured following the manufacturer’s instructions 

(Cell Signaling Technology). Briefly, cells were washed 

with 1× PBS, fixed for 10 min at room temperature, and 

stained overnight with a freshly prepared X-Gal 

solution (pH 6.0). Micrographs were acquired by using 

a camera (Nikon Digital Sight) adapted to a microscope 

(Nikon Eclipse TS100). BrdU incorporation was 

measured by using the BrdU Cell Proliferation Assay 

Kit (Cell Signaling Technology). Briefly, cells were 

incubated in media containing BrdU for 24 h, then fixed 

and denatured before the addition of the detection 

antibody. An anti-mouse IgG HRP-linked antibody was 

used to recognize the bound antibody; the HRP 

substrate TMB was added to develop color. We halted 

the development of color by adding the STOP solution 

and measured BrdU incorporation using a GloMax plate 

reader (Promega). 

 

10x Genomics single-cell library construction, and 

RNA-sequencing 

 

Single-cell libraries were prepared in two repeats per 

senescence model and one per time point of the ETO 

time course experiments using Chromium Next GEM 

Single Cell 3ʹ Kits v3.1 with Chip G (10x Genomics). 

In short, collected cells were counted and suspensions 

of ~7,000 single cells were loaded onto the Chromium 

Controller Instrument for generation of gel bead-in-

emulsions (GEMs). The captured cells were lysed, 

and the RNA was barcoded while reverse-transcribed 

in each GEM. GEMs were then broken and the 

synthetized cDNA was used for library preparation 

following the manufacturer’s protocol. cDNA quality 

was assessed on the Agilent Bioanalyzer with High-

Sensitivity DNA kit (Agilent). The libraries were 
sequenced on an Illumina NovaSeq 6000 sequencer 

with 45,000 to 100,000 mean reads per cell. RNA-seq 

data were deposited in GEO (GSE226225). 
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Quality control and sample processing 

 

10x sequencing libraries were converted into  

feature-barcode matrices following the Cell Ranger 

(10x Genomics, version 5.0.0) pipeline. After 

demultiplexing, the function ‘cellranger count’ was 

used with default parameters, with the argument 

‘include-introns’. Reads were mapped using the Cell 

Ranger prebuilt annotation platform GRCh38. 

Subsequent analysis of obtained read count matrices 

was carried out using the R package Seurat, version 

4.1.0 [14]. Applying quality control measures, cells 

were included for analysis based on the proportion of 

mitochondrial RNA (<12%), quantity of RNA reads 

(between 1,000 and 120,000 transcripts for senescent 

versus control and between 1,200 and 120,000 

transcripts for ETO time course analysis), and number 

of expressed genes (at least 300 independent genes per 

cell). For the senescence model, one control sample 

was found to be of a poor quality and was excluded 

from the analysis. 

 

Each sample was normalized with the ‘LogNormalize’ 

method using the ‘NormalizeData’ function, and the top 

2000 highly variable genes were selected from individual 

samples with the function ‘FindVariableFeatures’. For 

reliable single-cell analysis and comparison across 

conditions, we integrated the individual 10x libraries 

using the R package Seurat via the pipeline recommended 

by the developers. Integration anchors were selected with 

the function ‘FindIntegrationAnchors’, and the samples 

were integrated using the function ‘IntegrateData’. The 

integrated dataset was used for dimensional reduction, 

clustering, and downstream analysis. The ‘RNA  

assay’ was used when comparing gene expression. Cell 

cycle scores were assigned using the function 

‘CellCycleScoring’ with the cc.genes.updated.2019 

dataset provided by Seurat. 

 

Dimensional reduction and clustering 

 

Dimensional reduction and clustering analysis of 

integrated data followed the standard Seurat workflow. 

First, the function ‘ScaleData’ was used to scale  

the expression values of each gene in integrated data  

and then the principal component analysis (PCA) 

implemented with the ‘RunPCA’ function was 

performed. The top 20 principal components, determined 

by the ‘ElbowPlot’ method, were applied for two-

dimensional data visualization with the uniform 

manifold approximation and projection (UMAP) via 

‘RunUMAP’ function; 20 dimensions were used to find 

nearest neighbors with default parameters. Clusters were 
identified using the Louvain algorithm with a resolution 

of 0.25 when comparing senescence models and a 

resolution of 0.35 when analyzing the ETO time course. 

Cluster identities were kept but reordered to aid 

comparison. 

 

Genes encoding differentially abundant RNAs 

 

Differentially expressed genes for each senescence 

model were identified by comparing normalized 

expressed RNAs for each model to RNAs expressed in 

control cells via the function’ FindMarkers’ and then 

merging the results. When comparing clusters, the 

function ‘FindAllMarkers’ was employed to find marker 

genes that characterized a specific cluster compared to 

all other clusters. Genes (RNAs) with absolute average 

log fold change > 0.25, expressed in minimum 0.25 

fraction of a cluster, and with adjusted p-value < 0.05, 

were retained as marker genes. Overlapping gene 

numbers among clusters were visualized using UPsetR 

software. 

 

Gene set enrichment analysis and process scoring 

 

Gene set enrichment analysis (GSEA) of Gene Ontology 

(GO) terms employed the ClusterProfiler (version 4.0.5) 

[15] function ‘gseGO’ on cluster marker genes and their 

average log fold-change values to find enriched 

biological processes. Significant processes were defined 

as having adjusted p-value < 0.05. To reduce the 

redundancy of terms, the function ‘simplify’ was used 

with a similarity cutoff of 0.7 when comparing 

senescence models, and 0.6 when analyzing the ETO 

time course. The GSEA of “REACTOME_MRNA_ 

SPLICING” gene set from Molecular Signature 

Database [16] was evaluated using the ‘GSEA’ function. 

In process scoring, each cell was scored for expression 

of a gene set representing GO terms selected from 

GSEA. Genes associated with each term were taken 

from all clusters for which the term was significantly 

enriched. The Seurat function ‘FindMarkers’ was 

applied comparing combined senescent datasets to 

control cells using these genes. Enrichment scores for 

senescent cells were selected and used for scoring via 

the Seurat function ‘AddModuleScore’. 

