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INTRODUCTION 
 

Primary liver cancer is the sixth most commonly 

diagnosed cancer worldwide [1]. China is a high-risk 

area for liver cancer, with the second-highest 

incidence rate among all malignant cancers [2]. 

Hepatocellular carcinoma (HCC) accounts for 75-85% 

of all liver cancers. There are several drug strategies 

for HCC, including chemotherapy, targeted therapy, 

and immunotherapy, but the drug response varies 

significantly among cancer patients [3, 4]. Considering 

the tumor heterogeneity and multiple risk factors, 

biomarkers for HCC should be individualized and 

diversified. 
 

The dysregulation of transcription is crucial for 

tumorigenesis and development [5]. Transcriptional 

dysregulation caused by genomic and epigenetic 

alterations is called “transcriptional addiction” [6]. 

Transcriptional addiction in cancer cells can be overly 

dependent on various components of the transcriptional 

process [7]. Therefore, small molecule inhibitors 

targeting transcriptional processes may be more effective 

against these cancer cells [5]. Targeting transcriptional 

cyclin-dependent kinases and small molecule proteins is 

a promising treatment strategy that could contribute to 

the rational design of cancer combination therapies. 

 

The oncogenic effect of transcriptional addiction has 

been demonstrated in several cancers. The efficacy of 

CDK7 inhibitors depends on the selective dependency 
of tumors on CDK7 kinase activity. For instance, CDK7 

inhibitors could selectively target tumor cells and 

suppress the growth of breast tumors [7]. The repression 
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of CDK7 may promote marked transcriptional 

dysregulation in ovarian cancer, which is not recognized 

as an actionable vulnerability [8]. Identifying trans-

criptional addiction genes may aid in developing HCC 

biomarkers and therapeutic strategies. 

 

The present study systematically analyzed the 

expression levels and prognostic value of transcriptional 

addiction genes in HCC. Clustered subgroups and risk 

signatures provided predictable biomarkers of patients’ 

survival. Among these genes, HDAC2—an oncogene—

was associated with patient survival. These findings 

substantiate the great potential of transcriptional 

addiction in HCC. 

 

RESULTS 
 

Identification of differentially expressed genes 

 

We identified a series of genes associated with cancer 

transcriptional addiction (n=38) through a focused 

literature review [6–39] (Table 1). We refer to these 

genes as transcriptional addiction genes. 

 

We identified DEGs in HCC from three platforms. In the 

TCGA-LIHC set, 33 genes (86.8%) were differentially 

expressed in tumor tissues and paraneoplastic tissues  

(p < 0.05) (Figure 1A). We identified 33 and 26 DEGs in 

the ICGC-JP set and GEO-GSE14520 set, respectively 

(Figure 1B, 1C). The analysis results were consistent 

across the three platforms, with most genes overlapping 

(Figure 1D). 

 

Transcription factor co-expression network and 

gene function analysis 

 

There was a strong correlation (|R2| > 0.5 and p < 0.05) 

between the expression of 14 DEGs and tumor 

transcription factors (Figure 2A). The top three DEGs 

were KMT2A, MED1, and HDAC2. The expression of 

these 14 DEGs in cancer tissues was higher than that in 

paracancerous tissues. There were 314 transcription 

factors screened using the correlation analysis. We 

plotted the co-expression network using the Cytoscape 

v3.8.1 software (Figure 2B). 

 

Functional enrichment analysis was performed based 

on 33 DEGs from the TCGA-LIHC set. The GO 

dataset enriched the regulation of stem cell 

differentiation, transcription initiation from RNA 

polymerase II promoter, and DNA−templated 

transcription (Figure 2C). As for the KEGG dataset, 

viral carcinogenesis, transcriptional misregulation in 

cancer, and microRNAs in cancer were enriched 

(Figure 2D). Transcription-related functions were 

enriched in both datasets. 

