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INTRODUCTION 
 

Glioblastoma Multiforme (GBM) is the most deadly 

and aggressive brain tumor that exists, accounting for 

16% of all primary brain tumors [1]. GBM is caused by 

genetic mutations leading to uncontrolled growth of 

glial stem or progenitor cells. This cancer is divided into 

primary GBM (de novo) and secondary GBM 

(progression from lower-grade tumors) [2]. Secondary 

GBM occurs most often in younger patients with a 

mean age of 45 years, whereas primary GBM most 

often happens in patients with a mean age of 62 years. 

Secondary GBM is, furthermore, the predominant GBM 

diagnosis in pediatric cases [1]. Primary GBM differs 

from secondary glioblastomas in its mutations, proteins, 
and pathways involved, as well as the distribution of 

molecular subtypes among patients (Proneural, Neural, 

Classical, Mesenchymal) [3, 4].  
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ABSTRACT 
 

Glioblastoma Multiforme (GBM) is the most aggressive and most common primary malignant brain tumor. The 
age of GBM patients is considered as one of the disease's negative prognostic factors and the mean age of 
diagnosis is 62 years. A promising approach to preventing both GBM and aging is to identify new potential 
therapeutic targets that are associated with both conditions as concurrent drivers. In this work, we present a 
multi-angled approach of identifying targets, which takes into account not only the disease-related genes but 
also the ones important in aging. For this purpose, we developed three strategies of target identification using 
the results of correlation analysis augmented with survival data, differences in expression levels and previously 
published information of aging-related genes. Several studies have recently validated the robustness and 
applicability of AI-driven computational methods for target identification in both cancer and aging-related 
diseases. Therefore, we leveraged the AI predictive power of the PandaOmics TargetID engine in order to rank 
the resulting target hypotheses and prioritize the most promising therapeutic gene targets. We propose cyclic 
nucleotide gated channel subunit alpha 3 (CNGA3), glutamate dehydrogenase 1 (GLUD1) and sirtuin 1 (SIRT1) as 
potential novel dual-purpose therapeutic targets to treat aging and GBM. 
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Current treatment for GBM includes maximal surgical 

resection, radiotherapy, and chemotherapy, such as 

concomitant and maintenance temozolomide, and these 

approaches usually lead to tumor resurgence and a 

median survival of 15 months [5]. Recently, tumor-

treating fields (TTF), was proposed as a novel 

glioblastoma therapy that uses alternating electric fields 

to disrupt the division of cancer cells. TTF therapy has 

been shown to improve overall survival in patients with 

newly diagnosed or recurrent glioblastoma when used 

in combination with standard treatments such as 

chemotherapy and radiation therapy [6]. It is important 

to highlight some of the immunotherapies are either 

already approved for the treatment of GBM or on the 

way to being approved. For example, Pembrolizumab 

and Nivolumab are two checkpoint inhibitors that are 

being tested in clinical trials for glioblastoma [7]. 

However, despite significant advances in treating 

glioblastoma, the current standard of care for GBM is 

damaging to the brain and results in an overall 10-year 

survival rate (after the diagnosis) of 0.71% [8]. 

 
Most targeted therapeutics for GBM account for 1 to 2 

targets in the GBM tumor, such as epidermal growth 

factor receptor (EGFR) and isocitrate dehydrogenase 

(IDH1), allowing cancer cells without expressing 

specific targets to survive and eventually kill the patient 

[9, 10]. More genetic targets for GBM must be 

identified and a method to personalize gene therapy for 

GBM patients may be useful for treating the many 

varieties of mutations present in GBM. Furthermore, 

identifying potentially effective combinations of drugs 

for the treatment of GBM patients using automated drug 

discovery approaches is an important task [11]. 

 
Due to the variety of mutations and development of 

GBM across different ages [3], this study utilized 

artificial intelligence (AI) and age-correlation analysis 

with the goal to identify dual-purpose targets 

associated with aging and GBM leveraging the power 

of AI-driven PandaOmics platform, which integrates 

analysis of multi-omics and literature data. Recently, 

the platform has been demonstrated to predict novel 

age-associated targets for the purpose of drug 

discovery [12].  

 
Identifying therapeutic targets is crucial for successful 

drug development, as erroneous targets can lead to costly 

programs and failed clinical trials. While traditional 

computational approaches for target and biomarker 

discovery are important for success, they face limitations 

due to complex data and batch effects [13]. However, AI-

driven approaches have shown efficacy in this area, using 

pathway analysis and algorithms on multiomics data to 

identify new targets and biomarkers, even with 

insufficient prior evidence [14–17]. 

Insilico Medicine scientists have pioneered the use of 

generative artificial intelligence in biology since 2016 

[18, 19]. Many of the summary of the original 

generative biology approaches utilizing the generative 

systems for generation of synthetic biological data and 

the first demonstration of PandaOmics platform were 

first presented at the Interdisciplinary Workshop and the 

National Institute of Aging [20]. In addition to the target 

discovery using generative biology approaches, Insilico 

developed the capabilities in generative chemistry with 

the first peer reviewed publication in 2016 [21–24]. 

These approaches have been successfully applied to 

various diseases and have demonstrated their potential 

in identifying novel compounds and accelerating drug 

development [25, 26]. As such, generative chemistry 

and biology approaches are becoming increasingly 

important for the current and future drug discovery 

efforts. This paper demonstrates the application of 

generative biology approach to the complex interplay 

between GBM and Aging. 

 

Aging is the exponential decline in homeostatic 

capabilities, which ultimately leads to an increased risk 

of age-related diseases and death [27]. With the rise of 

the longevity field, a novel approach has been 

undertaken to target diseases not just separately, with 

the goal to slow aging, but multiple diseases at once. 

Aging has, furthermore, been studied in the context of 

specific diseases, as we did in the present study. GBM 

has particularly strong aging-related effects on patients 

(including decreased resilience for aggressive treatment, 

comorbidity, and age-dependent immune system status), 

at the same time, this disease is prompted by old age 

[28]. By investigating GBM from both the traditional 

cancer-targeting approach and with the novel aging-

oriented approach, we hope to find new genetic targets, 

which may alleviate both the onset of GBM as well as 

slow aging in patients.  

 

RESULTS 
 

The starting point of our analysis was to collect 

relevant GBM datasets and combine them into a 

single multi-omics project inside the PandaOmics 

system. The final project consisted of data obtained 

from 29 different studies: 25 RNA-seq/microarray, 3 

methylation and 1 proteomics (Supplementary Table 

1). These data were subsequently used to generate 

genesets mined from age correlation analysis, survival 

rates, differences in expression levels and previously 

published information on aging-related genes [12]. 