 

RNA velocity and splice ratio 

 

For measurement of RNA velocity, the bam files 

generated from each sample by Cell Ranger were used 

to create loom files with counts divided into spliced, 

unspliced, and ambiguous RNA by the standard 

Velocyto.py (version 0.17) pipeline [17]. In short, the 

function ‘Velocyto run’ was applied in command line 

using filtered-feature-barcode matrices, position-sorted 

(possorted) bam files, and the GRCh38 annotation 
platform. Loom files were converted to Seurat objects 

using the ‘as.Seurat’ function in the SeuratObject 

package. Cell barcodes in these matrices needed to be 
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converted to match their Cell Ranger-generated 

counterparts. Data from the spliced, unspliced, and 

ambiguous RNAs were transferred from Velocyto-

generated objects to the original objects for further 

analysis. Splice ratios were calculated from the number 

of unspliced transcripts relative to total RNA content 

(spliced + unspliced + ambiguous). RNA velocity was 

estimated using the function ‘RunVelocity’ included in 

the SeuratWrappers (version 0.3.0) package using 

parameters described in the Seurat developers’ vignette 

(kcells = 25, fit.quantile = 0.02, deltaT = 1, reduction = 

“umap”). To preserve dynamic changes in population 

trends, this function was run on two-day intervals 

instead of the entire integrated dataset. Velocity 

estimates were visualized using the Velocyto.R (version 

0.6) function ‘show.velocity.on.embedding.cor’. 

 

RT-qPCR analysis 

 

RNA was isolated using phenol-chloroform according to 

the manufacturer’s instructions (TriPure™ Isolation 

Reagent, Sigma-Aldrich). Total RNA (500 ng) was used 

for reverse transcription (RT) followed by quantitative 

(q)PCR analysis. RT was performed using the Maxima 

Reverse Transcriptase protocol (Thermo Fisher) and 

qPCR analysis was carried out using specific primer pairs 

and SYBR green master mix (Kapa Biosystems) with a 

QuantStudio 5 Real-Time PCR System (Thermo Fisher). 

Relative RNA levels were calculated by normalizing to 

GAPDH mRNA, encoding the housekeeping protein 

GAPDH, using the 2-ΔΔCt method. 

 

RESULTS 
 

Heterogeneity of expressed transcriptomes in 

different WI-38 fibroblast senescence models 

 

To better understand the different molecular processes 

that underlie the heterogeneity of cellular senescence, 

we comprehensively investigated the single-cell 

transcriptomes of human diploid fibroblasts (WI-38) 

exposed to different senescence-triggering stimuli. 

Proliferating cells (CTRL) at population doubling level 

24 (PDL 24) were grown until their replicative 

potential was exhausted (PDL 57) and they reached 

replicative senescence (RS). To establish senescence by 

exposure to ionizing radiation (IR), proliferating cells 

were exposed to 10 Gy IR, then cultured for 10 

additional days. To establish senescence by exposure to 

etoposide (ETO), cells were cultured in media 

containing 50 μM ETO for six days and then cultured 

in regular media for another four days, as described 

[18]. Cell senescence and proliferative arrest were 
confirmed by the presence of increased SA-β-Gal 

activity and decreased BrdU incorporation, respectively 

(Figure 1A). To measure gene expression profiles at the 

single-cell level, each sample was processed using 

single-cell RNA-sequencing (scRNA-seq) analysis 

following the 10x Genomics pipeline. Out of a total of 

27,827 cells, quality control filtering (Material and 

Methods) retained 20,299 cells for downstream 

analysis. We framed transcriptomic heterogeneity 

across all senescence models by integrating the 

individual cell RNA expression profiles from each 

condition (CTRL, RS, IR, and ETO) into one dataset. 
 

First, we sought insight into the differences in gene 

expression patterns across cells from each senescence 

model. UMAP analysis of the integrated data revealed 

broad transcriptomic heterogeneity across RS cells that 

vastly overlapped with CTRL, IR, and ETO samples 

(Figure 1B). In contrast, IR and ETO cell transcriptomes 

were more similar to one another and were different from 

the CTRL group. Interestingly, transcripts encoding cell 

cycle and proliferation proteins (e.g., CCNB1, PTMA, 

CKS2, or HMGB1/2 mRNAs) were lower in some of the 

RS cells and in most of the IR and ETO cells, in keeping 

with the broader transcriptomic diversity of the RS cell 

populations (Figure 1B and Supplementary Table 1). 

Markers commonly associated with cellular senescence, 

including CDKN1A, SERPINE2, IGFPB5/7, TGFBI, and 

CCND1 mRNAs were upregulated in most cells from all 

senescence models when compared to proliferating 

(CTRL) cells. Other transcripts that were highly 

expressed in all senescence models, included RAB13, 

TIMP1, IGFBP5, and QSOX1 mRNAs. Accordingly, 

GSEA of GO gene sets showed enrichment of cell cycle 

and proliferation markers in CTRL cells, increased 

markers of extracellular matrix organization and cell 

adhesion in RS, as well as upregulation of autophagy, 

mitochondria and oxidative stress markers in IR and ETO 

cells (Supplementary Figure 1A). The expression levels 

of mRNAs from select top marker genes representing 

each experimental condition relative to CTRL cells by 

scRNA-seq analysis were validated by RT-qPCR 

analysis employing primer pairs designed specifically to 

amplify each mRNA. For validation by RT-qPCR 

analysis, the mRNAs chosen from the CTRL group were 

those most highly reduced in the three senescence 

models; for the RS validation group, the mRNAs chosen 

were those selectively elevated in this group relative to 

the CTRL, IR, and ETO groups; and given the extensive 

overlap between IR and ETO models, the abundant 

mRNAs preferentially expressed in both models were 

chosen for validation (Figure 1C and Supplementary 

Table 2). 

 

Transcriptomic patterns across different senescence 

models 
 

To explore the transcriptomic patterns and their 

contribution to the senescence models, we performed 
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Figure 1. Shared and distinct transcriptomes of WI-38 fibroblasts in different senescence models. (A) WI-38 fibroblasts that were 

proliferating at PDL 24 (CTRL), cultured until replicative exhaustion at PDL 57 (RS), exposed to 10 Gy of ionizing radiation and cultured for an 
additional 10 days (IR), or cultured for six days in media containing 50 μM of etoposide and in regular media for another four days (ETO), 
were analyzed for SA-β-Gal activity (top), and proliferation rates evaluated by measuring by BrdU incorporation (bottom) and compared to 
the CTRL population. (B) Top, UMAP plots with distribution of cells that were color-coded for each group. Bottom, heatmap showing the 
relative expression of top marker mRNAs in each population. (C) The expression levels of representative top markers from scRNA-seq data 
(top) were validated by RT-qPCR analysis (bottom). The relative levels of each mRNA in CTRL, RS, IR, and ETO were first normalized to GAPDH 
mRNA levels and each senescence model was compared to CTRL cells. In (A, C) significance was assessed by two-tailed unpaired Student’s  
t-test, n = 2, *p < 0.05, **p < 0.01, ***p < 0.001. 
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clustering analysis of the integrated data. The analysis 

identified eight cell clusters with distinct transcriptomic 

patterns organized into four major cell groups: clusters 

5 and 0 in one group, clusters 1 and 3 in the second, 

clusters 2, 4, and 7 in the third, and cluster 6 at the 

greatest distance from other clusters in the UMAP space 

(Figure 2A). Cells in the CTRL, RS, IR, and ETO 

showed different distributions across these groups 

(Figure 2B, 2C and Supplementary Table 3). 

