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INTRODUCTION 
 

As the most grievous situation of male infertility, 

azoospermia refers to the complete absence of 

spermatozoa in the ejaculate. The prevalence of 

azoospermia is fairly high, accounting for 1% of males 
and over 10% of infertile males [1]. Around 30% of 

azoospermia patients exhibit obstructive azoospermia 

(OA) due to the physical blockage of the sperm 

outflow tract, and these cases usually show normal 

spermatogenesis. Non-obstructive azoospermia 

(NOA), which accounts for 70% of the azoospermia 

cases, is characterized by spermatogenetic failure and 

testicular dysfunction [2]. NOA is mainly caused by 

various genetic diseases, adverse drug effects, and 

malignant tumors [2, 3]. Therefore, the surgical 

removal of the blockage and the testicular puncture are 

valid in OA, while the current treatment strategies for 

www.aging-us.com AGING 2023, Vol. 15, No. 8 

Research Paper 

An artificial neural network model to diagnose non-obstructive 
azoospermia based on RNA-binding protein-related genes 
 

Fan Peng1,*, Bahaerguli Muhuitijiang2,3,*, Jiawei Zhou2,3,*, Haoyu Liang4, Yu Zhang1, 
Ranran Zhou1,3 
 
1Department of Urology, Baoan Central Hospital of Shen Zhen, Shenzhen 518102, China 
2Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China 
3The First School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China 
4Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510000, China 
*Equal contribution 
 
Correspondence to: Ranran Zhou; email: 2966075781@qq.com, https://orcid.org/0000-0003-2464-0646 
Keywords: machine learning, artificial neural network, diagnosis, non-obstructive azoospermia, RNA-binding protein 
Received: November 16, 2022        Accepted: April 15, 2023 Published: April 24, 2023 

 
Copyright: © 2023 Peng et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Non-obstructive azoospermia (NOA) is a severe form of male infertility, but its pathological mechanisms and 
diagnostic biomarkers remain obscure. Since the dysregulation of RNA-binding proteins (RBPs) had 
nonnegligible effects on spermatogenesis, we aimed to investigate the functions and diagnosis values of RBPs 
in NOA. 58 testicular samples (control = 11, NOA = 47) from Gene Expression Omnibus (GEO) were set as the 
training cohort. Three public datasets, containing GSE45885 (control = 4, NOA = 27), GSE45887 (control = 4, 
NOA = 16), and GSE145467 (control = 10, NOA = 10), and 44 clinical samples from the local hospital (control = 27, 
NOA = 17) were used for validation. Through a series of bioinformatical analyses and machine learning 
algorithms, including genomic difference detection, protein-protein interaction network analysis, LASSO, SVM-
RFE, and Boruta, DDX20 and NCBP2 were determined as significant predictors of NOA. Single-cell RNA 
sequencing of 432 testicular cell samples from NOA patients indicated that DDX20 and NCBP2 were associated 
with spermatogenesis (false discovery rate < 0.05). Based on the transcriptome expressions of DDX20 and 
NCBP2, we constructed multiple diagnosis models using logistic regression, random forest, and artificial neural 
network (ANN). The ANN model exhibited the most reliable predictive performance in the training cohort 
(AUC = 0.840), GSE45885 (AUC = 0.731), GSE45887 (AUC = 0.781), GSE145467 (AUC = 0.850), and local cohort 
(AUC = 0.623). Totally, an ANN diagnosis model based on RBP DDX20 and NCBP2 was developed and externally 
validated in NOA, functioning as a promising tool in clinical practice. 
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NOA often fail [4]. Seeking the underlying biological 

mechanisms of NOA has attracted increasing attention 

in the past decades, and some critical genes were 

uncovered, such as VASA [5], CHD5 [6], and MEIOB 

[7], providing possible therapeutic targets. 

Nevertheless, our understandings of the genetic 

alternation of NOA remain limited. A prominent 

manifestation is that the examination of any NOA-

specific gene has not been recommended in current 

clinical guidelines [8–10]. 

 

RNA-binding proteins (RBPs) are a group of proteins 

capable of regulating a plethora of cellular post-

transcriptional processes, the perturbation of which 

leads to impaired spermatogenesis. Previous studies 

have demonstrated that RBPs tremendously influence 

the mammalian reproductive system. For instance, 

RBP Rbm46 knockout mice had reduced testes size 

and spermatogenetic defect and thus were infertile 

[11]; Boule was able to bind to a tremendous amount 

of spermatogenesis-related mRNAs and was involved 

in the spermatogenetic process in mice testes through 

forming amyloid-like aggregation both in vivo and 

in vitro [12]; The loss of RBP Tulp2 led to infertility 

in male mice by reducing the quantity and quality of 

sperms [13]. Given that a large number of proteins 

need to be properly expressed during spermato-

genesis, it is inevitable that RBPs exert nonnegligible 

functions in the spermatogenetic process and, 

naturally, in the initiation and progression of NOA. 

However, the number of studies focusing on the 

relationship between RBPs and NOA is currently 

inadequate. 

 

The present study collected the RBPs from previous 

reports and compared their expression levels between 

control and NOA testicular samples. Multiple 

bioinformatical and machine learning algorithms, 

including protein-protein interaction (PPI) network 

analysis, least absolute shrinkage and selection operator 

(LASSO), support vector machine-recursive feature 

elimination (SVM-RFE), and Boruta, were adopted for 

feature selection. Logistic regression (LR), random 

forest (RF), and artificial neural network (ANN) were 

harnessed to construct the diagnosis models. The 

GSE9210 dataset obtained from Gene Expression 

Omnibus (GEO) was set as the training cohort, while 

GSE45885, GSE45887, and GSE145467 from GEO 

were used for external validation. Importantly, we 

collected the seminal plasma and testicular tissue of 27 

control and 17 NOA samples from the local hospital to 

re-confirm the reliability of the models. Single-cell 

RNA sequencing (scRNA-seq) data of 432 testicular 

cell samples from NOA patients were used to 

investigate the association of the unearthed genes and 

spermatogenesis. 