Intersection of those sets following three different 

strategies and ranking the resulting lists by 

PandaOmics TargetID AI-driven scores led us to the 

identification of the most promising dual-purpose 

therapeutic target candidates (Figure 1).  
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Correlation analysis 

 

Among the list of 25 transcriptomics datasets, age 

metadata were available for 12 which were consequently 

used for the correlation analysis (Supplementary Table 2). 

Spearman’s correlation coefficients between gene 

expression and age, as well as corresponding p-values, 

were calculated for each gene. 

 

Our next step was separating the genes whose 

expression was positively and negatively correlated 

with age. Intersections between gene lists from 12 

datasets were performed and only those genes that 

correlated with age and had the same correlation sign in 

at least 11 out of 12 datasets were selected for further 

analysis. This resulted in 76 genes that were positively 

correlated with age and 170 that were negatively 

correlated with age (Figure 2). Furthermore, we applied 

Stouffer’s method for combining p-values to calculate 

the significance of the correlation coefficients. Only 38 

out of 76 genes were significantly (Stouffer’s combined 

p-value < 0.05) positively correlated with age, and 92 

out of 170 genes appeared to be significantly negatively 

correlated with age. 

 

Survival analysis 

 

We performed a survival analysis for the genes that 

were significantly correlated with age, using the TCGA-

GBM [29] dataset. First, we divided patients into three 

cohorts: young (< 45 years), middle-aged (from 45 to 60 

years) and senior (> 60 years). Then for each cohort, we 

performed survival analysis according to the expression 

level of the analyzed gene. 16 out of 38 significantly 

positively correlated genes and 22 out of 92 

significantly negatively correlated genes were able to 

stratify patients by survival according to their 

expression level (Figure 3). It is important to mention 

that most genes were able to significantly stratify the 

cohort of young patients. 

 

Target selection strategies guided by AI-powered 

PandaOmics TargetID engine 

 

Finally, we determined three main strategies for target 

identification and utilized the PandaOmics TargetID 

engine in order to prioritize the best target hypotheses 

based on predictive AI-scores and additional assessment 

in terms of druggability, safety and brain tissue-specific 

expression. 

 

Strategy 1: Expression and survival analysis of 

positively-correlated with age genes 

 

The first strategy involved finding targets that met the 

criteria of being positively correlated with age and 

which high expression is significantly associated with a 

worse survival rate. This approach assumed that 

inhibiting such targets could bring benefits to GBM 

patients. We were able to find a set of 16 genes that 

 

 
 

Figure 1. Overall workflow of the study. Current pipeline is designed to prioritize dual-purpose therapeutic targets by combining several 

data modalities following three distinct strategies of target identification. Potential target hypotheses are ranked using AI-driven scores 
obtained via PandaOmics TargetID engine and information regarding the combined expression, druggability, safety, novelty and accessibility 
by small molecules. 
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satisfy both requirements and passed those to the 

PandaOmics TargetID engine. After manual curation of 

the results, we nominated CNGA3 as a putative target. 

Although CNGA3 did not top the list of the most 

promising targets based on PandaOmics predictions 

(Figure 4A), it was highly ranked by the Expression score 

(score value 0.91). In fact, CNGA3 gene was significantly 

upregulated in 16 out of 26 expression datasets and had a 

positive combined log fold change of 1.47 (FDR corrected 

p-value < 0.01, Supplementary Figure 1A). Additional 

arguments in favor of CNGA3 choice were its high 

accessibility by small molecules, specific expression in 

brain tissue and absence of the safety red flags. 

 

Strategy 2: Expression and survival analysis of 

negatively-correlated with age genes 

 

The second strategy represented an inverted approach: 

we sought genes that were negatively correlated with 

age and whose low expression was associated with bad 

prognosis, in an attempt to find a target whose 

activation could benefit GBM patients. A set of 20  

 

 
 

Figure 2. Correlation analysis. UpSet plots [30] representing the overlap of positively (A) and negatively (B) correlated with age genes 
across 12 transcriptomic datasets. The combination matrix identifies the intersections, while the bars on top represent the size of each 
intersection divided into significantly and not significantly (NS) correlated genes. Bars on the left depict the overall amount of correlated 
genes in each dataset. 

 

 
 

Figure 3. Survival analysis results. Each of the genes that is significantly correlated with age (n = 38) was tested for significant or not 

significant difference in survival rates with respect to the high and low expression levels in young, middle-aged and senior patient cohorts 
from TCGA-GBM dataset.  
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genes matching these conditions was analyzed and 

GLUD1 was nominated as a putative target since it had 

the highest rank in PandaOmics TargetID analysis (Figure 

4B). Additionally, we observed significantly decreased 

GLUD1 levels in 15 GBM datasets which were reflected 

in a negative combined log fold change of -0.68 (FDR 

corrected p-value < 0.01, Supplementary Figure 1B). 

 

Strategy 3: Intersecting age-correlated GBM genes 

with potential aging targets 

 

The third strategy was to investigate whether the age-

correlated genes from GBM patients identified in this 

study are related to aging in general. For this, we 

intersected our set of 130 age-correlated genes with the 

list of previously identified dual-purpose disease and 

age-associated targets associated with the Hallmarks of 

aging predicted by Pun et al. [12]. The authors 

performed a comprehensive analysis using a variety of 

target identification and prioritization techniques 

offered by the PandaOmics platform and proposed a list 

of promising aging-associated targets that may be used 

for drug discovery. Five genes were identified in the 

intersection and all of them were identified as 

negatively correlated with age in GBM patients, namely 

MTHFD2, DDX21, KDM7A, GALNT1 and SIRT1. The 

latter was nominated as a putative target following 

PandaOmics TargetID ranking (Figure 4C).  

 

DISCUSSION 
 

Recent advances in the application of AI-powered 

algorithms in the target discovery field has proven to be a 

robust and viable method, which was demonstrated in 

several recent studies focused on cancer and aging 

research [12, 31]. However, the search for dual-purpose 

therapeutic targets implicated in both conditions 

simultaneously is still a challenge. Below we give the 

assessment of the targets revealed by a multi-angled AI-

guided approach of target identification based on the 

previously published data. 

 
CNGA3 

 

Among genes that are significantly positively correlated 

with age in GBM patients and whose high expression is 

associated with worse survival, we selected CNGA3. 

 

CNGA3 codes for an ion channel, which belongs to the 

cyclic nucleotide-gated cation channel family. CNGA3 

is involved in visual signal transduction and is essential 

for the generation of light-evoked electrical responses in 

photosensitive cones, located in the retina of the eye. 
 