 

The cells of clusters 5 and 0 represented almost 80% 

of the CTRL cells, 30% of the RS cells, and only ~1% 

of the IR and ETO cells. They also showed major 

overlap among them (Figure 2D) with the highest 

expression of mRNAs encoding proteins that promote 

cell cycle, proliferation, and transcription, including 

CKS2, HMGB1/2, TOP2A, PCLAF, PTMA, CCNB1 

and MKI67 mRNAs (Figure 2E and Supplementary 

Table 4). Accordingly, the GSEA of GO terms 

performed on differentially expressed genes in each 

cluster compared to the rest of the cells, showed 

positive enrichment of gene sets related to cell cycle 

and cell division in clusters 5 and 0 (Figure 2F and 

Supplementary Figure 1B), supporting the proliferative 

status of these cells. 

 

The cells in clusters 1 and 3 represented the remaining 

20% of CTRL, almost 50% of RS cells, and ~40% of 

each IR and ETO treated populations. These clusters 

included high abundance of mRNAs encoding proteins 

associated with growth arrest (e.g., CDKN1A and 

GDF15 mRNAs) and protein components of the 

senescence-associated secretory phenotype (SASP) (e.g., 

COL1A1, MMP2 and CCL2 mRNAs). Accordingly, 

GSEA revealed that clusters 1 and 3 included cells with 

reduced growth and increased secretory activity. 

 

The cells in clusters 2, 4, and 7 were almost devoid 

(~0.5%) of CTRL cells, but comprised ~20% of the RS 

population, and > 50% of each of the IR and ETO 

populations. These clusters shared expression of many top 

markers TPM2, TMSB4X, S100A11, and FTH1 mRNAs 

and were highly distinct from other clusters (Figure 2A–

2E). Of the three clusters (2, 4, and 7), cluster 2 showed 

the highest levels of mRNAs encoding oxidative 

phosphorylation proteins, while cluster 4 appeared to be 

closely associated to the SASP, with highest expression of 

mRNAs encoding tissue and extracellular matrix (ECM) 

remodeling proteins (TIMP1, IGFBP7, MMP1, and 

SERPINE2 mRNAs) (Figure 2F and Supplementary 

Figure 1B and Supplementary Table 4). Cluster 7 cells 

displayed the most marked upregulation of known 

senescence markers, including CDKN2A, CCND1, and 
CCND2 mRNAs, as well as PINK1 mRNA, encoding the 

protein PINK, which is implicated in Parkinson’s disease 

and regulates mitochondrial quality control [19], and 

IGFBP5 mRNA, encoding a potent inducer of fibrosis 

and ECM remodeling [20]. Together, the cells in clusters 

2, 4, and 7 represent a heterogeneous senescent cell 

population with transcriptomic patterns reflecting 

different senescent cell states with distinct phenotypes. 

 

Finally, cluster 6 cells showed the most distinct 

transcriptomes from all other cells and were present in 

all senescent cells but not in CTRL cells (Figure 2A–

2D). Interestingly, the highest expressed transcripts 

distinguishing this group included multiple long 

noncoding RNAs (lncRNAs), such as NEAT1, MALAT1, 

XIST, and MEG3 (Figure 2E and Supplementary Table 

4). Supporting the senescent character of these cells, this 

cluster displayed reduced expression of mRNAs 

encoding proteins with roles in oxidative 

phosphorylation and cell death, as well as increased 

expression of mRNAs encoding proteins implicated in 

ECM organization; however, due to their low number, 

we were unable to characterize cluster 6 cells in depth 

(Figure 2E and Supplementary Figure 1B). 

 

In summary, we identified four main groups of cells 

with different transcriptomic profiles consistent with 

different functions. Proliferating cells (clusters 5 and 0) 

mainly represented the CTRL population, growth-

arrested cells (clusters 1 and 3) mainly comprised the 

RS population, and two groups of cells with senescent 

phenotype (clusters 2, 4, and 7, as well as the lone 

cluster 6) were enriched in the IR and ETO populations. 

Cells in the latter two groups (clusters, 2, 4, 6, and 7) 

expressed low levels of mRNAs encoding cell cycle and 

cell death proteins, but also expressed heterogeneous 

senescence features, possibly reflecting a mixture of 

various senescence forms or cell states in this 

phenotype. 

 

Cell state dynamics in ETO-induced senescence 

initiation and progression 

 

Second, to systematically investigate how the 

heterogeneity of cells undergoing senescence unfolds 

over time, we treated WI-38 fibroblasts with 50 μM ETO 

and prepared scRNA-seq libraries at 0 (untreated), 1, 2, 4, 

7, and 10 days after treatment. Clustering analysis after 

integrating cells from all time points identified seven 

clusters with different transcriptomic states that 

uncovered dynamic changes during senescence initiation 

and progression (Figure 3A and Supplementary Table 5). 

Estimation of cell progression over time, as measured by 

RNA velocity [assessed by comparing spliced relative to 

unspliced versions of the same transcripts (Materials and 

Methods)], showed day-to-day changes in directionality 
and dynamics of cell-state trajectories during the 10-day 

response to ETO (Figure 3B). To gain insight into the 

transcriptomic changes contributing to the observed 
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Figure 2. Clustering analysis of integrated single-cell senescence models. (A) UMAP illustrating the cell clusters with different gene 

expression profiles, distinguished by unsupervised clustering of integrated samples from Figure 1. (B) Distribution of cell clusters from (A) in 
each sample analyzed. (C) Percent composition of cell clusters from (B) in each sample. (D) Overlap of upregulated RNA sets among clusters. 
Set size: number of upregulated RNAs in each cluster. Each column shows number of genes encoding RNAs that are either unique for one 
cluster (single dot) or shared by clusters (dots connected by lines). (E) Top highest expressed marker RNAs in each cluster. Dot color 
represents average gene expression levels scaled across all clusters, and dot size indicates percentage of cells expressing specific gene in each 
cluster. Clusters are ordered by similarity of the transcriptomes in (A). (F) Select GO terms of GSEA performed for each cluster 
(Supplementary Figure 1B). Cells are colored by gene expression signature scores of indicated GO terms assessed for each cell and presented 
in UMAP space (top). Violin plots show expression levels of RNAs from top genes contributing to scoring across all clusters (bottom). 
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Figure 3. Cell states evolving over time after ETO-induced senescence. (A) UMAP plots illustrating changes in the distribution of cell 