MATERIALS AND METHODS 
 

Data retrieval and processing 

 

A sum of 1542 RBPs was gleaned from the report of 

Gerstberger et al. [14], as listed in Supplementary 

Table 1. The transcriptome sequencing data of the 

testicular tissue from 11 control and 47 NOA patients in 

the GSE9210 dataset [15] was directly downloaded 

from GEO (https://www.ncbi.nlm.nih.gov/geo/) as the 

training dataset. At the same time, GSE45885 [16] 

(control = 4, NOA = 27), GSE45887 [17] (control = 4, 

NOA = 16), and GSE145467 (control = 10, NOA = 10) 

were obtained from GEO as the external validation 

datasets. The control cases were defined as the subjects 

with normal spermatogenesis, including healthy donors 

and OA patients. The chip probe IDs were converted 

into gene symbols using R software (version 4.1.0) 

following the annotation files. The average expression 

value would be adopted if multiple probe IDs 

corresponded to the same gene symbol. The RNA 

expression values in these cohorts were all normalized 

with log2 (x + 1) transformation, and the sva package in 

R software was used to reduce the batch effects of these 

experiments as possible. 

 

The scRNA-seq of 432 testicular cell samples from 

NOA patients was obtained from GEO (GSE157421) 

[18] to investigate the association of the screened genes 

with spermatogenesis. The processing of analyses of the 

scRNA-seq was described in the previous study in detail 

[19]. More information on these public datasets 

mentioned above is shown in Table 1. 

 

Clinical sample collection 

 

A total of 44 participants, including 27 cases with 

normal spermatogenesis (OA) and 17 NOA subjects, 

were enrolled in this project between January 2021 and 

May 2022 at the Bao’an Central Hospital of Shenzhen 

(China). The study protocol was reviewed and 

approved by the Ethics Committee of Bao’an Central 

Hospital of Shenzhen, and all the patients signed the 

informed consent. The paraffin-embedded testicular 

biopsy specimens of these patients were provided by 

the Department of Pathology in Bao’an Central 

Hospital of Shenzhen. The semen samples were 

collected by masturbation following 3–5 days of 

sexual abstinence. The seminal supernatant plasma 

was obtained after centrifuging semen at 3,000 g for 

20 min and then immediately stored at −80°C for  

RNA extraction. Other critical clinicopathological 

parameters, inclusive of age, Johnsen’s Score, follicle-

stimulating hormone (FSH) levels, luteinizing 

hormone (LH) levels, and testosterone (T) levels, were 

retrospectively documented as well. 

https://www.ncbi.nlm.nih.gov/geo/
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Table 1. The detailed information of the public datasets from GEO. 

ID Platform Experimental type Tissue Control NOA Region 

GSE9210 GPL887 Microarray Testes 11 47 Japan 

GSE45885 GPL6244 Microarray Testes 4 27 Norway 

GSE45887 GPL6244 Microarray Testes 4 16 Norway 

GSE145467 GPL4133 Microarray Testes 10 10 Unknown 

GSE157421 GPL20301 Single-cell RNA sequencing Testes – 432 China 

Abbreviations: GEO: gene expression omnibus; NOA: non-obstructive azoospermia. 

 

Table 2. The primer sequence used in this study. 

Gene Sequence (5′–3′) 

NCBP2 
F: AAAACGCCATGCGGTACATAA 

R: GCCTGCCCTCCTTAAAGCC 

DDX20 
F: GCTGCGGGCTCGATTTAATTG 

R: GTCCAAAGCTATGGTGGAGAAC 

GAPDH 
F: GGAGCGAGATCCCTCCAAAAT 

R: GGCTGTTGTCATACTTCTCATGG 

 

Real-time quantitative PCR experiments 

 

We conducted real-time quantitative PCR (RT-qPCR) 

experiments to quantify the mRNA expression levels of 

the screened genes in the seminal plasma of the local 

cohort. The total RNA of the seminal plasma samples 

was isolated using TRIzol Reagent (Invitrogen, USA) 

following the manufacturer’s protocols. The 

PrimeScript RT Reagent Kit (Takara, China) was used 

to perform the reverse transcription. The PCR 

experiments were then carried out based on ABI 7600 

system (Applied Biosystems, USA) with the SYBR 

Premix ExTaq kit (Takara, China). GAPDH was chosen 

as the internal reference gene, and all the detected 

values were normalized with the 2−ΔΔCt method. The 

primer sequence of GAPDH, DDX20, and NCBP2 was 

designed and synthesized by the TSINGKE Company 

(Guangzhou, China), which is shown in Table 2. 

 

Immunohistochemical staining 

 

The immunohistochemical (IHC) staining of the 

paraffin-embedded testicular samples of the local cohort 

was implemented to investigate the protein expression 

levels and distribution of DDX20. The testicular slides 

were de-paraffinized in xylene and then added to the 

ethanol following the below concentration: 100% 

ethanol (4 min), 90% ethanol (4 min), 80% ethanol 

(4 min), and 70% ethanol (4 min). Subsequently, the 
slides were blocked in phosphate-buffered saline (PBS) 

supplemented with 5% bovine serum albumin (BSA) 

for 1 hour at room temperature and incubated with the 

primary antibody (rabbit anti-DDX20, 1:100, 

Proteintech, China) at 4°C overnight. After washing the 

slides 3 times with PBS, we incubated the slices with 

anti-rabbit secondary antibodies (Proteintech, China). 

Nikon Eclipse 90i system (Nikon, Japan) was used to 

get the images, and the Image-Pro Plus (version 6.0, 

Media Cybernetics, USA) software was used to measure 

the integral optical density (IOD), which represented the 

protein expression levels. For each sample, 3 slices 

were randomly chosen to conduct the IHC staining, and 

5 different microscopic fields of a slide were randomly 

selected to evaluate the levels of DDX20. 

 

Gene expression difference analysis and functional 

annotation 

 

The mRNA expression divergence of the 1542 RBPs 

between the control and NOA testicular samples was 

detected with the limma package in R. The filtering 

criteria were set as follows: |logFC| > 1 and false 

discovery rate (FDR) < 0.05. The biological gene 

function enrichment was performed using the 

Metascape online tool (https://metascape.org/) to 

identify the associated Gene Ontology (GO) terms and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways with P < 0.05 filtering threshold.  