Our results are consistent with the research of Pollak  

et al. who showed that high expression of CNGA3 was 

significantly associated with reduced median survival in 

GBM patients. By contrast, when the authors examined 

gene expression patterns in the Ivy Glioblastoma Atlas 

Project (Ivy GAP) database, and considered expression 

restricted to the central solid tumor region, high CNGA3 

was associated with increased, rather than decreased, 

survival. The authors suggest that this discrepancy may 

reflect the complexity of ion channel functions in GBM, 

as well as differences in sample composition between 

databases and bias introduced by restricting the Ivy 

GAP analysis to the central tumor region [32]. 

 

In another study [33], CNGA3 was mentioned among 

the genes whose overexpression was associated with 

worse GBM patients survival and provides a predictive 

value of nitrosoureas treatment resistance. 

 

In summary, CNGA3 may play a dual role through its 

effects on GBM development and progression as well as 

aging. Further investigation is needed to confirm our 

hypothesis and explore specific molecular mechanisms 

of CNGA3 involvement in both processes. 

 
GLUD1 

 

In the group of genes significantly negatively correlated 

with age in GBM patients and low expression is 

associated with bad prognosis, the GLUD1 gene had the 

highest rank in our PandaOmics TargetID analysis. 

 
GLUD1 encodes mitochondrial glutamate dehydrogenase 

1 - a mitochondrial matrix enzyme which catalyzes the 

conversion of L-glutamate into alpha-ketoglutarate. In 

the nervous tissue, GLUD1 is involved in healthy 

learning and memory creation by increasing the turnover 

of glutamate, an excitatory neurotransmitter. Distorted 

GLUD1 function plays a role in several psychiatric and 

neurological disorders [34]. 

 

Several studies focusing on glutamate metabolism 

changes during aging in the brain demonstrated that 

there is a gradual rise in extracellular glutamate in the 

brain and an increase in the sensitivity of certain 

neurons to the cytotoxic effects of glutamate during 

aging [35, 36]. The decline in neuronal function during 

aging may result from increases in extracellular 

glutamate, glutamate-induced neurotoxicity, and altered 

mitochondrial metabolism [37]. 

 

In another study, Franco et al. investigated the protein 

expression profile of the key regulators of 

glutaminolysis, including GLUD1, in a cohort of 

astrocytomas of different malignancy grades and non-

neoplastic brain samples. GLUD1 expression was 

shown to be downregulated in GBM, and upregulated in 

lower grades of astrocytoma (AGII-AGIII). Significant 
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Figure 4. PandaOmics TargetID scoring approach for potential targets selected according to strategy 1 (A), strategy 2 (B) and strategy  
3 (C). Target hypotheses are ranked according to the scores obtained from different AI-powered predictive models: omics-, text-, key opinion 
leaders (KOLs) and funding- based. For each target additional information on tissue specific expression, accessibility by small molecules and 
antibodies, safety, novelty, structure availability, development level and protein family are provided. For a detailed description of all scores 
and filters see Materials and Methods section, as well as the user manual at https://insilico.com/pandaomics/help.  

https://insilico.com/pandaomics/help
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low GLUD1 protein levels were observed in the 

mesenchymal subtype of GBM. The authors suggested 

that the downregulation of GLUD1 in GBM increased 

the source of glutamate for glutathione synthesis and 

enhanced tumor cell fitness due to increased anti-

oxidative capacity [38]. 

 

SIRT1 

 
SIRT1 is among the most studied genes in aging 

research. SIRT1 was identified as a target connected to 

all hallmarks of aging, due to its wide range of 

interactions with aging-associated pathways [12]. 

 
SIRT1 encodes the NAD-dependent protein deacetylase 

sirtuin-1 that links transcriptional regulation directly  

to intracellular energetics and participates in the 

coordination of several separated cellular functions such 

as the cell cycle, response to DNA damage, metabolism, 

apoptosis and autophagy. 

 

The significance of the sirtuin pathways in longevity 

has been extensively reported [39]. SIRT1 activity was 

found to be attenuated in the cerebellum during aging, 

leading to alterations of the epigenetic landscape, 

thereby changing gene expression that interferes with 

motor function [40]. In addition, activation of SIRT1 

suppressed aging by ensuring telomere integrity [41], 

antagonizing oxidative stress [42], regulating nutrient 

signaling by inhibiting the mTOR pathway [43] and 

mitochondrial unfolded protein response [44]. 

 

SIRT1 is extensively studied in the context of cancer as 

well. Accumulating evidence has recently revealed that 

SIRT1 may act as a tumor suppressor in several types of 

cancer, thus, activating SIRT1 would represent a 

possible therapeutic strategy. It was recently identified 

as a key prognostic factor in brain cancer. A small-

molecule activator of SIRT1 showed a therapeutic 

potential on GBM in vitro and in vivo by inducing 

autophagy and mitophagy [45]. 

 

CONCLUSIONS 
 

Our study provides an example of a pipeline 

development intended to identify dual-purpose 

therapeutic targets. This is achieved by using the synergy 

of several data modalities and in silico-based approaches. 

In this regard, the application of AI-powered algorithms, 

such as PandaOmics, may accelerate subsequent gene 

target discovery not only for GBM but for a broader 

range of age-associated diseases. Through the three 

selected strategies as well as combining the GBM 

correlation analysis with survival analysis and AI-

proposed GBM targets, we identified three potential 

therapeutic targets: CNGA3, GLUD1, and SIRT1, which 

we propose to investigate in further studies. The next 

steps towards implementation of the identified 

therapeutic targets into the clinic would involve a 

generation of small molecules and their optimisation with 

further validation and preclinical testing to determine 

their safety, efficacy, and potential side effects.  

 

MATERIALS AND METHODS 
 

Data collection 
 

Gene expression data originally from Gene Expression 

Omnibus, ArrayExpress, and PRIDE were collected in 

PandaOmics, an AI-driven target discovery platform. 

Twenty-five transcriptomics (GSE86202, GSE151352, 

GSE59612, GSE68086, GSE156902, GDC-TCGA-

GBM, GSE103227, GSE90886, GSE22866, GSE50161, 

GSE4290, GSE108474, GSE10878, GSE90598, E-

MTAB-3892, GSE83130, GSE68848, GSE153746, 

GSE42656, GSE7696, GSE119102, GSE65626, 

GSE72269, GSE13276, GSE15824), 3 methylations 

(GSE60274, TCGA-GBM, GSE123678) and 1 

proteomics (PXD017943) datasets with a total number 

of 2,627 samples (case = 2,027, control = 600) were 

analyzed. All omics datasets were pre-processed 

according to the PandaOmics pipeline, which 

automatically defines data type and normalizes the data 

for further analysis. Upper-quartile normalization and 

log2-transformation were applied for all transcriptomics 

datasets used. All named datasets were further used for 

target prioritization and hit identification using 

PandaOmics TargetID approach (see “PandaOmics 

TargetID platform for target prioritization” section). 