Clustered subgroups and nomograms for predicting 

patient survival in the TCGA-LIHC set 

 

For the best clustering effect, we chose k = 2 for the 

subsequent analyses (Figure 3A, 3B). The different 

clustering subgroups revealed a two-way distribution 

through PCA analyses (Figure 3C). According to the 

survival analysis, the patients in subgroup 1 exhibited 

higher one-, three-, and five-year overall survival rates 

than those in subgroup 2 (log-rank test p < 0.01) 

(Figure 3D). 

 

The independent variables used to construct the 

nomogram include age, gender, grade, stage, and cluster 

(Figure 4A). The calibration curve and C-index confirm 

the high predictive accuracy and specificity of the 

nomogram (Figure 4B, 4C). In univariate/multivariate 

Cox regression analyses, the nomogram was an 

independent predictor of HCC outcome (HR > 1 and  

p < 0.001) (Figure 4D, 4E). 

 

Identification of an 11-gene risk signature for 

predicting patient survival 

 

The 11-gene risk signature was constructed using the 

training set (Table 2). Each patient’s risk score can be 

calculated using the following formula. Risk score = (-

0.908 * expression value of EN1) + (0.214 * expression 

value of ETV1) + (0.238 * expression value of HDAC2) 

+ (-0.058 * expression value of IRF8) + (0.017 * 

expression value of MYC) + (0.020 * expression value 

of SNAI2) + (0.030 * expression value of TAZ) + (-

0.073 * expression value of TP53) + (-0.218 * 

expression value of TP63) + (-0.057 * expression value 

of YAP1) + (0.498 * expression value of ZFP64). There 

were two risk categories for patients: high-risk and low-

risk. A cutoff point was determined based on the 

training set’s median risk score. 

 

In all sets, there was a greater median overall survival 

time among the patients in the low-risk group compared 

to those in the high-risk group (p < 0.01) (Figure 5A–

5C). In the TCGA-LIHC and ICGC-JP cohorts, the area 

under the curve (AUC) for the risk score was higher 

than that for the other clinical factors (Figure 5D, 5E). 

In the GEO cohort, the AUC for the risk score 

demonstrated slightly lower performance (Figure 5F). 

The additional GEO verification set (GSE20140) is 

provided in the Supplementary Figure 1. This difference 

could be related to the patient’s geographical area, 

tumor stage, and other factors. The results of the 

univariate/multivariate Cox regression analyses were 

consistent across multiple cohorts, and they all 
supported that risk score was an independent risk 

predictor of patient survival (HR > 1 and p < 0.05) 

(Figure 6). 
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Table 1. Literature review identified the transcriptional addiction genes. 

Cancer type Gene list 

Acute myelocytic leukemia [6, 9-15] DOT1L, BRD4, MEF2D, IRF8, KMT2A, ZMYND8, MEF2D, CDK9, ZFP64 

T cell leukemia [6] CDK7, BRD4 

Multiple myeloma [6] BRD4 

Glioma [6, 16] PDGFRA, CDK7 

Melanoma [7] YAP, TAZ 

Neuroblastoma [17-19] TBX2, FOXM1, CDK7, CDK12, 

Liposarcoma [20] FOSL2, MYC, RUNX1, SNAI2 

Bone and soft tissue sarcomas [21] CDK7 

Gastrointestinal Stromal Tumor [22]  FOXF1, ETV1 

Thyroid cancer [23-25] RUNX2, FOXC1, CDK7, PPP1R15A 

Esophageal cancer [19, 26] HDAC1, HDAC2, TP63, SOX2, KLF5 

Breast cancer [7, 18, 27-30] YAP, TAZ, BRD4, Skp2, EN1, TRPS1, CDK7, CDK12 

lung cancer [18, 31-33] CDK7, SOX2, MYC, CDK12 

Liver cancer [7] YAP, TAZ, SOX9 

Gallbladder Cancer [34] CDK7 

Pancreatic cancer [35] CDK7 

Colon cancer [36] P53, CDK7 

Bladder cancer [18, 37] CDK7, CDK12 

Ovarian Cancer [8] CDK7 

Prostate cancer [38, 39] CDK7, CDK9, CDK8, CDK19, CDK12, CDK13, MED1 

 