clusters identified by scRNA-seq analysis at the indicated time points after beginning treatment with 50 μM ETO added to the culture media 
(top). Percent composition of cell clusters in each time point during ETO treatment (bottom). (B) RNA velocity projected onto the UMAP plot 
illustrating the direction of transitions among cell clusters. To preserve the temporal variations in trajectories, velocity estimates were 
calculated in paired contiguous samples. The color dots indicate cells in each pair of time points. Arrow length indicates the estimated rate of 
transcriptomic changes and arrowhead shows predicted direction of these changes. (C) Most highly expressed marker RNAs in each cluster. 
Dot color represents average RNA expression levels scaled across all clusters and dot size indicates percentage of cells expressing a specific 
RNA in each cluster. Clusters are ordered by similarity of the transcriptomes of cells in (A). (D) Select GO terms from Supplementary Figure 
1C. Cells are colored by transcriptomic signature scores of indicated GO terms assessed for each cell and presented in UMAP space (top). 
Violin plots show the expression patterns of top RNAs contributing to scoring across all clusters (bottom). 
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transitions, we examined the transcriptomic profiles of 

each cell cluster and assessed their predicted functions 

(Figure 3C, 3D and Supplementary Figure 1C and 

Supplementary Table 6). 

 

We observed that cells with transcriptomes of clusters 6, 

1, and 4 represented over 80% of the untreated population 

(Day 0), but dramatically decreased to about 30% cells at 

Day 1 after ETO treatment, and further decreased during 

the subsequent days (Figure 3A). The cells in these 

clusters expressed high levels of transcripts encoding 

proteins that promote cell proliferation, such as CCNB1, 

HMGB1/2, TOP2A, and TUBA1B/C mRNAs (Figure 3C 

and Supplementary Table 6). The transcriptomic profile of 

clusters 6, 1, and 4 populations, along with its high 

representation in the untreated group and subsequent 

reduction after ETO treatment, support various 

proliferative states of cells in these clusters that were 

suppressed after stress. In contrast, cluster 0, en-

compassing around 15% of total cells at Day 0, grew to 

~30% cells at Day 1, and stayed at similar abundance 

through the rest of the time evaluated, indicating that this 

population does not change drastically by the ETO 

treatment. Interestingly, the RNA velocity analysis 

showed multidirectional vectors in clusters 6, 1, 4 and 0, 

indicating that these cells may be ‘hubs’ of different cell 

fates after ETO treatment (Figure 3B). 

 

This analysis further uncovered that cluster 2 cells, 

present at only 2% in the Day 0 population, expanded to 

over 30% of cells by Day 1 after ETO exposure, then 

gradually decreased for the remainder of the time course 

to <10% in Day 10 cells. The brief appearance of the 

cluster 2 transcriptome at Day 1 after ETO treatment, 

followed by a time-dependent disappearance of this 

cluster (Figure 3A), underscored the transient nature of 

this transcriptome in the cellular response to the initial 

DNA damage following exposure to ETO. Importantly, 

cluster 2 cells showed high levels of transcripts 

encoding proteins that are implicated in p53-mediated 

stress-response pathway such as CDKN1A, GADD45A, 

GDF15, and MDM2 mRNAs (Figure 3C, 3D, and 

Supplementary Table 6). This initial induction at Day 1 

was accompanied by a gradual decrease of the levels of 

these transcripts at the later time points in the ETO 

senescence program (Supplementary Figure 2). In 

addition, GSEA revealed enrichment in cluster 2 of 

several GO terms associated with the cellular response 

to DNA damage (Supplementary Figure 1C). In all, our 

findings indicate that cluster 2 represents a cellular state 

of early transcriptomic response to DNA damage and 

support the importance of the p53 pathway at a time of 

cell fate decisions to undergo senescence. 
 

Finally, clustering uncovered two cell subpopulations that 

gradually emerged over time, clusters 3 and 5 (Figure 3A, 

3B). Each of these clusters represented only 1-3% of Day 

0, 1, and 2 populations, then expanded to ~20% (for 

cluster 3) and 15% (for cluster 5) of the population on 

Day 4 and beyond. The RNA velocity vectors indicated 

different trajectories, some distinctly towards cluster 3, 

and a more intense trajectory towards cluster 5, suggesting 

the existence of divergent cell transitions and cell  

fate developments towards these two subpopulations. 

Cluster 3 was enriched in membrane and oxidative 

phosphorylation GO gene sets and exhibited high 

expression of CCND1, CCND2, UCHL1, and CDKN2A 
mRNAs, encoding known senescence proteins (Figure 

3C, 3D and Supplementary Table 6). On the other hand, 

cluster 5 showed decreased oxidative phosphorylation and 

upregulation of GTPase activity GO gene sets. 

Interestingly, cluster 5 expressed high levels of many 

lncRNAs, as it was observed for cluster 6 in the aggregate 

senescence models (Figure 2E), underscoring the 

transcriptomic similarity of these two clusters. These 

findings indicate that cells in clusters 3 and 5 may 

represent different forms of the senescent phenotype 

emerging via distinct cell fate programs in response to 

cellular stress. In summary, the transcriptomic analysis 

performed for each cluster offered details and validation 

of the dynamic transitions of transcriptomically distinct 

cell states during ETO-induced senescence initiation and 

progression. 

 

Cell proliferative status influence gene response to 

ETO treatment and cell fate trajectory 

 

Given that the cell cycle stage may influence the cellular 

response to stress conditions, we asked if the cell cycle 

phase of the abundant clusters (6, 1, 4, and 0) at Day 0 

(untreated) might inform us about different responses to 

ETO treatment. To check this possibility, we assigned a 

cell cycle phase score to individual ETO time course cells 

by using ‘CellCycleScoring’ function in Seurat. We found 

that the majority of cells from cluster 6 and many cells 

from clusters 1 and 4 exhibited high scores for S and 

G2/M phase (Figure 4A), supporting the proliferative state 

of these populations which were more abundant on Day 0 

but were significantly diminished on Day 1 after ETO 

treatment; instead, on Day 1, we observed the appearance 

of cluster 2 transcriptome, with upregulation of DNA 

damage response (DDR) mRNAs (Figure 3). Cell cycle 

phase scores further confirmed that cluster 0 cells were 

growth arrested and only changed slightly with exposure 

to ETO (Figure 4A). Remarkably, RNA velocity vectors 

after ETO exposure (Figure 3B) showed that cluster 0, 

representing growth-arrested cells, progressed toward 

cluster 3, while (proliferative) cells in clusters 6, 1, and 

4 were directed towards cluster 5. Thus, we postulated 
that in response to ETO, the proliferating cells  