Collected transcriptomics and proteomics datasets were 

used for differential expression analysis (see differential 

expression analysis and combined log-fold changes 

section). Finally, 12 out of 25 transcriptomics datasets 

(GSE156902, GSE68086, GSE83130, GSE50161, 

GSE151352, GDC-TCGA-GBM, GSE7696, GSE4412, 

GSE83294, E-MTAB-4455, GSE131837, GSE83300) 

were used to conduct a correlation analysis (see age-

correlation analysis section) as age metadata were 

available only for these datasets.  

 

Differential expression analysis and combined log-

fold changes 
 

Differential expression analysis was performed in 

PandaOmics using the limma R package. Each dataset has 

been processed according to limma standard protocols. 

Obtained gene-wise p-values were corrected by the 

Benjamini-Hochberg procedure. Combined log-fold 

changes (LFC) between transcriptomics and proteomics 

datasets were calculated in the meta-analysis section of 

PandaOmics. The meta-analysis section in PandaOmics 

enabled us to calculate combined LFC values and Q-
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values across all datasets used for the analysis, using 

minmax normalization for LFC values and Stouffer’s 

method combining p-values with further FDR correction. 

 

Age-expression correlation analysis 
 

Normalized gene expression matrixes along with patients’ 

age metadata were collected from PandaOmics for 12 

transcriptomics datasets. Spearman’s rank correlation 

coefficients between gene expression and age, as well as 

corresponding p-values, were calculated for each gene 

separately for each dataset using only case samples. Lists 

with positively and negatively correlated genes were 

analyzed and plotted independently using the upsetplot 
python package with min_degree = 11. In order to 

calculate the significance of the correlation coefficients 

across all datasets, Stouffer’s method was applied for 

previously obtained Spearman’s correlation p-values. 

Finally, 2 lists of genes significantly correlated with age 

(Stouffer’s combined p-value < 0.05) were obtained.  

 

Survival analysis 

 

Survival analysis was performed for the genes that were 

significantly correlated with age, obtained from 

PandaOmics GDC-TCGA-GBM dataset. Patients were 

divided into three cohorts: young (< 45 years), middle-

aged (from 45 to 60 years) and senior (> 60 years) and 

for each cohort survival analysis was performed. Briefly, 

survival analysis was performed using the Kaplan-

MeierFitter function from lifelines python package. The 

Median function was applied to normalize gene 

expression data and the median value for each gene of 

interest was used as a threshold for patients’ 

stratification. Patients with the expression value of the 

gene of interest ≥ or < than the median value were 

considered as patients with “high” or “low” expression of 

a particular gene, respectively. Log-rank test was used to 

calculate the statistical significance. The probability of 

survival outcome for each cohort was plotted on a 

heatmap using seaborn python package and colored as 

red if there was a significant difference in survival 

between patients with high and low expression of a gene, 

and colored blue if there was no significant difference.  

 

PandaOmics TargetID platform for target 

prioritization 

 

The in silico-based PandaOmics TargetID approach was 

performed on all collected omics datasets, including 

transcriptomics, methylomics and proteomics, to prioritize 

and identify the most promising GBM therapeutic targets 

from the lists of genes obtained through different 
strategies. This approach is based on combining multiple 

ranking scores derived from text and omics data. Text-

based scores represent how strongly a particular target is 

associated with a disease based on sources like scientific 

publications, grants, patents, clinical trials and key 

opinion leaders. Omics scores are based on differential 

expression, GWAS studies, somatic and germline 

mutations, interactome topology, signaling pathway 

perturbation analysis algorithms, knockout/overexpression 

experiments and more omics-data sources and, thus, 

represent the target-disease association based on 

molecular connections between the proposed target and 

disease of interest. Regardless of the methodology, all 

models output ranked lists of target hypotheses. The 

combination of described scores leads to a ranked list of 

potential targets for a disease that can be filtered out based 

on their novelty, safety, accessibility by molecule or 

antibodies and availability of PDB structure. Detailed 

descriptions of all scores and filters can be found in 

PandaOmics’ User Manual (https://insilico.com/ 

pandaomics/help). For the current study, lists with 

potential targets derived from strategies 1, 2 and 3 were 

combined and passed into TargetID. To identify the most 

promising hits, additional filtering was performed on 

PandaOmics TargetID page. After filtering, the list with 

the most promising hits was obtained. 

 

Abbreviations 
 

AI: artificial intelligence; CNGA3: cyclic nucleotide 

gated channel subunit alpha 3; EGFR: epidermal growth 

factor receptor; Ivy GAP: Ivy Glioblastoma Atlas 

Project; IDH1: isocitrate dehydrogenase; KOLs: key 

opinion leaders; Log FC: logarithmic fold-changes; 

GBM: glioblastoma multiforme; GLUD1: glutamate 

dehydrogenase 1; SIRT1: sirtuin 1; TTF: tumor-treating 

fields. 
 

AUTHOR CONTRIBUTIONS 
 

AO, ZH and CR provided conceptual design, performed 

data analysis, result interpretation and manuscript 

writing. AS prepared data curation, methodology, and 

result interpretation. AV performed statistical data 

analysis and visualization. MD, SK, and OS were 

responsible for the omics data aggregation and curation. 

FP, GL and HL reviewed the manuscript. IO performed 

methodology, software and manuscript writing. MK 

performed data analysis, participated in result 

interpretation and visualization, overall project 

administration and manuscript writing. AA and AZ 

provided conceptualization, reviewed the manuscript, 

provided resources, and supervised the project. All 

authors read and approved the final manuscript. 
 

CONFLICTS OF INTEREST 
 

AS, AV, MD, SK, OS, FP, GL, HL, IO, AA, MK and 

AZ are affiliated with Insilico Medicine, a commercial 

https://insilico.com/pandaomics/help
https://insilico.com/pandaomics/help


www.aging-us.com 2871 AGING 

company developing AI solutions for aging research, 

drug discovery, and longevity medicine. 

 

FUNDING 
 

This study received no specific grant from any funding 

agency in the public, commercial, or not-for-profit 

sectors. 

