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INTRODUCTION 
 

Cardiovascular diseases (CVDs) continue to be the 

leading cause of death worldwide, accounting for 

approximately 33% of global mortality in 2019 [1, 2]. 

In China, nearly 3.5 million people die each year 

from CVDs or CVD-related diseases, accounting for 

up to 45.0% of deaths in rural areas and 42.6% in 

cities [3, 4]. The most common type of CVDs was 

coronary artery disease (CAD), which is the clinical 

consequence of atherosclerotic plaque formation, 

resulting in reduced blood supply to the distal 

myocardium, i.e., ischemia [5, 6]. Despite this, CAD 

patients may go years without a diagnosis because 

there are only minor or non-identifiable symptoms in 

the early stages [7]. There is a high prevalence of 

asymptomatic CAD in diabetics, particularly those 

with type 2 diabetes mellitus [8]. CAD continues to 

be a substantial cause of poor life quality and 

increased healthcare expenditure and as a result, there 

is still an urgent unmet need to develop a new 

strategy for early detection of CAD, which is a 

common challenge in the world that the clinicians are 

currently facing [9, 10]. 
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ABSTRACT 
 

Background: Coronary Artery Disease (CAD) is a major cause of morbidity and mortality, yet it is frequently 
asymptomatic in the early stages and hence goes undetected.  
Objective: We aimed to develop a novel artificial intelligence-based approach for early detection of CAD 
patients based solely on electrocardiogram (ECG).  
Methods: This study included patients with suspected CAD who had standard 10-s resting 12-lead ECGs and 
coronary computed tomography angiography (cCTA) results within 4 weeks or less. The ECG and cCTA data 
from the same patient were matched based on their hospitalization or outpatient ID. All matched data pairs 
were then randomly divided into training, validation dataset for model development based on convolutional 
neural network (CNN) and test dataset for model evaluation. The accuracy (Acc), specificity (Spec), sensitivity 
(Sen), positive predictive value (PPV), negative predictive value (NPV) and area under the receiver operating 
characteristic curve (AUC) of the model were calculated by using the test dataset.  
Results: In the test dataset, the model for detecting CAD achieved an AUC of 0.75 (95% CI, 0.73 to 0.78) with an 
accuracy of 70.0%. Using the optimal cut-off point, the CAD detection model had sensitivity of 68.7%, specificity 
of 70.9%, positive predictive value (PPV) of 61.2%, and negative predictive value (NPV) of 77.2%. Our study 
demonstrates that a well-trained CNN model based solely on ECG could be considered an efficient, low-cost, 
and noninvasive method of assisting in CAD detection. 
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Traditionally, for patients with suspected CAD, 

invasive coronary angiography (CAG) or coronary 

computed tomography angiography (cCTA) has been 

the preferred method for diagnosis [11]. Routine 

screening with CAG or cCTA, on the other hand, is 

not justified for patients with transient episodes of 

chest pain or mild symptoms due to cost, time 

consuming, invasive procedural risks, radiation, and 

potentially nephrotoxic iodinated contrast exposure 

[12, 13]. The conventional 12-lead electrocardiogram 

(ECG) is a low-cost, widely used, and non-invasive 

medical tool used on patients for both cardiac and 

noncardiac reasons [14]. In the clinical setting, 

electrophysiologists or cardiologists examine both 

rhythmic and morphologic ECG abnormalities. 

However, analyzing a wide range of ECGs from a 

variety of patients is time-consuming and highly 

dependent on the expertise of the individual. In 

addition, in the early stages of cardiac dysfunction, 

patients typically present mild signs and symptoms or 

are even asymptomatic, resulting in only minor 

changes in ECG [15, 16]. Until now, there have been 

no widely used screening strategies for patients with 

silent or minimally symptomatic CAD. 

 

Deep learning (DL), which has revolutionized artificial 

intelligence (AI), is currently the most advanced branch 

of machine learning (ML) [17, 18]. It has made 

remarkable progress in a wide range of applications, 

including computer vision, speech recognition, and 

natural language processing [19]. DL has a powerful 

potential for automatically discovering the abstract 

representations required for prediction from the raw data 

without substantial information loss [20–23], which has 

resulted in promising achievements in medical fields, 

such as disease screening, diagnosis, and prediction. 

CNNs are one of the most successful DL architectures 

which have received enormous attention in the fields of 

medicine in the last 5 years [19]. The CNN application 

for digital ECG data could detect subtle changes in ECGs 

that were related to cardiac structural or functional 

abnormalities. A recent Lancet study, for example, had 

shown that an AI-enabled ECG could be used for 

recognition of patients with paroxysmal atrial fibrillation 

(AF) during sinus rhythm based solely on ECG [15]. In 

current study, we hypothesized that a novel approach 

based on DL methods could aid in detecting patients with 

CAD using only a conventional 12-lead ECG. 

 

RESULTS 
 

Study population 

 

A total of 17679 patients with cCTA data were screened 

between June 2010 and December 2020 to form the initial 

study cohort for analysis. With predetermined exclusion 

criteria, 2329 patients (13.2%) were excluded. Among the 

remaining 15350 patients, we further excluded 4812 

patients for whom ECG data were unqualified. Finally, a 

total of 10538 patients with efficient ECG-cCTA pairs 

were included, with a mean age of 60.9 ± 11.6 years, 

56.4% being male, and 4300 having significant CAD, with 

a CAD incidence of 40.8%. As expected, the ECGs of 

more than one-half of CAD patients (65.7%) were 

completely normal. Baseline characteristics of the included 

patients were presented in Table 1. 