 
 

Figure 1. The differentially expressed genes (DEGs) were screened in different sets. (A) DEGs (n = 33) in TCGA-LIHC set. (B) DEGs  

(n = 33) in the ICGC-JP set. (C) DEGs (n = 26) in GEO-GSE14520 set. (D) Venn diagram for the overlapping genes. 
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Figure 2. Transcription factor co-expression network and gene function analysis for TCGA-LIHC set. (A) The bar chart shows the 
number of transcription factors related to DEGs. (B) Co-expression network of 14 DEGs and 314 transcription factors. (C) Functional 
annotation for transcriptional addiction genes using GO term enrichment analysis, according to the top five biological processes, the top five 
cellular components, and the top five molecular functions. (D) The top 15 KEGG enrichment pathways of transcriptional addiction genes. 
 

 
 

Figure 3. Clustered subgroups of DEGs in TCGA-LIHC set. (A, B) K = 2 was chosen to construct the clustered subgroups. (C) Principal 

component analysis of transcriptional addiction genes to distinguish different clustered subgroups. (D) Survival analysis for the gene clusters 
based on 365 patients from TCGA-LIHC set. 
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Correlation of risk signature with therapeutic drugs 

and immune status 

 

There were differences in TIDE and exclusion scores 

between risk groups (p < 0.001) (Figure 7A, 7B). Thus, 

high-risk patients were more likely to benefit from 

immunotherapy. Similarly, chemotherapy and targeted 

therapy are more effective in the high-risk group, 

considering the lower IC50 values in this group (Figure 

7C, 7D). Both DNA and RNA stemness scores were 

positively correlated with the risk score (p < 0.001) 

(Figure 7E, 7F). This result could provide a reference 

for targeted cancer stem cell therapy. Finally, we 

identified several immune cell contents and immune 

function scores associated with risk signature, including 

T cells CD8, macrophages M0, cytolytic activity, MHC 

class I, type I IFN response, and type II IFN response 

(Figure 7G, 7H). 

 

HDAC2 expression and clinical value in HCC 

 

By bioinformatics mining, HDAC2 expression was 

higher in the cancer tissues than that in the adjacent 

tissues in the TCGA-LIHC and ICGC-JP sets  

(p < 0.001) (Figure 8A, 8B). In the HPA database, 

immunohistochemistry staining also identified higher 

levels of HDAC2 protein in HCC tissues compared 

with those in normal liver tissues (Figure 8C).  

Tissue microarrays likewise demonstrated high levels 

of HDAC2 protein in tumor tissues compared with 

those of paracancerous tissues and distal tissues 

(Figure 8D). 

In the TCGA-LIHC and ICGC-JP sets, the median 

HDAC2 expression value was used for grouping patients. 

The patients with high HDAC2 expression had a shorter 

median overall survival time than low expression patients 

(p < 0.001) (Figure 9A, 9B). The HDCA2 protein level 

was scored for each sample of the tissue microarrays [40, 

41] (Figure 9C). Consistent results were observed across 

all survival analyses. The patients with higher ICH scores 

had shorter survival times (Figure 9D, 9E). HDAC2—an 

oncogene—may affect the survival of HCC patients. 

Furthermore, HDAC2 was up-regulated in HCC 

recurrent and metastatic tissues (Figure 10A, 10B). 

HDAC2 scores also differed in samples with different 

tumor sizes and stages (Figure 10C, 10D). HDAC2 score 

could be an independent prognostic factor for HCC 

patients (Figure 10E, 10F). 
 

DISCUSSION 
 

The mortality rate for liver cancer is the fourth highest 

among all cancers [1]. Because of the lack of early-stage 

symptoms, most patients do not benefit from surgery at 

the initial diagnosis [4, 42]. The conventional treatment 

for HCC is ineffective, and many exploratory clinical 

trials have failed to meet their endpoints [43]. The 

development of HCC is a complex process involving 

multiple gene regulatory networks at the molecular level. 