 

REFERENCES 
 
1. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, 

Lightner DD, Barnholtz-Sloan JS, Villano JL. 
Epidemiologic and molecular prognostic review of 
glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014; 
23:1985–96. 

 https://doi.org/10.1158/1055-9965.EPI-14-0275 
PMID:25053711 

2. Kleihues P, Ohgaki H. Primary and secondary 
glioblastomas: from concept to clinical diagnosis. 
Neuro Oncol. 1999; 1:44–51. 

 https://doi.org/10.1093/neuonc/1.1.44 
PMID:11550301 

3. Li Z, Wang Y, Yu J, Guo Y, Zhang Q. Age groups related 
glioblastoma study based on radiomics approach. 
Comput Assist Surg (Abingdon). 2017; 22:18–25. 

 https://doi.org/10.1080/24699322.2017.1378722 
PMID:28914549 

4. Li R, Li H, Yan W, Yang P, Bao Z, Zhang C, Jiang T, You Y. 
Genetic and clinical characteristics of primary and 
secondary glioblastoma is associated with differential 
molecular subtype distribution. Oncotarget. 2015; 
6:7318–24. 

 https://doi.org/10.18632/oncotarget.3440 
PMID:25821160 

5. Fernandes C, Costa A, Osório L, Lago RC, Linhares P, 
Carvalho B, Caeiro C. Current Standards of Care in 
Glioblastoma Therapy. In: De Vleeschouwer S, editor. 
Glioblastoma. Brisbane (AU): Codon Publications; 
2017. Chapter 11. 

 PMID:29251860 

6. Rominiyi O, Vanderlinden A, Clenton SJ, Bridgewater C, 
Al-Tamimi Y, Collis SJ. Tumour treating fields therapy 
for glioblastoma: current advances and future 
directions. Br J Cancer. 2021; 124:697–709. 

 https://doi.org/10.1038/s41416-020-01136-5 
PMID:33144698 

7. Huang J, Liu F, Liu Z, Tang H, Wu H, Gong Q, Chen J. 
Immune Checkpoint in Glioblastoma: Promising and 
Challenging. Front Pharmacol. 2017; 8:242. 

 https://doi.org/10.3389/fphar.2017.00242 
PMID:28536525 

8. Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. 
A systematic review. J Clin Neurosci. 2018; 54:7–13. 

 https://doi.org/10.1016/j.jocn.2018.05.002 
PMID:29801989 

9. Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, 
Akbari H, Rathore S, Ha SM, Zhang L, Ferguson CJ, 
Dahiya S, Bi WL, Reardon DA, et al. Epidermal Growth 
Factor Receptor Extracellular Domain Mutations in 
Glioblastoma Present Opportunities for Clinical 
Imaging and Therapeutic Development. Cancer Cell. 
2018; 34:163–77.e7. 

 https://doi.org/10.1016/j.ccell.2018.06.006 
PMID:29990498 

10. Karpel-Massler G, Nguyen TTT, Shang E, Siegelin MD. 
Novel IDH1-Targeted Glioma Therapies. CNS Drugs. 
2019; 33:1155–66. 

 https://doi.org/10.1007/s40263-019-00684-6 
PMID:31768950 

11. Saraf R, Agah S, Datta A, Jiang X. Drug target ranking 
for glioblastoma multiforme. BMC Biomed Eng.  
2021; 3:7. 

 https://doi.org/10.1186/s42490-021-00052-w 
PMID:33902757 

12. Pun FW, Leung GHD, Leung HW, Liu BHM, Long X, 
Ozerov IV, Wang J, Ren F, Aliper A, Izumchenko E, 
Moskalev A, de Magalhães JP, Zhavoronkov A. 
Hallmarks of aging-based dual-purpose disease and 
age-associated targets predicted using PandaOmics AI-
powered discovery engine. Aging (Albany NY). 2022; 
14:2475–506. 

 https://doi.org/10.18632/aging.203960 
PMID:35347083 

13. Ozerov IV, Lezhnina KV, Izumchenko E, Artemov AV, 
Medintsev S, Vanhaelen Q, Aliper A, Vijg J, Osipov AN, 
Labat I, West MD, Buzdin A, Cantor CR, et al. In silico 
Pathway Activation Network Decomposition Analysis 
(iPANDA) as a method for biomarker development. Nat 
Commun. 2016; 7:13427. 

 https://doi.org/10.1038/ncomms13427 
PMID:27848968 

14. Broner EC, Trujillo JA, Korzinkin M, Subbannayya T, 
Agrawal N, Ozerov IV, Zhavoronkov A, Rooper L, Kotlov 
N, Shen L, Pearson AT, Rosenberg AJ, Savage PA, et al. 
Doublecortin-Like Kinase 1 (DCLK1) Is a Novel NOTCH 
Pathway Signaling Regulator in Head and Neck 
Squamous Cell Carcinoma. Front Oncol. 2021; 
11:677051. 

 https://doi.org/10.3389/fonc.2021.677051 
PMID:34336664 

15. Stamatas GN, Wu J, Pappas A, Mirmirani P, McCormick 
TS, Cooper KD, Consolo M, Schastnaya J, Ozerov IV, 
Aliper A, Zhavoronkov A. An analysis of gene expression 
data involving examination of signaling pathways 

https://doi.org/10.1158/1055-9965.EPI-14-0275
https://pubmed.ncbi.nlm.nih.gov/25053711
https://doi.org/10.1093/neuonc/1.1.44
https://pubmed.ncbi.nlm.nih.gov/11550301
https://doi.org/10.1080/24699322.2017.1378722
https://pubmed.ncbi.nlm.nih.gov/28914549
https://doi.org/10.18632/oncotarget.3440
https://pubmed.ncbi.nlm.nih.gov/25821160
https://pubmed.ncbi.nlm.nih.gov/29251860
https://doi.org/10.1038/s41416-020-01136-5
https://pubmed.ncbi.nlm.nih.gov/33144698
https://doi.org/10.3389/fphar.2017.00242
https://pubmed.ncbi.nlm.nih.gov/28536525
https://doi.org/10.1016/j.jocn.2018.05.002
https://pubmed.ncbi.nlm.nih.gov/29801989
https://doi.org/10.1016/j.ccell.2018.06.006
https://pubmed.ncbi.nlm.nih.gov/29990498
https://doi.org/10.1007/s40263-019-00684-6
https://pubmed.ncbi.nlm.nih.gov/31768950
https://doi.org/10.1186/s42490-021-00052-w
https://pubmed.ncbi.nlm.nih.gov/33902757
https://doi.org/10.18632/aging.203960
https://pubmed.ncbi.nlm.nih.gov/35347083
https://doi.org/10.1038/ncomms13427
https://pubmed.ncbi.nlm.nih.gov/27848968
https://doi.org/10.3389/fonc.2021.677051
https://pubmed.ncbi.nlm.nih.gov/34336664


www.aging-us.com 2872 AGING 

activation reveals new insights into the mechanism of 
action of minoxidil topical foam in men with 
androgenetic alopecia. Cell Cycle. 2017; 16:1578–84. 