 

PPI network construction and analysis 

 

We uploaded the differentially-expressed RBPs to the 
STRING database (https://string-db.org/) to construct 

the PPI network to investigate the interaction of these 

genes. The confidence level was set to 0.4, and the 

genes without association with other nodes were 

https://metascape.org/
https://string-db.org/
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excluded. The Cytoscape software (version 3.8.0) was 

utilized to visualize the PPI network. The cytoHubba 

plug-in in the Cytoscape software was used to measure 

the importance of the genes in the network. We chose 

the Top 20 genes showing the highest degree for further 

analyses. 

 

Feature selection via machine learning algorithms 

 

We employed multiple feature selection algorithms to 

investigate the significant diagnosis biomarkers in 

NOA, including LASSO, SVM-RFE, and Boruta. 

LASSO Binomial regression with nested cross-

validation to select the optimal predictor was built using 

the glmnet R package. SVM-RFE algorithm, which was 

based on the backward feature elimination that 

recursively removes the least ranking feature, was 

conducted by the caret package. The Boruta algorithm, 

which was built around the random forest, was also 

used to remove the irrelevant and redundant features 

through the Boruta package in R, where the variables 

labelled with “Confirmed” were identified. Following 

these results, we included the RBPs con-determined by 

LASSO, SVM-RFE, and Boruta in the diagnosis model 

development. 

 

Construction and validation of diagnosis models 

using LR, RF, and ANN 

 

We implemented 3 commonly used machine learning-

based methods to construct the diagnosis models, 

including LR, RF, and ANN, to improve the predictive 

power and robustness. The LR model was developed 

based on the “glm” function with default settings in R 

software. The RF model was established using the 

randomForest package with the following parameters: 

ntree = 500, mtry = 3, importance = T, and proximity = 

T. The ANN model was constructed according to the 

neuralnet R package, which contained one input layer, 

one hidden layer, and one output layer. In the hidden 

layer, we applied 5 nodes, and rectified linear unit was 

utilized as an activation function. Two nodes (control 

and NOA) were set in the output layer, where a softmax 

function was employed. According to the ANN model, 

the classification score of each subject was calculated. 

 

To ensure the comparability of the LR, RF, and ANN 

models, we regarded that the sample would be classified 

as a control case if its probability predicted by the LR 

and ANN models was less than 0.5; otherwise, it would 

be considered an NOA sample. The receiver operating 

characteristic (ROC) analyses were performed to 

measure the predictive performance of the models in 
different cohorts through the pROC package. The 

confusion matrices, and other statistical indexes, such as 

accuracy, precision, recall, F-measure, sensitivity, 

specificity, positive predictive value, and negative 

predictive value, were also applied in this study. 

 

The functionally-related genes 

 

The Top 20 genes interacting with the screened genes 

were obtained from the GeneMANIA database 

(http://genemania.org/) with default settings. The 

interaction types included physical interactions, co-

expression, prediction, co-localization, genetic 

interactions, pathways, and shared protein domains. 

 

Gene set enrichment analysis 

 

Here, we adopted the single-gene gene set enrichment 

analysis (GSEA) strategy to investigate the association 

between the screened genes and spermatogenesis. 

According to the median expression value of the 

particular gene, 432 testicular cell samples were divided 

into high- and low-gene expression groups, followed by 

the GSEA analysis. The GSEA was conducted via the 

GSEA software (version 4.1.0) with default settings, 

and the reference gene sets (Hallmark version 7.2) were 

downloaded from the Molecular Signature Database 

(https://www.gsea-msigdb.org/gsea/msigdb/). The term 

with Nominal P < 0.05 and FDR < 0.05 was considered 

to be statistically significant. 

 

Statistical analyses 

 

The statistical analyses of the whole study were based 

on the R software (version 4.1.0) and GraphPad Prism 8 

(version 8.4.3). The data in this study are presented as n 

(%) or mean ± standard deviation (SD). The two-tailed 

Student’s t-test was used to compare the difference in 

the RT-qPCR experiments, and The Welch-corrected  

t-test was used for IODs. Unless otherwise specified, 

P < 0.05 was significant. *P < 0.05; **P < 0.01;  
***P < 0.001. 

 

RESULTS 
 

51 RBPs were differentially expressed between 

control and NOA samples 

 

The schematic workflow chart, which graphically 

describes the methodology of this study, is presented in 

Figure 1. First, we compared the mRNA expression 

levels of 1542 RBPs collected from previous studies 

in the testicular samples of control and NOA cases in the 

GSE9210 cohort. The results indicated that 51 of 1542 

RBPs were differentially expressed (Supplementary 

Table 2), as shown in the volcano plot (Figure 2A) and 

heat map (Figure 2B). The functional annotation 

displayed that the 51 differentially-expressed genes 

(DEGs) were mainly involved in translation regulation, 

http://genemania.org/
https://www.gsea-msigdb.org/gsea/msigdb/
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RNA metabolism, RNA stability regulation, and 

spermatogenetic process, implying the tremendous effect 

of RBPs on the pathogenesis of NOA (Figure 2C). 

 

PPI network construction 

 

We constructed the PPI network to further explore the 

internal contact and interactions among the 51 DEGs at 

the protein level. Figure 3A illustrates the established 

PPI network, where the size of the nodes represented 

the absolute value of their corresponding logFC in the 

GSE9210 cohort. The importance and influence of the 

genes in the network were quantified as degrees, and the 

Top 20 genes with the highest degree were identified 

and selected for the next step of research (Figure 3B, 

Supplementary Table 3). 

 

 
 

Figure 1. The workflow of the present study. 
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DDX20 and NCBP2 were identified via feature 

selection algorithms and PPI network analysis 

 

5 genes were identified as important features of NOA 

through LASSO regression (Figure 4A), including 

NCBP2, DDX20, TSN, SRPK2, and CARHSP1. The 

coefficients of these genes in the LASSO regression 

model were −0.121, −0.703, −0.770, −0.921, and 

−0.178, respectively (Figure 4B). Simultaneously, 30 of 

51 DEGs were selected via the Boruta algorithm (Figure 

4C, Supplementary Table 4), and 6 genes, including 

NCBP2, DDX20, CCDC86, TSN, CARHSP1, and 

TDRD7, were screened by SVM-RFE (Figure 4D). 