The conventional early warning markers primarily focus 

on tumor volume and clinical symptoms, with 

insufficient sensitivity and specificity. In the precision 

medicine era, studies on genetic characteristics may 

provide us with new directions. A growing number of 

 

 
 

Figure 4. Nomogram for predicting patient survival in TCGA-LIHC set. (A) The nomogram combines the cluster and clinicopathological 

characteristics for predicting patient survival outcomes. (B) The calibration curve validates the sensitivity of the nomogram in 1, 3, and 5 years. 
(C) The C-index validates the specificity of the nomogram compared to the clinicopathological characteristics. (D, E) Univariate and multivariate 
regression analyses for the nomogram as an independent prognostic factor. 
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Table 2. Each genetic parameter of the risk signature. 

mRNA  Coefficient HR 95%CI P 

EN1 -0.908 0.403 0.178-0.913 0.029 

ETV1 0.214 1.239 1.063-1.444 0.006 

HDAC2 0.238 1.269 1.152-1.397 0.001 

IRF8 -0.058 0.944 0.887-1.004 0.068 

MYC 0.017 1.017 1.005-1.030 0.008 

SNAI2 0.020 1.020 0.997-1.043 0.094 

TAZ 0.030 1.031 1.001-1.061 0.043 

TP53 -0.073 0.930 0.879-0.983 0.011 

TP63 -0.218 0.804 0.600-1.077 0.143 

YAP1 -0.057 0.944 0.908-0.982 0.004 

ZFP64 0.498 1.645 1.295-2.091 0.001 

 

studies have proposed new biomarkers for liver cancer, 

such as the cancer driver gene [44], autophagy [45], and 

ferroptosis-related gene signature [46]. The present study 

identified novel transcriptional addiction gene-related 

signatures and nomograms. The transcriptional addiction 

gene signature demonstrated better sensitivity and 

specificity compared with conventional clinical factors 

when validated across multiple platforms. 

 

 
 

Figure 5. Predicting patient survival for the transcriptional addiction gene signature. (A) Survival analysis of different risk 

groups based on 365 patients from TCGA-LIHC set. (B) Survival analysis of risk groups based on 210 patients from ICGC-JP set. (C) 
Survival analysis of different risk groups based on 221 patients from GEO-GSE14520 set. (D) The time-dependent ROC curve of the risk 
score and clinicopathological characteristics in TCGA-LIHC set. (E) The time-dependent ROC curve of the risk score and 
clinicopathological characteristics in ICGC-JP set. (F) The time-dependent ROC curve of the risk score and clinicopathological 
characteristics in GEO-GSE14520 set. 
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Figure 6. Independent prognostic value of transcriptional addiction gene signature. (A, B) Univariate and multivariate regression 
analyses for hazard ratio values of risk score and clinical characteristics in TCGA-LIHC set. (C, D) Univariate and multivariate regression 
analyses for hazard ratio values of risk score and clinical characters in ICGC-JP set. (E, F) Univariate and multivariate regression analyses for 
hazard ratio values of risk score and clinical characters in GEO-GSE14520 set. 
 

 
 

Figure 7. Correlation of transcriptional addiction gene signature with therapeutic drug sensitivity and immune status in 
TCGA-LIHC set. (A) TIDE scores in different risk groups. (B) Exclusion scores in different risk groups. (C) Cisplatin sensitivity in different risk 
groups. (D) Sorafenib sensitivity in different risk groups. (E) Correlation between DNA stemness score and risk score. (F) Correlation between 
RNA stemness score and risk score. (G) Immune cell contents in different risk groups. (H) Immune function scores in different risk groups.  
*p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure 8. Expression levels of HDAC2 in different tissues. (A) HDAC2 expression in normal and tumor tissues in the TCGA-LIHC cohort. 
(B) HDAC2 expression in normal and tumor tissues in the ICGC-JP cohort. (C) The protein level of HDAC2 in normal and tumor tissues in HPA 
database. (D) The protein levels of HDAC2 in tumor tissue, paracancerous tissue, and distal tissue in the tissue microarray. 
 