of clusters 6, 1 and 4 shifted their gene expression 

patterns toward formation of the DDR population of 
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Figure 4. Influence of cell proliferative status on transcriptomic response to ETO treatment. (A) Cell cycle states of ETO time 
course cell clusters determined by the ‘CellCycleScoring’ function in Seurat. (B, C) Relative levels of select RNAs upregulated in cluster 2 (B), 
and cluster 3 (C) compared to the rest of the cells (top). The expression levels of RNAs shown (top) after ETO treatment (Day 2, Day 10) in 
cells cultured in 10% or 0.2% serum media were quantified by RT-qPCR analysis (bottom). Relative RNA levels were normalized to GAPDH 
mRNA levels and compared to untreated cells (Day 0). Significance was assessed by two-tailed unpaired Student’s t-test, n = 3, *p < 0.05,  
**p < 0.01, ***p < 0.001. 
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cluster 2, and later progressed to cluster 5, adopting  

a senescence transcriptome. On the other hand, cell 

cycle-arrested, cluster 0 population perhaps responded 

to DNA damage only marginally, and further 

transitioned to adopt the transcriptome of senescent 

cells in cluster 3. 

 

To distinguish between these possibilities, we treated 

populations that were predominantly proliferating 

(cultured in 10% serum) and predominantly growth-

arrested (cultured in 0.2% serum) with 50 μM of ETO; 

48 h and 10 days later, we measured the expression 

levels of selected RNAs by RT-qPCR analysis. We 

found that proliferating cells (10% serum) exposed to 

ETO expressed high levels of DDR RNAs (markers of 

cluster 2), while arrested cells (0.2% serum) showed 

only slight changes in these RNAs at 48 h after ETO 

treatment (Figure 4B). Conversely, the senescence 

markers of cluster 3 were robustly upregulated by day 

10 when cells were arrested (0.2% serum) at the time of 

ETO treatment, but were unchanged if the cells were 

proliferating at the time of ETO treatment (Figure 4C). 

Collectively, these results indicate that the proliferation 

status at the time of senescence-triggering damage 

affects gene expression patterns and determines 

subsequent trajectories of cell fate during senescence 

progression. 

 

scRNA-seq analysis identified two distinct clusters of 

senescent cells 

 

Our study revealed the progressive rise of two 

transcriptomically distinct cell subpopulations (clusters 3 

and 5) during ETO-induced senescence (Figure 3A, 3B). 

To ensure that these cells represented a senescent state, 

we evaluated the expression levels of genes commonly 

associated with different hallmarks of cellular senescence 

[5, 21] (Figure 5A, left heatmap). We confirmed ETO-

induced upregulation of CDKN1A and CDKN2A mRNAs 

(encoding the growth arrest proteins p21 and p16), 
BCL2L2 mRNA (encoding BCL2L2, a protein that 

promotes cell survival), IL6 mRNA (encoding the SASP 

factor IL6), PINK1 mRNA (encoding protein PINK1, 

which promotes mitochondrial homeostasis), CCND1 

mRNA (encoding CCND1/cyclin D1, required for the 

G1/S transition), DPP4 mRNA (encoding the protease 

DPP4), and PURPL (a lncRNA that modulates p53 

signaling); we also confirmed ETO-induced declines in 

the levels of LMNB1 and LBR mRNAs, encoding proteins 

with key functions in chromatin organization near the 

nuclear envelope [4, 22–24]. Furthermore, we validated 

changes in the transcriptome previously reported by bulk 

RNA-seq analysis [25] (Supplementary Figure 3, left 
heatmap). Importantly, we found that cluster 3 and cluster 

5 cells were the main drivers of the senescence-related 

changes in the expression of these RNAs (Figure 5A, right 

heatmap; Supplementary Figure 3, right heatmap). For 

instance, the total increase in expression levels of 

CDKN2A, CCND1, and PINK1 mRNAs was mainly the 

result of their elevation in cluster 3 cells, the increase in 

levels of DPP4 mRNA, IL6 mRNA, and PURPL was due 

to changes in cluster 5, and the pro-survival BCL2L2 
mRNA was elevated in cells of both clusters 3 and 5. 

Interestingly, the transcriptome of cluster 3 was similar to 

those of clusters 2, 4, and 7 from the senescence models 

dataset, while the transcriptome of cluster 5 was similar to 

that of cluster 6 from the senescence models dataset 

(Supplementary Figure 4A, 4B). Taken together, these 

findings support the existence of transcriptomically 

distinct populations of senescent cells in WI-38 fibroblast 

senescence models. 

 

As one of the most referenced markers for senescence, we 

considered the high expression of CDKN2A mRNA in 

cluster 3 (Figure 5B) important for a deeper understanding 

of the heterogeneity of senescent cells. Analysis of the 

correlation of CDKN2A mRNA levels with  

the levels of other genes across all cells revealed positive 

correlation with multiple mRNAs encoding oxidative 

phosphorylation-related proteins (e.g., NDUFA1, 

UQCR11, COX6C, and NDUFS5 mRNAs) (Figure 5C). 

We also found time-dependent changes in CDKN2A 

mRNA and other transcripts that increased (SRP14, 

SERF2, and TSPO mRNAs) or decreased (TCF12, 

MAG12, and JMJD1C mRNAs) over time, reflecting a 

dynamic continuum of changes following ETO exposure 

(Figure 5D). The high similarity in gene expression 

patterns between clusters 3 and 0 recapitulates the similar 

transcriptomes of these two clusters seen earlier (Figure 

3C, 3D), further solidifying the possibility of transitions 

between cells in clusters 0 and 3. However, the 

predominant accumulation of cells with high CDKN2A 

mRNA expression in cluster 3, accompanied by specific 

transcriptomic trajectories culminating in cluster 3 cells 

revealed by RNA velocity estimation (Figure 3B), 

suggests that this is a distinct subpopulation. 

 

Cluster 5, contrary to cluster 3, showed low and unaltered 

levels of CDKN2A mRNA and CDKN2A-correlated 

genes over time after ETO exposure (Figure 5D). 