Ultimately, NCBP2 and DDX20 were identified by 

integrating the Top 20 genes with the highest degree in 

the PPI network and these feature selection results 

(Figure 4E) and then included in the diagnosis model 

construction. 

 

External validation of DDX20 and NCBP2 

 

The scRNA-seq data of 432 testicular cell samples 

indicated that DDX20 (Nominal P < 0.001, FDR < 

0.001) and NCBP2 (Nominal P < 0.01, FDR < 0.05) 

were both positively associated with the sperma-

togenetic process (Figure 5A), re-confirming that

 

 
 

Figure 2. 51 differentially-expressed RBPs and their functional enrichment. (A, B) The volcano plot (A) and the heat map (B) 

indicated that 51 of 1542 RBPs were differentially expressed between the control and NOA testicular samples. (C) The functional 
annotation of the 51 RBPs. Abbreviations: RBP: RNA-binding protein; NOA: non-obstructive azoospermia. 
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DDX20 and NCBP2 were significant biomarkers to 

NOA. Next, we gleaned the seminal plasma and 

testicular biopsy of 27 control and 17 NOA patients 

from the local hospital for validation. Compared with the 

control samples, the NOA samples exhibited lower 

mRNA levels of DDX20 (P < 0.01, Figure 5B) and 

NCBP2 (P < 0.05, Figure 5C) in seminal plasma, 

suggesting that the levels of DDX20 and NCBP2 in 

seminal plasma were also promising diagnostic 

biomarkers for NOA. ROC analysis showed that DDX20 

in seminal plasma was a powerful classifier for NOA 

(area under the curve [AUC] = 0.826, 95% confidence 

interval [CI] = 0.706–0.946, Figure 5D), while the 

predictive performance of NCBP2 was relatively low 

(AUC = 0.693, 95% CI = 0.534–0.852, Figure 5D), 

which might be caused by the heterogeneity across 

different cohorts. Hence, we then investigated the 

protein levels of DDX20 in the local cohort using IHC 

staining, and the results supported the conclusion drawn 

before that DDX20 was significantly down-regulated in 

NOA testicular samples (P < 0.05, Figure 5E). 

 

The performance of LR, RF, and ANN diagnosis 

models 

 

The present study utilized multiple datasets, including 

GSE9210, GSE45885, GSE45887, and GSE145467, 

and local clinical samples to verify the predictive  

ability of the established model. The detailed 

clinicopathological parameters of the training and 

external validation cohorts are displayed in Table 3. It 

should be stated that we used the mRNA expression 

values in the seminal plasma, other than in the testicular 

samples, to validate the models in the local cohort 

because the fresh testicular samples were unavailable 

given the policy formulated by the ethics committee of 

our hospital. Since we have detected the expressions of 

DDX20 and NCBP2 in the seminal plasma and found 

that both genes were down-regulated in NOA samples, 

which corresponded to the results in the training dataset, 

we thought that the validation in the seminal plasma 

samples from the local cohort was still acceptable. 

 

First, an LR diagnosis model was constructed as 

follows: Score = 10.101–16.148 × EXP(NCBP2) + 

0.046 × EXP(DDX20), where the EXP meant the 

mRNA expression value of the gene. The predictive 

ability of the LR model in the training cohort was quite 

high (AUC = 0.955, 95% CI = 0.865–1.000, Figure 6A). 

However, its performance in the GSE45885 cohort 

(AUC = 0.514, 95% CI = 0.256–0.772, Figure 6B) and 

the GSE45887 cohort (AUC = 0.531, 95% CI = 0.267–

0.795, Figure 6C) was non-ideal. The AUCs of the LR 

model in the GSE145467 and local cohorts are 0.700 

 

 
 

Figure 3. The PPI network analysis of the 51 RBPs. (A) The PPI network of the 51 RBPs, where the genes unconnected with other genes 

were excluded. (B) The Top 20 genes with the highest degree in the PPI network. Abbreviation: PPI: protein-protein interaction network. 
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(95% CI = 0.493–0.907, Figure 6D) and 0.597 (95% CI 

= 0.465–0.729, Figure 6E), respectively. The confusion 

matrices of the LR model in these cohorts are shown in 

Figure 6F–6J, respectively. Generally, the predictive 

ability of the LR model was far from satisfactory, 

especially in the external validation cohorts, 

enlightening us to utilize more tools to construct the 

diagnosis models. 

 

 

 
Figure 4. DDX20 and NCBP2 were con-determined via feature selection methods and PPI network analysis. (A) 5 genes, 

including NCBP2, DDX20, TSN, SRPK2, and CARHSP1, were identified as significant features to NOA via LASSO regression. (B) The 
coefficients of the 5 selected genes in the LASSO regression model. (C) 30 genes were determined as important features via the Boruta 
algorithm. (D) 6 genes, including NCBP2, DDX20, CCDC86, TSN, CARHSP1, and TDRD7, were selected by the SVM-RFE. (E) DDX20 and NCBP2 
were con-determined by the machine learning algorithms and PPI network analysis. 
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Figure 5. The external validation of DDX20 and NCBP2. (A) The single-cell RNA-sequencing analysis of 432 testicular cell samples 

isolated from NOA patients displayed that DDX20 and NCBP2 were both positively associated with spermatogenesis. (B, C) DDX20 (B) and 
NCBP2 (C) were down-regulated in the seminal plasma samples of NOA patients from the local hospital. (D) The ROC curve exhibited the 
diagnosis ability of seminal plasma DDX20 and NCBP2 to NOA in the local cohort. (E) The protein expression levels of DDX20 were obviously 
down-regulated in the testicular samples from NOA patients in the local cohort, which were detected by the immunohistochemical 
staining. Abbreviation: ROC: receiver operating characteristic. 



www.aging-us.com 3129 AGING 

Table 3. The clinicopathological features of the cohorts enrolled in this study. 