 https://doi.org/10.1080/15384101.2017.1327492 
PMID:28594262 

16. Pasteuning-Vuhman S, Boertje-van der Meulen JW, van 
Putten M, Overzier M, Ten Dijke P, Kiełbasa SM, 
Arindrarto W, Wolterbeek R, Lezhnina KV, Ozerov IV, 
Aliper AM, Hoogaars WM, Aartsma-Rus A, Loomans CJ. 
New function of the myostatin/activin type I receptor 
(ALK4) as a mediator of muscle atrophy and muscle 
regeneration. FASEB J. 2017; 31:238–55. 

 https://doi.org/10.1096/fj.201600675R 
PMID:27733450 

17. Solanki HS, Raja R, Zhavoronkov A, Ozerov IV, Artemov 
AV, Advani J, Radhakrishnan A, Babu N, Puttamallesh 
VN, Syed N, Nanjappa V, Subbannayya T, 
Sahasrabuddhe NA, et al. Correction: Targeting focal 
adhesion kinase overcomes erlotinib resistance in 
smoke induced lung cancer by altering 
phosphorylation of epidermal growth factor receptor. 
Oncoscience. 2021; 8:108–9. 

 https://doi.org/10.18632/oncoscience.546 
PMID:34589558 

18. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, 
Zhavoronkov A. Deep Learning Applications for 
Predicting Pharmacological Properties of Drugs and 
Drug Repurposing Using Transcriptomic Data. Mol 
Pharm. 2016; 13:2524–30. 

 https://doi.org/10.1021/acs.molpharmaceut.6b00248 
PMID:27200455 

19. Shayakhmetov R, Kuznetsov M, Zhebrak A, Kadurin A, 
Nikolenko S, Aliper A, Polykovskiy D. Molecular 
Generation for Desired Transcriptome Changes With 
Adversarial Autoencoders. Front Pharmacol. 2020; 
11:269. 

 https://doi.org/10.3389/fphar.2020.00269 
PMID:32362822 

20. Moore JH, Raghavachari N, and Workshop Speakers. 
Artificial Intelligence Based Approaches to Identify 
Molecular Determinants of Exceptional Health and Life 
Span-An Interdisciplinary Workshop at the National 
Institute on Aging. Front Artif Intell. 2019; 2:12. 

 https://doi.org/10.3389/frai.2019.00012 
PMID:33733101 

21. Kadurin A, Nikolenko S, Khrabrov K, Aliper A, 
Zhavoronkov A. druGAN: An Advanced Generative 
Adversarial Autoencoder Model for de Novo 
Generation of New Molecules with Desired 
Molecular Properties in Silico. Mol Pharm. 2017; 
14:3098–104. 

 https://doi.org/10.1021/acs.molpharmaceut.7b00346 
PMID:28703000 

22. Mamoshina P, Vieira A, Putin E, Zhavoronkov A. 
Applications of Deep Learning in Biomedicine. Mol 
Pharm. 2016; 13:1445–54. 

 https://doi.org/10.1021/acs.molpharmaceut.5b00982 
PMID:27007977 

23. Putin E, Asadulaev A, Ivanenkov Y, Aladinskiy V, 
Sanchez-Lengeling B, Aspuru-Guzik A, Zhavoronkov A. 
Reinforced Adversarial Neural Computer for de Novo 
Molecular Design. J Chem Inf Model. 2018;  
58:1194–204. 

 https://doi.org/10.1021/acs.jcim.7b00690 
PMID:29762023 

24. Polykovskiy D, Zhebrak A, Vetrov D, Ivanenkov Y, 
Aladinskiy V, Mamoshina P, Bozdaganyan M, Aliper A, 
Zhavoronkov A, Kadurin A. Entangled Conditional 
Adversarial Autoencoder for de Novo Drug Discovery. 
Mol Pharm. 2018; 15:4398–405. 

 https://doi.org/10.1021/acs.molpharmaceut.8b00839 
PMID:30180591 

25. Zhavoronkov A, Ivanenkov YA, Aliper A, Veselov MS, 
Aladinskiy VA, Aladinskaya AV, Terentiev VA, 
Polykovskiy DA, Kuznetsov MD, Asadulaev A, Volkov Y, 
Zholus A, Shayakhmetov RR, et al. Deep learning 
enables rapid identification of potent DDR1 kinase 
inhibitors. Nat Biotechnol. 2019; 37:1038–40. 

 https://doi.org/10.1038/s41587-019-0224-x 
PMID:31477924 

26. Ren F, Ding X, Zheng M, Korzinkin M, Cai X, Zhu W, 
Mantsyzov A, Aliper A, Aladinskiy V, Cao Z, Kong S, 
Long X, Man Liu BH, et al. AlphaFold accelerates 
artificial intelligence powered drug discovery: efficient 
discovery of a novel CDK20 small molecule inhibitor. 
Chem Sci. 2023; 14:1443–52. 

 https://doi.org/10.1039/d2sc05709c PMID:36794205 

27. Pomatto LCD, Davies KJA. The role of declining 
adaptive homeostasis in ageing. J Physiol. 2017; 
595:7275–309. 

 https://doi.org/10.1113/JP275072 PMID:29028112 

28. Kim M, Ladomersky E, Mozny A, Kocherginsky M, 
O’Shea K, Reinstein ZZ, Zhai L, Bell A, Lauing KL, Bollu L, 
Rabin E, Dixit K, Kumthekar P, et al. Glioblastoma as an 
age-related neurological disorder in adults. Neurooncol 
Adv. 2021; 3:vdab125. 

 https://doi.org/10.1093/noajnl/vdab125 
PMID:34647022 

29. Brennan CW, Verhaak RGW, McKenna A, Campos B, 
Noushmehr H, Salama SR, Zheng S, Chakravarty D, 
Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu 
CJ, et al, and TCGA Research Network. The somatic 
genomic landscape of glioblastoma. Cell. 2013; 
155:462–77. 