Instead, an interesting feature of the transcriptome in 

cluster 5 became apparent by analyzing RNA velocity, 

which distinguished pre-mature (unspliced) from 

mature (spliced) RNAs. Calculation of the splice ratio 

for each cell (Materials and Methods) showed increased 

unspliced RNAs in cluster 5 cells when compared to the 

rest of the cells (Figure 6A and Supplementary Figures 

5A, 6A). It is noteworthy that, similarly to cluster 5, 

cluster 6 in the combined analysis of senescence models 
(Figure 2) also exhibited increased unspliced RNA 

levels (Supplementary Figures 5B, 6B, 6C), confirming 

the reproducibility of this feature through different 
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Figure 5. CDKN2A mRNA expression during ETO treatment. (A) Heatmaps showing changes in the expression levels of select 

senescence-associated transcripts across 10 days of ETO exposure (left), and the contribution of each cell cluster to these changes (right).  
(B) Feature plot showing increased CDKN2A mRNA expression in cluster 3. (C) Top RNAs correlated with CDKN2A mRNA expression levels by 
Pearson correlation coefficient; significance was calculated using paired student’s t-test, p < 0.01. (D) Expression of CDKN2A mRNA and its top 
three positively and negatively correlating RNAs from (C). Changes in RNA levels in each cluster and time point are indicated. 
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Figure 6. RNA splicing and lncRNAs in cluster 5 of ETO time course. (A) Splice ratio illustrating increased unspliced RNAs in cluster 5. 
Splice ratio for individual cells was calculated as the number of unspliced transcripts relative to total RNA content. (B) GSEA enrichment plot 
of “REACTOME_MRNA_SPLICING” gene set in cluster 5 in comparison to all other cells. Normalized enrichment score NES = -2.42, adjusted p-
value < 0.001. (C) Top 45 mRNAs encoding splicing-associated proteins identified by GSEA in (B) that showed greatest difference in expression 
between cluster 5 and all other cells. (D) Top 45 lncRNAs showing greatest changes of expression in cluster 5 compared to the rest of cells. In 
(C, D) dot color represents average RNA levels scaled across all clusters and dot size indicates percentage of cells expressing the specific RNAs 
in each cluster. 
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approaches. To search for factors that could influence 

decreased RNA splicing in cluster 5 cells, we performed 

GSEA of the “REACTOME_MRNA_SPLICING”, a set 

of genes encoding proteins that regulate RNA splicing. 

The discovery of a negative enrichment score of this 

gene set in cluster 5 cells suggested that these cells 

expressed reduced levels of splicing factors compared to 

all other clusters (Figure 6B). As shown in Figure 6C, 

while most of these mRNAs encoding RNA splicing 

proteins were widely expressed across manifold clusters, 

they were strongly downregulated in cluster 5 

(Supplementary Table 7), perhaps affecting the RNA 

processing events specifically in this cluster. 

Interestingly, many lncRNAs appeared as top markers 

distinguishing cluster 5 from other clusters (Figure 3C 

and Supplementary Table 6). Given the emerging role of 

lncRNAs as important modulators of gene expression in 

multiple cellular processes, including senescence, we 

evaluated changes in expression of lncRNAs across all 

clusters, finding again that most of them were selectively 

elevated in cluster 5 (Figure 6D and Supplementary 

Table 8). In sum, we found two distinct subpopulations 

of senescent cells (Supplementary Figure 7): cluster 3 

cells express high levels of the traditional senescence 

marker CDKN2A and cluster 5 cells show dysregulated 

RNA splicing and high expression of multiple lncRNAs. 

 

DISCUSSION 
 

The process of senescence involves diverse cell states 

that evolve dynamically in response to sublethal damage 

and enable highly diverse transcriptomic and phenotypic 

responses [26]. The existence of a ‘division of labor’ 

within a senescent population was hypothesized, 

whereby different senescence traits were elicited by 

subsets of senescent cells. To increase our understanding 

of the cell populations carrying out this heterogeneous 

this response, we performed scRNA-seq analysis of WI-

38 human diploid fibroblasts on two levels: first, we 

studied side-by-side the senescent phenotype achieved 

following exposure to different triggers (RS, ETO, IR) 

and, second, we analyzed the progression of the 

senescent phenotype over time in the ETO model. 
 

In the first analysis, we found that senescent cells 

following RS displayed wide heterogeneity, while cells 

rendered senescent by IR or ETO showed gene expression 

patterns comparable to one another (Figures 1B, 2B). 

Unsupervised clustering analysis of integrated data 

distinguished four main functionally different groups of 

cells with altered representation in each senescent model. 

Proliferating cells (clusters 5 and 0) mostly (80%) 

comprised CTRL cells, but also comprised 30% of RS 

cells, and were negligible in IR and ETO cells. Growth-

arrested cells without overt senescence features (clusters 1 

and 3) comprised 20% of CTRL cells, almost 50% of RS 

cells, and 40% of IR or ETO cells. Cells displaying 

classical senescence markers (clusters 2, 4, and 7), 

expressing increased levels of mRNAs encoding p21, 

oxidative phosphorylation proteins, SASP factors, ECM 

proteases, and proteins that inhibit apoptosis, were absent 

from CTRL cells, contained 20% of RS cells, and 

represented more >50% of IR and ETO cells. Finally, a 

distinct senescent population (cluster 6) was identified 

with different features of cell senescence, such as 

increased levels of mRNAs encoding ECM organization 

proteins and antiapoptotic proteins, low levels of mRNAs 

encoding oxidative phosphorylation proteins, and high 

levels of lncRNAs; these cells were found in all 

senescence models but not in the CTRL population. The 

above results reveal a broad transcriptomic diversity from 

different senescent paradigms, with the unexpected 

discovery that many populations have cell states 

represented in clusters 2, 4, and 7. These findings agree 

with a growing number of studies recognizing the highly 

diversified nature and gene expression signatures of 

senescent cells [2, 5, 23, 27]. 

 

In the second analysis, we systematically investigated 

the changes in cell transcriptomes after senescence 

initiation and progression by performing kinetic scRNA-

seq analysis of ETO-induced senescence. This approach 

led us to characterize the evolution of different cell states 

over time as cells acquired a senescent phenotype 

(Figure 3). The various proliferative states of cells 

observed in clusters 6 (highly proliferating), 1, and 4 

(slower proliferating) represented 80% of Day 0 

(untreated) cells, then rapidly diminished in 24 h (Day 1) 

after ETO treatment. Instead, on Day 1, we observed the 

appearance of cluster 2 cells which gradually declined 

after Day 2. Cells of cluster 2 expressed high levels of 

DDR genes, indicating that DNA damage induced 

transcriptomic changes in this cell cluster in response to 

ETO treatment. In contrast, the growth-arrested cells of 

cluster 0 only slightly increased in number by Day 1 and 

remained unchanged for the remainder of the time 

studied. Finally, on Day 4, we found a robust increase in 

two transcriptomically distinct cell populations (clusters 

3 and 5; Figure 3A, 3B), suggesting that they follow 

different functional paths in the senescence program. 