Characteristics 

GSE9210 GSE45885 GSE45887 GSE145467 Local cohort 

Control  

(n = 11) 

NOA  

(n = 47) 

Control  

(n = 4) 

NOA  

(n = 27) 

Control  

(n = 4) 

NOA  

(n = 16) 

Control  

(n = 10) 

NOA  

(n = 10) 

Control  

(n = 27) 

NOA  

(n = 17) 

Age (years) 33.3 ± 8.5 35.0 ± 5.7 – 32.1 ± 4.05 – 31.3 ± 1.8 – – 31.8 ± 9.2 33.4 ± 7.4 

Johnsen’s score 7.9 ± 1.2 2.4 ± 1.3 – 4.9 ± 2.5 – – – – 7.3 ± 1.7 2.7 ± 2.5 

FSH (mIU/ml) 10.1 ± 9.3 29.2 ± 9.1 – – – – – – 11.1 ± 7.6 21.6 ± 8.8 

LH (mIU/ml) 4.5 ± 2.3 8.8 ± 4.8 – – – – – – 4.3 ± 0.9 8.1 ± 3.5 

T (ng/ml) 4.8 ± 1.7 3.5 ± 1.6 – – – – – – 5.1 ± 0.7 3.7 ± 1.2 

Abbreviations: FSH: follicle-stimulating hormone; LH: luteinizing hormone; T: testosterone; NOA: non-obstructive azoospermia. 

 

Subsequently, we established an RF model to classify 

the NOA samples. The RF model showed superiority to 

the routine LR model in the training dataset (AUC = 

1.000, 95% CI = 1.000–1.000, Figure 7A), GSE45885 

dataset (AUC = 0.676, 95% CI = 0.385–0.967, Figure 

7B), GSE45887 dataset (AUC = 0.656, 0.381–0.932, 

Figure 7C), GSE145467 dataset (AUC = 0.750, 95% CI 

= 0.562–0.938, Figure 7D), and local cohort (AUC = 

0.656, 95% CI = 0.547–0.765, Figure 7E). Figure 7F–7J 

represent the confusion matrices of the RF model in 

each cohort. 

 

ANN was also a widely-used method for diagnosis 

model establishment, and many ANN diagnosis models 

have been proposed and exhibited high reliability and 

precision in multiple diseases [20–22]. Thus, we then 

developed an ANN diagnosis model based on the 

expressions of DDX20 and NCBP2 in NOA, as 

displayed in Figure 8A. Similar to those previous 

contributions, the established ANN model showed high 

predictive performance across the training cohort (AUC 

= 0.840, 95% CI = 0.773–0.908, Figure 8B), GSE45885 

cohort (AUC = 0.731, 95% CI = 0.446–1.000, Figure 

8C), GSE45887 cohort (AUC = 0.781, 95% CI = 0.517–

1.000, Figure 8D), GSE145467 cohort (AUC = 0.850, 

95% CI = 0.700–1.000, Figure 8E), and local cohort 

(AUC = 0.623, 95% CI = 0.482–0.765, Figure 8F). 

Figure 8G–8K displayed the confusion matrices of these 

cohorts. The performance of the ANN model in the 

local cohort was not satisfying (AUC < 0.7), but we 

held that the result was still acceptable considering the 

different sample types and gene expression detection 

methods. As a whole, the ANN model was a promising 

tool to classify the NOA samples on the background of 

the high heterogeneity among different cohorts. 

 

Here, we measure the predictive performance of these 

models mainly from the aspect of AUC. However,  

the other assessment indexes, containing accuracy, 

precision, recall, F-measure, sensitivity, specificity, 

positive predictive value, and negative predictive value, 

were also provided for reference, as listed in Table 4. 

The functions of the DDX20- and NCBP2-asociated 

genes 

 

The Top 20 genes showing the highest connection with 

DDX20 and NCBP2 are displayed in Figure 9A and 9B, 

respectively, along with their interaction patterns. The 

DDX20-associated genes mainly involved cellular 

transcription, RNA modification, RNA splicing, RNA 

localization, and RNA stability maintenance (Figure 

9C). The NCBP2-associated genes were mainly 

enriched in mRNA and miRNA processing, RNA 

stability regulation, and DNA repair (Figure 9D). These 

data revealed clues further to elucidate the biological 

functions of DDX20 and NCBP2. 

 

DISCUSSION 
 

The rapid development of gene sequencing technologies 

and the tremendous advancement of computational 

biology and machine learning algorithms help to 

improve our understanding of the genetic biomarkers, 

associated pathogenesis, and latent therapeutic targets in 

multiple reproductive diseases covering a broad 

spectrum of prostate cancer [23], spontaneous 

miscarriage [24], testicular cancer [25], and NOA [26]. 

Investigating novel biomarkers from a particular aspect, 

such as transcriptional factor [27] and macrophage 

polarization [28], has become a popular and effective 

maneuver. However, the studies about the expression 

profiles and predictive values of RBPs are rarely seen in 

NOA for the moment despite the nonnegligible effects 

of RBPs on spermatogenesis, as discussed above. 

Hence, seeking more genetic biomarkers based on RBP-

related genes is urgently demanded on the background 

of our poor knowledge of the mechanisms of NOA. 

 

Herein, we utilized the 58 testicular samples 

inclusive of 11 control and 47 NOA cases from the 

GEO as the training cohort. 51 of 1542 RBPs 

reported by previous studies were differentially 

expressed between the control and NOA subjects. 

DDX20 and NCBP2 were ultimately determined as 
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the significant features through the PPI network 

analysis, LASSO regression, SVM-RFE, and Boruta. 

Subsequently, we collected the clinical samples from 

27 control and 17 NOA patients in the local hospital 

to verify the expression divergence of DDX20 and 

NCBP2. Intriguingly, we found that DDX20 and 

NCBP2 were significantly down-regulated in the 

seminal plasma samples, in addition to the testicular 

 

 
 

Figure 6. The predictive performance of an LR diagnosis model in each cohort. (A–E) The ROC analyses of the LR model in the 

training cohort (A), GSE45885 cohort (B), GSE45887 cohort (C), GSE145467 cohort (D), and the local cohort (E). (F–J) The confusion matrices 
of the LR model in the training cohort (F), GSE45885 cohort (G), GSE45887 cohort (H), GSE145467 cohort (I), and the local cohort (J). 
Abbreviation: LR: logistic regression. 
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samples, of NOA subjects, suggesting that DDX20 

and NCBP2 could serve as potential non-invasive 

diagnostic biomarkers. The scRNA-seq analysis of 

432 testicular cell samples isolated from NOA 

patients indicated that DDX20 and NCBP2 were both 

associated with the spermatogenetic process, re-

confirming the pivotal roles DDX20 and NCBP2 

played in NOA. 