 https://doi.org/10.1016/j.cell.2013.09.034 
PMID:24120142 

https://doi.org/10.1080/15384101.2017.1327492
https://pubmed.ncbi.nlm.nih.gov/28594262
https://doi.org/10.1096/fj.201600675R
https://pubmed.ncbi.nlm.nih.gov/27733450
https://doi.org/10.18632/oncoscience.546
https://pubmed.ncbi.nlm.nih.gov/34589558
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://pubmed.ncbi.nlm.nih.gov/27200455
https://doi.org/10.3389/fphar.2020.00269
https://pubmed.ncbi.nlm.nih.gov/32362822
https://doi.org/10.3389/frai.2019.00012
https://pubmed.ncbi.nlm.nih.gov/33733101
https://doi.org/10.1021/acs.molpharmaceut.7b00346
https://pubmed.ncbi.nlm.nih.gov/28703000
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://pubmed.ncbi.nlm.nih.gov/27007977
https://doi.org/10.1021/acs.jcim.7b00690
https://pubmed.ncbi.nlm.nih.gov/29762023
https://doi.org/10.1021/acs.molpharmaceut.8b00839
https://pubmed.ncbi.nlm.nih.gov/30180591
https://doi.org/10.1038/s41587-019-0224-x
https://pubmed.ncbi.nlm.nih.gov/31477924
https://doi.org/10.1039/d2sc05709c
https://pubmed.ncbi.nlm.nih.gov/36794205
https://doi.org/10.1113/JP275072
https://pubmed.ncbi.nlm.nih.gov/29028112
https://doi.org/10.1093/noajnl/vdab125
https://pubmed.ncbi.nlm.nih.gov/34647022
https://doi.org/10.1016/j.cell.2013.09.034
https://pubmed.ncbi.nlm.nih.gov/24120142


www.aging-us.com 2873 AGING 

30. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. 
UpSet: Visualization of Intersecting Sets. IEEE Trans Vis 
Comput Graph. 2014; 20:1983–92. 

 https://doi.org/10.1109/TVCG.2014.2346248 
PMID:26356912 

31. Mkrtchyan GV, Veviorskiy A, Izumchenko E, 
Shneyderman A, Pun FW, Ozerov IV, Aliper A, 
Zhavoronkov A, Scheibye-Knudsen M. High-confidence 
cancer patient stratification through multiomics 
investigation of DNA repair disorders. Cell Death Dis. 
2022; 13:999. 

 https://doi.org/10.1038/s41419-022-05437-w 
PMID:36435816 

32. Pollak J, Rai KG, Funk CC, Arora S, Lee E, Zhu J, Price 
ND, Paddison PJ, Ramirez JM, Rostomily RC. Ion 
channel expression patterns in glioblastoma stem cells 
with functional and therapeutic implications for 
malignancy. PLoS One. 2017; 12:e0172884. 

 https://doi.org/10.1371/journal.pone.0172884 
PMID:28264064 

33. Menyhárt O, Fekete JT, Győrffy B. Gene expression-
based biomarkers designating glioblastomas resistant 
to multiple treatment strategies. Carcinogenesis. 2021; 
42:804–13. 

 https://doi.org/10.1093/carcin/bgab024 
PMID:33754151 

34. Lander SS, Chornyy S, Safory H, Gross A, Wolosker H, 
Gaisler-Salomon I. Glutamate dehydrogenase 
deficiency disrupts glutamate homeostasis in 
hippocampus and prefrontal cortex and impairs 
recognition memory. Genes Brain Behav. 2020; 
19:e12636. 

 https://doi.org/10.1111/gbb.12636  
PMID:31898404 

35. Nickell J, Pomerleau F, Allen J, Gerhardt GA. Age-
related changes in the dynamics of potassium-evoked 
L-glutamate release in the striatum of Fischer 344 rats. 
J Neural Transm (Vienna). 2005; 112:87–96. 

 https://doi.org/10.1007/s00702-004-0151-x 
PMID:15599607 

36. Brewer GJ. Neuronal plasticity and stressor toxicity 
during aging. Exp Gerontol. 2000; 35:1165–83. 

 https://doi.org/10.1016/s0531-5565(00)00121-2 
PMID:11113600 

37. Choi IY, Lee P, Wang WT, Hui D, Wang X, Brooks WM, 
Michaelis EK. Metabolism changes during aging in the 
hippocampus and striatum of glud1 (glutamate 
dehydrogenase 1) transgenic mice. Neurochem Res. 
2014; 39:446–55. 

 https://doi.org/10.1007/s11064-014-1239-9 
PMID:24442550 

38. Moreira Franco YE, Alves MJ, Uno M, Moretti IF, 
Trombetta-Lima M, de Siqueira Santos S, Dos Santos 
AF, Arini GS, Baptista MS, Lerario AM, Oba-Shinjo SM, 
Marie SK. Glutaminolysis dynamics during astrocytoma 
progression correlates with tumor aggressiveness. 
Cancer Metab. 2021; 9:18. 

 https://doi.org/10.1186/s40170-021-00255-8 
PMID:33910646 

39. Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, 
Zhavoronkov A. Genetics and epigenetics of aging and 
longevity. Cell Cycle. 2014; 13:1063–77. 

 https://doi.org/10.4161/cc.28433  
PMID:24603410 

40. Marton O, Koltai E, Nyakas C, Bakonyi T, Zenteno-Savin 
T, Kumagai S, Goto S, Radak Z. Aging and exercise 
affect the level of protein acetylation and SIRT1 activity 
in cerebellum of male rats. Biogerontology. 2010; 
11:679–86. 

 https://doi.org/10.1007/s10522-010-9279-2 
PMID:20467811 

41. Osum M, Serakinci N. Impact of circadian disruption on 
health; SIRT1 and Telomeres. DNA Repair (Amst). 2020; 
96:102993. 

 https://doi.org/10.1016/j.dnarep.2020.102993 
PMID:33038659 

42. Meng T, Qin W, Liu B. SIRT1 Antagonizes Oxidative 
Stress in Diabetic Vascular Complication. Front 
Endocrinol (Lausanne). 2020; 11:568861. 

 https://doi.org/10.3389/fendo.2020.568861 
PMID:33304318 

43. Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively 
regulates the mammalian target of rapamycin. PLoS 
One. 2010; 5:e9199. 

 https://doi.org/10.1371/journal.pone.0009199 
PMID:20169165 

44. Lin YF, Sam J, Evans T. Sirt1 promotes tissue 
regeneration in zebrafish through regulating the 
mitochondrial unfolded protein response. iScience. 
2021; 24:103118. 

 https://doi.org/10.1016/j.isci.2021.103118 
PMID:34622167 

45. Yao ZQ, Zhang X, Zhen Y, He XY, Zhao S, Li XF, Yang B, 
Gao F, Guo FY, Fu L, Liu XZ, Duan CZ. A novel small-
molecule activator of Sirtuin-1 induces autophagic cell 
death/mitophagy as a potential therapeutic strategy in 
glioblastoma. Cell Death Dis. 2018; 9:767. 