 
 

Figure 9. Relationship between HDAC2 expression and patient survival. (A) Kaplan-Meier survival analysis of patients with different 

HDAC2 expressions in TCGA-LIHC cohort. (B) Kaplan-Meier survival analysis of patients with different HDAC2 expressions in ICGC-JP cohort. 
(C) Scored for each sample of the tissue microarray. (D, E) Kaplan-Meier survival analysis of patients with different tissue scores in the tissue 
microarrays. 
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The HCC genome is highly heterogeneous, with 

transcriptional dysregulation of many genes. However, 

transcriptional addiction has received little attention in 

the field of liver cancer. Francesca et al. [7] found that 

the oncogenic properties of BRD4 were dependent on the 

YAP/TAZ transcriptional response. BET inhibitors could 

limit the liver growth caused by YAP transcription. There 

are also several other transcriptional addiction genes. For 

example, CDK7 is a famous transcriptional addiction-

related gene that affects the progression, metastasis, and 

prognosis of many cancers [6, 16]. SOX2 transcription is 

associated with cell growth in lung and esophageal 

cancers [26, 31]. Transcriptional addiction may be a vital 

physiological and pathological mechanism in various 

processes, including tumorigenesis, development, and 

metastasis. 

 

Our study examined the expression characteristics of 

transcriptional addiction genes in HCC. We identified 

several DEGs. The functional role of most genes has not 

been a concern in HCC. For instance, high expression 

of DOT1L may be associated with poor prognosis in 

HCC patients by mining public cancer databases. As a 

transcriptional addiction gene, DOT1L-mediated 

transcriptional regulatory mechanisms were involved in 

developing and maintaining MLL leukemia [13]. Yu  

et al. [47] reported that TRPS1 could facilitate the 

invasion and proliferation of HCC cells. Overexpression 

of TRPS1 was associated with tumor size and stage. 

However, the specific mechanism and prognostic value 

of TRPS1 in HCC are still unclear. We compiled a list 

of the transcriptional addiction-related genes to serve as 

a reference for subsequent studies. 

 

It is common for patients with the same tumor stage and 

receiving the same treatment to have different 

outcomes. Targeting key transcriptional addiction genes 

may facilitate the development of biomarkers and 

therapeutic strategies. Wei et al. [48] reported  

that ZFP64 was up-regulated in tumor tissues of 

immunotherapy-insensitive HCC patients. Inhibiting 

PKCα/ZFP64/CSF1 axis could overcome anti-PD1 

resistance in HCC. ETV1 may facilitate the invasion 

and metastasis of HCC by up-regulating metastasis-

related genes; PTK2 and c-MET inhibitors could 

significantly inhibit this process [49]. Our study found 

that different groups of patients responded differently to 

cisplatin, sorafenib, and immunotherapy, which could 

guide drug selection for patients. 

 

In combination with public cancer databases and tissue 

microarrays, this study investigates the role of HDAC2 

in HCC. Aberrant expression and mutations of HDACs 

in cancer have been widely reported. HDAC10 

regulates the stemness characteristics of lung cancer 

cells [50]. HDAC10 also serves as a new therapeutic 

target in ovarian and gastric cancers [51, 52]. Some 

selective HDAC6 inhibitors, such as ricolinostat and 

 

 
 

Figure 10. Correlation of HDAC2 score with HCC pathological characteristics in the tissue microarray set. (A) HDAC2 score in 
tumor recurrence and non-recurrence groups. (B) HDAC2 score in tumor metastatic and non-metastatic groups. (C) HDAC2 score in different 
tumor size groups. (D) HDAC2 score in different tumor stage groups. (E, F) Univariate and multivariate regression analyses for HDAC2 score as 
an independent prognostic factor. 
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ACY-1215, have been applied in clinical trials [53]. As 

for HDAC2, the related studies mainly focus on 

colorectal cancer (CRC). Tang et al. [54] found that 

transcriptional regulation associated with the 

p300/YY1/miR-500a-5p/HDAC2 signaling axis was a 

critical step that affects the proliferation of CRC cells. 