 

 
 

Figure 7. The predictive performance of an RF diagnosis model in each cohort. (A–E) The ROC analyses of the RF model in the 

training cohort (A), GSE45885 cohort (B), GSE45887 cohort (C), GSE145467 cohort (D), and the local cohort (E). (F–J) The confusion matrices 
of the RF model in the training cohort (F), GSE45885 cohort (G), GSE45887 cohort (H), GSE145467 cohort (I), and the local cohort (J). 
Abbreviation: RF: random forest. 
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DDX20 encoded a DEAD box protein and was first 

reported as an RBP interacting with miR-140-3p by 

Takata and his colleagues [29]. DEAD box proteins, 

represented by VASA, a widely-accepted germ-line 

specific marker, were considered critical regulatory 

factors in spermatogenesis via modulating multiple 

RNA metabolism processes [30]. The other DEAD  

box proteins involved in spermatogenesis include 

 

 
 

Figure 8. Establishment and validation of an ANN diagnosis model. (A) An ANN model containing one input layer, one hidden layer, 

and one output layer was constructed to diagnose NOA. (B–F) The ROC analyses of the ANN model in the training cohort (B), GSE45885 
cohort (C), GSE45887 cohort (D), GSE145467 cohort (E), and the local cohort (F). (G–K) The confusion matrices of the RF model in the 
training cohort (G), GSE45885 cohort (H), GSE45887 cohort (I), GSE145467 cohort (J), and the local cohort (K). Abbreviation: ANN: artificial 
neural network. 
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Table 4. The predictive performance of the established models in each cohort. 

Cohort Accuracy Precision Recall F-measure Sensitivity Specificity 
Positive 

predictive 
value 

Negative 
predictive 

value 

Logistic regression model 

GSE9210 0.983  0.979  1.000  0.989  1.000  0.909  0.979  1.000  

GSE45885 0.710  0.875  0.778  0.824  0.778  0.250  0.875  0.143  

GSE45887 0.700  0.813  0.813  0.813  0.813  0.250  0.813  0.250  

GSE145467 0.700  0.667  0.800  0.727  0.800  0.600  0.667  0.750  

Local Cohort 0.545  0.452  0.824  0.583  0.824  0.370  0.452  0.769  

Random forest model 

GSE9210 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

GSE45885 0.806  0.920  0.852  0.885  0.852  0.500  0.920  0.333  

GSE45887 0.600  0.900  0.563  0.692  0.563  0.750  0.900  0.300  

GSE145467 0.750  0.692  0.900  0.783  0.900  0.600  0.692  0.857  

Local Cohort 0.591  0.485  0.941  0.640  0.941  0.370  0.485  0.909  

Artificial neural network model 

GSE9210 0.741  1.000  0.681  0.810  0.681  1.000  1.000  0.423  

GSE45885 0.903  0.929  0.963  0.945  0.963  0.500  0.929  0.667  

GSE45887 0.800  0.929  0.813  0.867  0.813  0.750  0.929  0.500  

GSE145467 0.850  0.769  1.000  0.870  1.000  0.700  0.769  1.000  

Local Cohort 0.591  0.481  0.765  0.591  0.765  0.481  0.481  0.765  

 

 
 

Figure 9. The genes associated with DDX20 and NCBP2 and their functional enrichment. (A, B) The Top 20 genes showing the 

closest connection with DDX20 (A) and NCBP2 (B). (C, D) The functional annotation of the DDX20- (C) and NCBP2-associated (D) genes, 
which was obtained from the Metascape database. 
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DDX3 [31], DDX25 [32], DDX23 [33], and MEL-46 

[34]. Here, we first found that the disturbance of DDX20 

was correlated with the spermatogenetic process, and its 

expressions in the seminal plasma and testes could act as a 

diagnostic biomarker in NOA, broadening our knowledge 

of the DEAD box protein family in spermatogenesis. The 

protein encoded by NCBP2 has an RNP domain 

commonly found in RBPs and was regarded as a regulator 

in DNA damage and repair, cell cycle, and cellular 

apoptosis [35]. However, the association between NCBP2 

and spermatogenesis remains unclear. In all, we first 

found that DDX20 and NCBP2 could serve as biomarkers 

in NOA, shedding novel insights into the pathogenesis 

from an angle of RBP. 

 

The reduced cost of gene sequencing renders the genetic 

diagnosis of NOA to attract increasing attention, and 

many great efforts have been paid. For example, 

Kherraf et al. employed whole-exome sequencing to 

construct a 7-gene panel to improve the classification of 

NOA, helping the patients receive a clearer diagnosis 

[36]. Given the satisfying performance of machine 

learning algorithms, especially ANN, in various 

diseases [37, 38], we then used LR, RF, and ANN to 

construct the diagnosis models based on the mRNA 

expression levels of DDX20 and NCBP2 and validated 

and compared their predictive ability in the training 

cohort, 3 external public validation datasets, and the 

local cohort. Similar to those previous works, the ANN 

model was observed to exhibit the highest predictive 

ability on average. It is worth mentioning that to the 

best of our knowledge, no ANN model based on genetic 

biomarkers has been constructed in NOA up to now. 

Our study reveals that ANN modelling has great 

potency in NOA diagnosis and deserves more attention. 

 

The flaws of the present study should also be 

acknowledged. First, only the protein levels of DDX20 

were detected in the clinical samples, and the detection 

of the protein levels of NCBP2 was lacking due to the 

limited financial support. Second, although the models 

established in this study have been verified in 4 public 

datasets and clinical samples, a prospective, multi-

center, and large-scale clinical trial would be more 

beneficial to clarify the usefulness of the models. Third, 

our study analyzed the expression profiles, diagnosis 

values, and spermatogenetic association of DDX20 and 

NCBP2 in NOA, but their concrete biological functions 

in spermatogenesis remain unclear. A deeper 

experimental exploration is required to better elucidate 

the associated mechanisms in the near future. 