 https://doi.org/10.1038/s41419-018-0799-z 
PMID:29991742 

  

https://doi.org/10.1109/TVCG.2014.2346248
https://pubmed.ncbi.nlm.nih.gov/26356912
https://doi.org/10.1038/s41419-022-05437-w
https://pubmed.ncbi.nlm.nih.gov/36435816
https://doi.org/10.1371/journal.pone.0172884
https://pubmed.ncbi.nlm.nih.gov/28264064
https://doi.org/10.1093/carcin/bgab024
https://pubmed.ncbi.nlm.nih.gov/33754151
https://doi.org/10.1111/gbb.12636
https://pubmed.ncbi.nlm.nih.gov/31898404
https://doi.org/10.1007/s00702-004-0151-x
https://pubmed.ncbi.nlm.nih.gov/15599607
https://doi.org/10.1016/s0531-5565(00)00121-2
https://pubmed.ncbi.nlm.nih.gov/11113600
https://doi.org/10.1007/s11064-014-1239-9
https://pubmed.ncbi.nlm.nih.gov/24442550
https://doi.org/10.1186/s40170-021-00255-8
https://pubmed.ncbi.nlm.nih.gov/33910646
https://doi.org/10.4161/cc.28433
https://pubmed.ncbi.nlm.nih.gov/24603410
https://doi.org/10.1007/s10522-010-9279-2
https://pubmed.ncbi.nlm.nih.gov/20467811
https://doi.org/10.1016/j.dnarep.2020.102993
https://pubmed.ncbi.nlm.nih.gov/33038659
https://doi.org/10.3389/fendo.2020.568861
https://pubmed.ncbi.nlm.nih.gov/33304318
https://doi.org/10.1371/journal.pone.0009199
https://pubmed.ncbi.nlm.nih.gov/20169165
https://doi.org/10.1016/j.isci.2021.103118
https://pubmed.ncbi.nlm.nih.gov/34622167
https://doi.org/10.1038/s41419-018-0799-z
https://pubmed.ncbi.nlm.nih.gov/29991742


www.aging-us.com 2874 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Combined expression analysis for the genes obtained according to strategy 1 (A), strategy 2 (B) and strategy  
3 (C). Combined logarithmic fold-changes (Log FC) and Q-values across all gene expression datasets are obtained using minmax normalization 
for Log FC values and Stouffer’s method combining p-values with further FDR correction. Significant combined Log FC values represent both 
magnitude and direction of gene expression changes between disease and control across multiple datasets.  
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Supplementary Tables 
 

Supplementary Table 1. Glioblastoma multiforme datasets used for PandaOmics analysis. 
Dataset ID Type Year Organism Tissue Total samples Cases Controls 

TCGA-GBM methylation 2015 Homo sapiens brain 155 153 2 

GSE60274 methylation 2014 Homo sapiens brain 77 68 5 

GSE123678 methylation 2018 Homo sapiens brain 78 59 8 

GSE83130 microarray 2016 Homo sapiens brain 701 530 20 

GSE7696 microarray 2007 Homo sapiens brain 84 80 4 

GSE42656 microarray 2013 Homo sapiens brain 73 5 16 

E-MTAB-3892 microarray 2016 Homo sapiens brain 179 11 9 

GSE15824 microarray 2011 Homo sapiens brain 45 15 2 

GSE90598 microarray 2017 Homo sapiens brain 25 16 3 

GSE10878 microarray 2008 Homo sapiens brain 23 19 4 

GSE108474 microarray 2018 Homo sapiens brain 550 228 28 

GSE68848 microarray 2015 Homo sapiens brain 580 228 28 

GSE4290 microarray 2006 Homo sapiens brain 180 77 23 

GSE50161 microarray 2013 Homo sapiens brain 130 34 13 

GSE22866 microarray 2011 Homo sapiens brain 46 40 6 

GSE90886 microarray 2016 Homo sapiens brain 18 9 9 

GSE13276 microarray 2009 Homo sapiens brain 15 5 7 

GSE65626 microarray 2015 Homo sapiens brain 12 3 3 

GSE103227 microarray 2017 Homo sapiens brain 10 5 5 

GSE72269 microarray 2015 Homo sapiens brain 9 4 2 

TCGA-GBM RNA-seq 2015 Homo sapiens brain 173 166 5 

GSE59612 RNA-seq 2014 Homo sapiens brain 92 39 17 

GSE151352 RNA-seq 2020 Homo sapiens brain 24 12 12 

GSE153746 RNA-seq 2020 Homo sapiens brain 21 6 3 

GSE86202 RNA-seq 2016 Homo sapiens brain 6 3 3 

GSE119102 RNA-seq 2018 Homo sapiens brain 6 4 2 

GSE156902 RNA-seq 2020 Homo sapiens blood 600 156 252 

GSE68086 RNA-seq 2015 Homo sapiens blood 285 40 55 

PXD017943 Proteomics 2020 Homo sapiens brain 66 12 54 
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Supplementary Table 2. Glioblastoma multiforme datasets used for correlation analysis. 

Dataset ID Type Year Organism Tissue 
Total 

samples 
Cases Controls 

Cases 

with age 

Controls 

with age 

Age range 

cases 

GSE83130 microarray 2016 
Homo 

sapiens 
brain 701 530 20 196 0 7-89 

GSE7696 microarray 2007 
Homo 

sapiens 
brain 84 80 4 80 0 26-70 

GSE4412 microarray 2006 
Homo 

sapiens 
brain 170 59 0 59 0 18-82 

GSE83294 microarray 2016 
Homo 

sapiens 
brain 170 59 0 59 0 18-82 

E-MTAB-

4455 
microarray 2017 

Homo 

sapiens 
brain 52 52 0 52 0 18-72 

GSE131837 microarray 2019 
Homo 

sapiens 
brain 52 52 0 52 0 11-75 

GSE83300 microarray 2016 
Homo 

sapiens 
brain 50 50 0 50 0 18-68 

GSE50161 microarray 2013 
Homo 

sapiens 
brain 130 34 13 23 13 3-73 

TCGA-GBM RNA-seq 2015 
Homo 

sapiens 
brain 173 166 5 165 0 21-89 

GSE151352 RNA-seq 2020 
Homo 

sapiens 
brain 24 12 12 12 12 17-73 

GSE156902 RNA-seq 2020 
Homo 

sapiens 
blood 600 156 252 151 248 21-79 

GSE68086 RNA-seq 2015 
Homo 

sapiens 
blood 285 40 55 39 46 11-84 

 

 