Cui et al. [55] reported that HDAC2 promoted CRC cell 

proliferation by regulating GLI2 expression. HDAC2 

may also facilitate multiple biological behaviors in 

hepatocellular carcinoma. Jin et al. [56] found that 

HDAC2 inhibition could enhance HCC radiosensitivity. 

Nam et al. [57] reported that HDAC2 was involved in 

HCC progression through feedback control of mTOR 

and AKT. HDAC2 may also affect the M2 macrophage 

migration and immune escape in HCC [58]. Our study 

demonstrated that high expression of HDAC2 could 

contribute to poor patient outcomes. HDAC2—an 

oncogene—contributes to metastatic and recurrent HCC. 

 

CONCLUSIONS 
 

Cancer develops and metastasizes via transcriptional 

addiction, which is common and critical. As 

demonstrated in our study, transcriptional addiction 

genes were implicated in HCC. Transcriptional 

addiction-related nomograms and signatures could 

provide significant predictions of survival time for 

patients. Gene expression characteristics determined the 

sensitivity of patients to therapeutic agents. HDAC2 

was highly expressed in tumor tissues, and its level was 

associated with patients’ survival. Multiple databases 

confirmed our findings. Our study identified new 

biomarkers that can be used to predict survival and 

select suitable therapeutic drugs for HCC patients. 

 

MATERIALS AND METHODS 
 

Data sources 

 

This study’s data were obtained from three publicly 

available databases and three tissue microarrays.  

We obtained HCC RNA-seq and clinical information 

from The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov/), International Cancer 

Genome Consortium (ICGC) (https://icgc.org/),  

and Gene Expression Omnibus (GEO) 

(https://www.ncbi.nlm.nih.gov/geo/) databases. The 

TCGA-LIHC set, ICGC-JP set, and GEO-GSE14520 

set included 365, 210, and 221 HCC cases, 

respectively. Specific clinical information is provided 

in the Supplementary Table 1. The protein levels of 

transcriptional addiction genes in normal and tumor 

tissues were analyzed using the Human Protein Atlas 

(HPA) database. RNA-seq profiles were normalized 

using the “limma” and “sva” packages in R v4.2.1 

software (https://www.r-project.org/). 

Tissue microarray 1 (Outdo Biotech, Shanghai) contains 

tumor tissue, paracancerous tissue, and distal tissue 

from three HCC patients. The other tissue microarrays 

(Servicebio, Wuhan) contain tumor tissues from 152 

HCC patients and their corresponding survival data. 

Tissue microarrays were used to verify the correlation 

between HDAC2 expression and patient survival. 

 

Differentially expressed genes in different sets 

 

The differentially expressed genes (DEGs) were 

identified by comparing transcriptional addiction gene 

expression in tumor and paracancerous tissues. The 

cutoff was set as p < 0.05. We visualized the overlapping 

genes from different datasets using Venn plots 

(https://bioinformatics.psb.ugent.be/webtools/Venn/). 

 

Construction of cancer transcription factor co-

expression network and gene function analysis in the 

TCGA-LIHC set 

 

Cistrome Cancer (http://cistrome.org/) provides a list of 

cancer transcription factors. We analyzed the correlation 

between 318 cancer transcription factors and DEGs in 

the TCGA-LIHC set. The threshold value was p < 0.05 

and |R2| > 0.5. The co-expression network of these 

genes was visualized using Cytoscape v3.8.1. Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) suggest a range of functional and 

pathway sets in which DEGs may influence the 

biological behavior of HCC. This process was 

performed using the “enrichplot” R package. 