 

Collectively, an ANN diagnosis model to NOA based 
on RBP DDX20 and NCBP2 was presented, which was 

externally validated in multiple public datasets and 

clinical samples, providing the possible cut-in points to 

clarify the pathogenesis and a promising tool in clinical 

practice. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. 1542 RBPs collected from previous reports. 
 

Supplementary Table 2. 51 RBPs showing the RNA expression difference between control and NOA samples. 

RBPs logFC AveExpr t P-value FDR B 

NCBP2 ‒1.164687726 ‒1.01510361 ‒15.65914545 1.83E-22 1.90E-19 40.84652815 

DDX20 ‒1.981351445 ‒1.256276019 ‒15.4569828 3.36E-22 1.90E-19 40.24705778 

PSMA6 ‒1.04580801 ‒0.593954932 ‒14.11702322 2.16E-20 7.40E-18 36.14151813 

CCDC86 ‒1.052820552 ‒1.579661768 ‒14.05676552 2.62E-20 7.40E-18 35.95141099 

TSN ‒1.556463958 ‒1.458954503 ‒13.4536697 1.84E-19 4.17E-17 34.02233281 

GEMIN4 ‒1.089842819 ‒1.39742396 ‒12.61506455 3.01E-18 4.25E-16 31.25990374 

CPSF3 ‒1.053481046 ‒0.269150663 ‒12.55089869 3.74E-18 4.70E-16 31.0447018 

EIF5A2 ‒2.465618315 ‒2.041042187 ‒12.45715696 5.14E-18 5.81E-16 30.7293308 

DZIP1 ‒1.672745206 ‒0.779102049 ‒12.40795237 6.07E-18 6.25E-16 30.56333073 

TDRD7 ‒1.368686437 ‒1.133101657 ‒12.09505473 1.78E-17 1.44E-15 29.50028074 

RPL39L ‒1.521431228 ‒1.676756631 ‒11.89177303 3.59E-17 2.14E-15 28.80279562 

ZNF473 ‒1.54377798 ‒1.342913734 ‒11.82184714 4.58E-17 2.47E-15 28.56163306 

SAMD4A ‒1.80946998 ‒1.834060238 ‒11.79041026 5.11E-17 2.63E-15 28.45300701 

KHDRBS3 ‒1.368138893 ‒1.349001538 ‒11.73163021 6.28E-17 3.09E-15 28.24955889 

SRPK2 ‒2.073289186 ‒1.444866371 ‒11.52317684 1.30E-16 5.90E-15 27.52449873 

HABP4 ‒1.087948044 ‒1.004264542 ‒11.31664897 2.71E-16 1.06E-14 26.80069981 

CARHSP1 ‒1.246263907 ‒1.237840966 ‒11.26739822 3.22E-16 1.21E-14 26.62730444 

HINT3 ‒1.401923087 ‒1.583747782 ‒11.13008743 5.26E-16 1.86E-14 26.14228678 

YBX2 ‒1.576988412 ‒1.725600589 ‒10.92210224 1.11E-15 3.48E-14 25.40321439 

LARP6 1.079538654 0.630573824 10.86291927 1.37E-15 4.08E-14 25.19194891 

MRPL42 ‒1.339480172 ‒1.005859006 ‒10.53158899 4.55E-15 1.12E-13 24.00151447 

LSM14B ‒2.290982508 ‒2.204647215 ‒10.15495172 1.81E-14 3.58E-13 22.63298213 

EXOSC9 ‒1.288382785 ‒0.439625159 ‒10.06058765 2.56E-14 4.74E-13 22.28765618 

FXR1 ‒1.018466865 ‒0.390312658 ‒10.02650068 2.90E-14 5.29E-13 22.16268071 

CALR3 ‒2.133446923 ‒1.657728028 ‒9.922753033 4.26E-14 7.30E-13 21.78155103 

TRIM56 1.035837998 0.947452277 9.08252601 9.94E-13 1.14E-11 18.65637084 

RANBP17 ‒1.038119382 ‒0.834252701 ‒9.034483444 1.19E-12 1.34E-11 18.4758085 

RNF17 ‒1.096010711 ‒0.419352204 ‒8.950511996 1.64E-12 1.72E-11 18.15978426 

NUDT21 ‒1.320680742 ‒1.348681463 ‒8.947807388 1.66E-12 1.72E-11 18.1495967 

FAM46A 1.105819374 1.036928608 8.783675358 3.09E-12 2.98E-11 17.5303634 

MRPS15 ‒1.154592926 ‒1.112376746 ‒8.571113319 6.96E-12 6.05E-11 16.72572174 

EZH2 ‒1.625135047 ‒1.422316674 ‒8.530601646 8.13E-12 6.76E-11 16.57205215 

PTBP2 ‒1.177276056 ‒0.725024783 ‒8.290871874 2.04E-11 1.59E-10 15.66089028 

YBX1 ‒1.082648888 ‒1.272797356 ‒8.23570308 2.52E-11 1.91E-10 15.45080955 
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ZFP36L2 1.2309675 0.937835892 8.008135343 6.04E-11 4.17E-10 14.5829598 

G3BP2 ‒1.243105015 ‒1.079792805 ‒7.962686977 7.20E-11 4.82E-10 14.40942825 

RUVBL2 ‒1.186127446 ‒1.587202473 ‒7.878862924 9.95E-11 6.46E-10 14.08922302 

MAEL ‒1.868901115 ‒1.771197607 ‒7.831033391 1.20E-10 7.65E-10 13.90644116 

WDR5 ‒1.359031222 ‒1.727862331 ‒7.777332285 1.47E-10 9.15E-10 13.70116652 

THUMPD3 ‒1.252777472 ‒0.923589423 ‒7.544794643 3.62E-10 2.08E-09 12.81185111 

AARSD1 ‒1.008879832 ‒1.189050641 ‒7.384985781 6.71E-10 3.63E-09 12.20058137 

MYEF2 ‒1.368124041 ‒0.701933592 ‒7.053598831 2.41E-09 1.17E-08 10.93417168 

DRG1 ‒1.158392434 ‒1.473746051 ‒6.97794412 3.23E-09 1.52E-08 10.64549489 

PSIP1 ‒1.010477262 ‒0.394447535 ‒6.918768578 4.06E-09 1.86E-08 10.41986273 

PIWIL1 ‒1.230109401 ‒0.92726326 ‒6.874058726 4.83E-09 2.16E-08 10.24949506 

DAZL ‒1.973456426 ‒1.623255357 ‒6.589229654 1.45E-08 6.10E-08 9.166869481 

DDX43 ‒2.054685325 ‒1.066758398 ‒6.086147677 9.91E-08 3.57E-07 7.271458078 

DDX4 ‒2.37842902 ‒1.352155656 ‒4.899463425 8.11E-06 2.10E-05 2.960449039 

RNASE11 ‒1.722923321 ‒1.272160398 ‒4.208908711 9.06E-05 0.000197766 0.625916397 

RDM1 ‒1.173722882 ‒1.147959994 ‒4.196040207 9.46E-05 0.000205521 0.584080555 

DDX25 ‒1.434031937 ‒1.312842028 ‒3.823569584 0.000324367 0.000647018 ‒0.595832854 

 