The progressive emergence of cells in these clusters, 

RNA velocity, and transcriptomic profiles indicate that 

specific cells are recruited to each of these senescent 

clusters. RNA velocity analysis indicated that the 

senescent cells of cluster 3 likely originate from the non-

proliferative cell cluster 0. Notably, cluster 3 cells 

exhibited high levels of the canonical senescence marker 

CDKN2A mRNA (Figure 5B); the encoded protein, p16 

increases in the vast majority of senescent cells and is 
considered to be essential for maintenance of a senescent 

state [28]. However, not all senescent cells express high 

levels of p16, and conversely, p16 can be upregulated 
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also in arrested non-senescent cells [2, 29]; therefore, 

increased p16 expression may be a helpful marker of 

senescence but on its own it is not sufficient to identify a 

senescent cell [30, 31]. 

 

The time course analysis further revealed that cluster 5 

senescent cells exhibited an accumulation of unspliced 

transcripts along with dysregulated expression of 

genes encoding proteins implicated in RNA splicing 

(Figure 6), highlighting an impairment in RNA 

splicing events in this population. High amounts of 

unspliced RNAs and increased RNA dynamics were 

previously reported in aged mouse cardiac fibroblasts 

[32], and disrupted balance of RNA splicing and 

changes in expression of regulatory splicing factors are 

considered to be major contributors to cell senescence 

and aging [33–36]. The direction of changes in RNA 

velocity (Figure 3B) led us to propose that after ETO 

treatment, proliferative cells acquired a transient DDR 

state (cluster 2) and then transitioned to cluster 5. 

Therefore, we hypothesized that aberrant splicing 

could be part of the response to ETO-induced DNA 

damage. This possibility is supported by studies 

showing the impact of DNA damage on pathways that 

control splicing in p53-mediated cellular senescence 

[15, 37, 38]; however, the mechanisms whereby DNA 

damage regulates splicing in senescence await more 

study. Remarkably, cluster 5 cells also expressed high 

levels of many lncRNAs (Figure 6D), a class of 

noncoding RNAs that play regulatory roles at multiple 

gene expression levels, including chromatin 

remodeling, transcription, mRNA splicing, translation, 

and post-translational modifications [39]. Although 

some lncRNAs have been shown to participate in the 

regulation of alternative splicing (e.g., NEAT1, 
MALAT1), cell cycle (MALAT1), and senescence 

(PURPL, MIR31HG, and LncRNA-OIS1) [25, 40–44], 

the functions of most lncRNAs remain unknown. On 

the other hand, a growing number of studies indicates 

that one of the principal mechanisms by which 

lncRNAs regulate splicing is by interacting with 

splicing factors to repress or enhance their expression 

and function [45]. A deeper understanding of a role of 

lncRNAs in controlling splicing factor function awaits 

further investigation. 

 

Interestingly, as senescence advanced, we observed 

increased levels of mRNAs encoding oxidative 

phosphorylation proteins in cluster 3 cells and reduced in 

cluster 5 cells (Figure 3D and Supplementary Figure 

1C). This result agrees with evidence that senescent cells 

display increased oxidative phosphorylation while at the 

same time, they are characterized by mitochondrial 
dysfunction [46–50]. Although the metabolic changes 

experienced by senescent cells are poorly understood, 

the upregulation of oxidative phosphorylation in cluster 

3 may point to senescent cells striving to maintain 

energy production by mitochondria. We also found that 

the genes involved in regulation of GTPase activity were 

reduced in cluster 3 and increased in cluster 5; these 

genes are implicated in membrane trafficking, intra-

cellular vesicle transport, autophagy, and secretory 

pathways [51]. In all, cluster 3 senescent cells 

demonstrate a transcriptome consistent with growth 

arrest (elevated CDKN2A mRNA, leading to increased 

p16/pRB activity), while cluster 5 cells show features of 

DNA damage-induced p53/p21-mediated cellular 

senescence (developed through cluster 2, which displays 

high levels of CDKN1A mRNA). The contribution of 

these two senescence programs was confirmed by 

analyzing subsets of senescence-related transcripts 

identified previously via bulk RNA-seq analysis [25]. In 

addition, we found that the cell cycle status at the time of 

senescence initiation influenced the transcriptomes of 

senescent cells (Figure 4). Both p16/pRB and p53/p21 

are broadly recognized as central pathways involved in 

regulating cell cycle arrest and senescence, although the 

full regulatory networks are complex and not fully 

understood [52–55]. A limitation of this study is that all 

analyses were performed in one cell line, human WI-38 

fibroblasts. Given that senescence programs can differ 

depending on cell type, proliferation state, or type of 

damage, future research in other cell types and in 

response to other stimuli is warranted. 
 

In summary, single-cell transcriptomic analysis has 

allowed us to identify the specific populations and the 

dynamic transition states during senescence initiation 

and progression. Our data revealed divergent cell state 

trajectories that resulted in the formation of two distinct 

forms of senescent cells: cluster 3 cells, which emerged 

from growth-arrested cells, were characterized by high 

expression of CDKN2A mRNA and mRNAs encoding 

oxidative phosphorylation proteins, and decreased 

GTPase activity; and cluster 5 cells, which evolved 

from proliferative cells that underwent strong ETO-

induced DDR, and progressed into cells with reduced 

oxidative phosphorylation, increased GTPase activity, 

aberrant RNA splicing, and increased expression of 

lncRNAs. The transcriptomic details of these two traits 

may guide future efforts to track senescence markers 

and inform on cell state transitions during the 

implementation of senescence. We propose that this 

study complements ongoing work of senescence in 

organs in vivo and can help design increasingly precise 

therapeutic interventions aimed at select senescent cell 

populations. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Functional characterization of different senescence models. (A–C) Cell populations CTRL (control 

proliferating cells, PDL 24), RS (replicative senescent cells, PDL 57), IR (ionizing radiation-treated cells, 10 Gy, 10 days), ETO (etoposide-treated 
cells, 50 μM, 10 days) were assessed by scRNA-seq analysis. The terms with the highest normalized enrichment score (NES) from the GSEA of 
GO gene sets obtained using each sample gene markers from Supplementary Table 1 (A), each cluster gene markers from Supplementary 
Table 4 (B), and each cluster gene markers from Supplementary Table 6 (C). 
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Supplementary Figure 2. Changes in expression of top marker RNAs of cluster 2 at each time point after inducing senescence 
with ETO. 
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Supplementary Figure 3. Comparison of the senescence-associated transcriptome identified by Casella et al. to the ETO-
treated time course in the current study. Heatmaps show changes in the levels of transcripts over 10 days of ETO exposure (left), and 

the contribution of each cell cluster to these changes (right). 
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Supplementary Figure 4. Expression of the senescence-associated transcriptome in the senescence models dataset of 
current study. (A) Heatmaps showing changes in expression of common senescence-related RNAs (left), and contribution of each cell 