 

Construction and validation of clustered subgroups 

and nomogram in the TCGA-LIHC set 

 

Gene clustering was performed using the 

“ConsensusClusterPlus” package according to the 

expression of DEGs in the TCGA-LIHC set. The 

distribution among those cases was mapped using 

principal component analysis (PCA). Survival analysis 

verifies whether there were differences in survival rates 

between subgroups of patients. Further, clinical data 

and clustered subgroups were integrated to construct a 

nomogram using the “nomogram” package. The 

calibration curve and concordance index (C-index) were 

used to verify the specificity and predictive accuracy of 

the nomogram. The nomogram combined with 

clinicopathological characteristics was included for 

univariate and multivariate regression analyses. 

 

Construction and validation of transcriptional 

addiction gene signature 

 

With the TCGA-LIHC set as the training set, we 

developed a risk signature using multivariate Cox 

https://portal.gdc.cancer.gov/
https://icgc.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
https://bioinformatics.psb.ugent.be/webtools/Venn/
http://cistrome.org/
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proportional regression. The ICGC-JP and GEO sets 

were defined as test sets. All cases were divided into 

high-risk and low-risk groups based on the median risk 

score of the training set. Survival analysis, receiver 

operating characteristic (ROC) curve, and univariate/ 

multivariate regression were used to analyze the 

prognostic value of risk score in HCC patients. 

 

The tumor immune dysfunction and exclusion  

(TIDE) score (http://tide.dfci.harvard.edu/) reflects  

the sample’s sensitivity to immunotherapy. We 

analyzed the sensitivity of different risk samples to 

immunotherapy, cisplatin, and sorafenib treatment.  

We evaluated the correlation between risk score and 

stem cell content by calculating DNA and RNA 

stemness scores. Finally, we evaluated the immune 

cell contents and immune function scores of different 

samples through the CIBERSORT algorithm 

(https://cibersortx.stanford.edu/). 

 

Tissue microarrays and immunohistochemistry 

detection 

 

We extracted the HDAC2 expression profiles of all 

cases from the TCGA and ICGC datasets and analyzed 

the distribution of HDAC2 in tumor tissues and 

paracancerous tissues. Tissue microarrays and the 

HPA database were used to verify HDAC2 protein 

levels in various types of tissues. We performed 

immunohistochemistry (IHC) of HDAC2 on the tissue 

microarrays. We incubated the tissue microarrays with 

the primary antibody against HDAC2 (Servicebio, 

GB11371, Wuhan), followed by the secondary 

antibody (Servicebio, GB23303, Wuhan) and 3,3’-

diaminobenzidine (DAB) IHC kit (DAKO, K5007, 

Denmark). The intensity of HDAC2 staining was 

scored as 0, 1, 2, and 3 for no, low, medium, and  

high staining, respectively. We pooled these data  

and analyzed the correlation between HDAC2  

protein levels and survival time of HCC patients in 

TCGA, ICGC, and tissue microarray sets. Univariate 

and multivariate regression analyses were also 

performed. 

 

Statistical analysis 

 

Expression or score differences between groups were 

analyzed using the Wilcoxon rank-sum test. Spearman’s 

rank correlation coefficient was used to determine the 

correlation between risk and stemness scores. For 

survival analysis, the Kaplan-Meier and log-rank tests 

were used. The independent prognostic value of the 

nomogram, risk signature, and HDAC2 score was 
performed with univariate/multivariate regression 

analyses. All statistical analysis procedures were 

performed using R v4.2.1 software. 

Availability of data and material 

 

Publicly available cancer databases were obtained 

from The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov/) and International 

Cancer Genome Consortium (ICGC) (https://icgc.org/) 

databases. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Predicting patient survival for the transcriptional addiction gene signature in GEO-GSE20140 set.  
(A) Survival analysis of risk groups based on 80 patients. (B) The time-dependent ROC curve of the risk score and clinicopathological 
characteristics.  
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Specific clinical information in each set. 