 

Supplementary Table 3. The importance of the genes in the PPI network. 

RBPs MCC DMNC MNC Degree EPC 
Bottle 

Neck 

Ec 

Centricity 
Closeness Radiality Betweenness Stress 

Clustering 

Coefficient 

PIWIL1 252 0.5854 7 12 15.044 16 0.18919 20.28333 5.67568 295.34444 646 0.28788 

DAZL 247 0.5854 7 8 14.183 2 0.18919 17.23333 5.31399 85.76111 176 0.57143 

DDX4 128 0.4756 7 7 14.187 3 0.18919 17.15 5.36963 53.49444 152 0.61905 

RNF17 241 0.6657 6 7 14.002 2 0.15766 16.38333 5.14706 43.96667 92 0.66667 

YBX1 8 0.2842 4 6 12.307 6 0.23649 16.75 5.48092 146.27222 260 0.26667 

FXR1 10 0.2378 6 6 13.011 6 0.23649 17.5 5.62003 93.7 234 0.33333 

TDRD7 240 0.6657 6 6 13.822 1 0.15766 15.63333 5.06359 1.06667 8 0.93333 

MAEL 240 0.6657 6 6 13.78 1 0.15766 15.63333 5.06359 1.06667 8 0.93333 

YBX2 10 0.3789 4 6 12.914 8 0.18919 16.86667 5.42528 162.26667 428 0.26667 

NCBP2 8 0.309 3 6 10.874 4 0.18919 15.4 5.11924 138.90556 286 0.26667 

LSM14B 7 0.309 3 6 12.595 4 0.18919 16.48333 5.34181 152.85556 382 0.2 

RUVBL2 5 0 1 5 8.256 8 0.18919 15.78333 5.31399 254.75 366 0 

MRPS15 5 0.3078 2 5 7.4 6 0.18919 15.11667 5.14706 262.91667 474 0.1 

DDX20 8 0.2593 5 5 12.672 1 0.18919 16.65 5.42528 55.15556 160 0.4 

DDX25 120 0.6483 5 5 13.306 1 0.15766 14.83333 4.95231 0 0 1 

HABP4 4 0.3078 2 4 11.075 9 0.23649 15.91667 5.4531 208.41111 442 0.16667 

WDR5 4 0.3078 2 4 10.185 9 0.18919 16.11667 5.4531 159.86111 260 0.16667 

GEMIN4 6 0.2842 4 4 11.468 3 0.18919 15.9 5.34181 33.04444 94 0.5 

PSIP1 3 0 1 3 8.829 4 0.18919 14.15 5.09141 56.17778 114 0 

G3BP2 3 0.3078 2 3 9.416 1 0.23649 14.66667 5.28617 68.66667 106 0.33333 

EIF5A2 3 0.3078 2 3 4.23 2 0.15766 11.55 4.3124 66 116 0.33333 

NUDT21 3 0.3078 2 3 7.723 2 0.15766 12.86667 4.70191 25.31667 54 0.33333 
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CPSF3 4 0.309 3 3 6.957 1 0.15766 11.76667 4.34022 3 8 0.66667 

EZH2 2 0.3078 2 2 8.015 1 0.18919 13.81667 5.09141 0 0 1 

RPL39L 2 0.3078 2 2 4.006 1 0.15766 11.05 4.28458 0 0 1 

PSMA6 2 0 1 2 3.843 2 0.15766 11.41667 4.45151 66 84 0 

ZNF473 2 0.3078 2 2 5.922 1 0.15766 10.93333 4.22893 0 0 1 

CARHSP1 2 0 1 2 5.772 2 0.15766 11.66667 4.47933 66 148 0 

TSN 1 0 1 1 5.426 1 0.15766 11.2 4.50715 0 0 0 

RDM1 1 0 1 1 3.667 1 0.15766 10.75 4.39587 0 0 0 

MRPL42 1 0 1 1 3.718 1 0.15766 10.38333 4.22893 0 0 0 

PTBP2 1 0 1 1 1.357 1 0.05405 1 0.16216 0 0 0 

KHDRBS3 1 0 1 1 1.357 1 0.05405 1 0.16216 0 0 0 

RANBP17 1 0 1 1 2.34 1 0.13514 8.59286 3.39428 0 0 0 

DRG1 1 0 1 1 2.128 1 0.13514 8.65952 3.53339 0 0 0 

DZIP1 1 0 1 1 5.838 1 0.15766 11.18333 4.39587 0 0 0 

EXOSC9 1 0 1 1 2.569 1 0.13514 8.78571 3.56121 0 0 0 

 

 

Supplementary Table 4. The genes identified by feature selection algorithms. 

Algorithm Genes 

LASSO NCBP2, DDX20, TSN, SRPK2, CARHSP1 

SVM-RFE NCBP2, DDX20, CCDC86, TSN, CARHSP1, TDRD7 

Boruta 

NCBP2, DDX20, PSMA6, CCDC86, TSN, GEMIN4, CPSF3, EIF5A2, DZIP1, TDRD7, RPL39L, 

ZNF473, SAMD4A, KHDRBS3, SRPK2, HABP4, CARHSP1, HINT3, YBX2, LARP6, LSM14B, 

EXOSC9, CALR3, TRIM56, RANBP17, NUDT21, FAM46A, G3BP2, MYEF2, DDX4 

 