cluster to these changes (right). (B) Heatmaps showing changes in the expression of genes as described in Supplementary Figure 3.  
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Supplementary Figure 5. Feature plots visualizing the distribution of gene number and counts of datasets in this study.  
(A) ETO time course. (B) Senescence models.  
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Supplementary Figure 6. Splice ratio in clusters distinguished in senescence models and ETO time-course datasets.  
(A) Number of unspliced RNAs detected (y-axis) versus total number of expressed RNAs (x-axis) in individual cells in the ETO time-course 
dataset. Linear regression intercepts at 0. The slope of regression model of each cluster is indicated by the cluster in the legend. (B) Splice 
ratios illustrating increased unspliced RNAs in cluster 6 of the senescence models dataset. Splice ratio in individual cells was calculated as the 
number of unspliced transcripts relative to total expressed RNAs. (C) Number of unspliced RNAs detected (y-axis) versus total number of 
genes expressed (x-axis) in individual cell of senescence models dataset. Linear regression intercepts at 0. Slope of each cluster’s regression 
model is beside the cluster in the legend. 
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Supplementary Figure 7. Expression of genes discriminating clusters 3 and 5 cells. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 4, 6, 7, 8. 

 

Supplementary Table 1. Marker genes differentially expressed in each sample versus all other samples in 
senescence models. 

 

Supplementary Table 2. List of oligo sequences used in the study. 

Transcript name Primer Oligo sequence 

ACTA2  Forward AGCCAAGCACTGTCAGGAAT 

ACTA2  Reverse TTGTCACACACCAAGGCAGT 

CALD1 Forward CTGTTCCTGCTGAAGGTGTACG 

CALD1 Reverse CCTACCTTCAAGCCAGCAGTTTC 

CCL2  Forward AGAATCACCAGCAGCAAGTGTCC 

CCL2 Reverse TCCTGAACCCACTTCTGCTTGG 

CCND1 Forward TCTACACCGACAACTCCATCCG 

CCND1 Reverse TCTGGCATTTTGGAGAGGAAGTG 

CCND2 Forward GAGAAGCTGTCTCTGATCCGCA 

CCND2 Reverse CTTCCAGTTGCGATCATCGACG 

CDKN1A Forward CCTGCCCAAGCTCTACCTT 

CDKN1A Reverse AAGGCAGAAGATGTAGAGC 

CDKN2A Forward CGGTCGGAGGCCGATCCAG 

CDKN2A Reverse GCGCCGTGGAGCAGCAGCAGCT 

CENPF Forward GCATTGCCATTCCTCTACTGC 

CENPF Reverse ACCCACATACAAACAGAGATTGTG 

CKS2 Forward TTTTGTCTGCTGCGCCCG 

CKS2 Reverse ACATAACATGCCGGTACTCGT 

CYBA Forward GCTCATCTGTCTGCTGGAGTATC 

CYBA Reverse CGGACGTAGTAATTCCTGGTGAG 

FTH1 Forward GACGTTCTTCGCCGAGAGT 

FTH1  Reverse GAACGAGCGCCGGGTT 

FTL Forward CGGGTCTGTCTCTTGCTTCA 

FTL Reverse GGAGATGGCCGAGAAGATGG 

GAPDH Forward CTCTGCTCCTCCTGTTCGAC 

GAPDH Reverse ACGACCAAATCCGTTGACTC 

GAS6 Forward GGAACTGGCTGAACGGAGAA 

GAS6  Reverse GAGAAGCACTGCATCCTCGT 

GDF15 Forward CAACCAGAGCTGGGAAGATTCG 

GDF15 Reverse CCCGAGAGATACGCAGGTGCA 

HMGB2  Forward TCTGAGGAAAAGCTCGCACC 

HMGB2 Reverse GCGTACGAGGACATTTTGCC 

MARCKS Forward CGTTGGACCCCGCATCTTAT 

MARCKS Reverse TCCCAGATTTGTAGCCGCAC 

MMP1  Forward TGTGGTGTCTCACAGCTTCC 

MMP1  Reverse CGCTTTTCAACTTGCCTCCC 

NEAT1 Forward GCTGGACCTTTCATGTAACGGG 

NEAT1 Reverse TGAACTCTGCCGGTACAGGGAA 

PTMA Forward CAGGAGGCTGACAATGAGGT 

PTMA Reverse GCTTGCCCGTAGCTGACTC 

QSOX1 Forward ACATGGCTGACCTGGAATCTGC 
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QSOX1 Reverse GCAGGAAGTTCTGGACTAAGGG 

RAB13 Forward GACATCTTGCTCAAGTCAGGAGG 

RAB13 Reverse CAGGGAGCACTTGTTGGTGTTC 

STC1 Forward ACTCAGCTGAAGTGGTTCGT 

STC1 Reverse TTTCCAGGCATGCAAAAGCC 

WFDC1 Forward TTCTGTGTGCGTCTGGAAGG 

WFDC1 Reverse GGAGGAGAAGTAGCAAGAGGC 

 

Supplementary Table 3. Percent composition of 
cells from each cluster calculated in each sample of 
senescence models illustrated in Figure 2A–2C. 

Cluster CTRL RS IR ETO 

5 17.04 7.32 0.38 0.18 

0 62.85 24.43 0.86 0.77 

1 16.13 36.39 15.58 19.67 

3 3.47 12.35 28.74 15.29 

2 0.30 9.13 23.52 30.87 

4 0.20 8.20 22.76 25.47 

7 0.00 0.74 3.22 5.16 

6 0.02 1.45 4.94 2.59 

 

Supplementary Table 4. Marker genes differentially expressed in each cluster versus all other clusters in 
senescence models. 

 

Supplementary Table 5. Percent composition of cells from each cluster 
calculated in each time-point of ETO time-course illustrated in Figure 3A. 

Cluster Day 0 Day 1 Day 2 Day 4 Day 7 Day 10 

6 7.99 0.45 1.19 0.61 0.48 0.89 

1 52.40 22.93 17.62 11.51 14.73 10.06 

4 20.33 10.71 6.77 3.96 6.16 3.36 

0 15.24 30.58 42.36 28.52 33.56 30.40 

2 2.21 30.85 25.88 18.89 13.02 9.53 

3 0.96 1.61 2.31 20.91 17.47 26.84 

5 0.87 2.87 3.86 15.59 14.58 18.93 

 

Supplementary Table 6. Marker genes differentially expressed in each cluster versus all other clusters in ETO 
time course. 

 

Supplementary Table 7. Splicing factors with different expression in cluster 5 versus all other cells of ETO time 
course. 

 

Supplementary Table 8. lncRNAs with different expression in cluster 5 versus all other cells of ETO time course. 