 

All enrolled data pairs were randomly assigned to one 

of the three datasets: a training dataset (80%, n = 8430), 

a validation dataset (10%, n = 1054), and a test dataset 

(10%, n = 1054). The flow chart in Figure 1 depicted 

the detailed screening and classification process for 

patients enrolled in this study and Table 2 showed the 

baseline characteristics of the three datasets. 

 

Model performance 
 

Table 3 illustrated the performance metrics on the test 

dataset. The accuracy of the CNN model using 8 leads 

in detecting CAD patients was 70.0% (95% CI, 69.5% 

to 70.1%), with a sensitivity of 68.7% (95% CI, 68.1% 

to 68.9%), specificity of 70.9% (95% CI, 70.3% to 

71.0%), PPV of 61.2% (95% CI, 60.6% to 61.2%), and 

NPV of 77.2% (95% CI, 76.8% to 77.3%). Table 4 

illustrated the model’s performance to identify CAD 

using every single lead of the ECG. Among them, the 

V3 and V4 lead had the same and largest AUC (0.73). 

Table 5 summarized the confusion matrix of CNN 

model using single lead and cCTA for classification of 

CAD. In addition, we evaluated the ability of these two 

models (8 leads and single lead) to screen patients with 

CAD separately using ROC and calculate the area under 

the ROC curve (AUC) (Figures 2 and 3). 

 

DISCUSSION 
 

In this study, we developed a deep learning-based 

model to detect CAD using only ECG data. In the test 

dataset, our model using 8 leads performed moderately 

in detecting CAD, with an AUC of 0.75 (95% CI, 0.73 

to 0.78), accuracy of 70.0% (95% CI, 69.5% to 70.1%), 

sensitivity of 68.7% (95% CI, 68.1% to 68.9%), 

specificity of 70.9% (95% CI, 70.3% to 71.0%), PPV of 

61.2% (95% CI, 60.6% to 61.2%), and NPV of 77.2% 

(95% CI, 76.8% to 77.3%). In order to further explore 

the ability of the AI model to identify CAD and 

consider the practical application of the model, we also 

trained the CNN network on 8 single-lead (lead I, II, 

V1-V6) and also evaluated the AI model’s ability to 

identify CAD in the test dataset using every single-lead. 

However, we found that the AUC of the model using 

single lead to identify CAD is generally low. Although 
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Table 1. Clinical characteristics of all enrolled patients. 

 Overall CAD patients Non-CAD patients P-value 

n 10538 4300 (40.8%) 6238 (59.2%)  

Age (years) 60.9 ± 11.6 64.9 ± 10.5 58.2 ± 11.5 <0.001 

Sex    <0.001 

Male 5943 (56.4%) 2799 (65.1%) 3144 (50.4%)  

Female 4595 (43.6%) 1501 (34.9%) 3094 (49.6%)  

Department    <0.001 

Cardiology 4974 (47.2%) 3079 (71.6%) 1895 (30.4%)  

Outpatient 2729 (25.9%) 430 (10.0%) 2299 (36.8%)  

Cardiothoracic surgery 485 (4.6%) 176 (4.1%) 309 (5.0%)  

Examination center 337 (3.2%) 52 (1.2%) 285 (4.6%)  

Chinese medicine 316 (3.0%) 69 (1.6%) 247 (4.0%)  

Neurology 306 (2.9%) 99 (2.3%) 207 (3.3%)  

Endocrinology 285 (2.7%) 86 (2.0%) 199 (3.2%)  

Orthopaedic 116 (1.1%) 43 (1.0%) 73 (1.2%)  

Gastroenterology 116 (1.1%) 30 (0.7%) 86 (1.4%)  

Others 874 (8.3%) 236 (5.5%) 638 (10.2%)  

ECG    <0.001 

Normal 7223 (68.5%) 2825 (65.7%) 4398 (70.5%)  

ST-segment changes 1415 (13.4%) 518 (12.0%) 897 (14.4%)  

T-wave changes 788 (7.5%) 354 (8.2%) 434 (7.0%)  

Atrial fibrillation 237 (2.2%) 112 (2.6%) 125 (2.0%)  

LBBB or RBBB 158 (1.5%) 64 (1.5%) 94 (1.5%)  

LV hypertrophy 124 (1.2%) 78 (1.8%) 46 (0.7%)  

Atrioventricular block 101 (1.0%) 62 (1.4%) 39 (0.6%)  

Others 492 (4.7%) 287 (6.7%) 205 (3.3%)  

Data presented as mean ± standard deviation or n (%). Abbreviations: CAD: coronary artery disease; LBBB: left bundle branch 
block; RBBB: right bundle branch block; LV: left ventricular. P-value was obtained by comparison of the CAD and Non-CAD 
patients. 

 

the model of V3 and V4 lead achieved an AUC of 0.73, 

the AUC was 0.02 higher using 8 leads of the ECG and 

we believe that this difference is mainly due to the 

following reasons: first, when CAD is in its early 

stages, the ECG may only show minimal alterations 

even normal, in other words, there are no obvious 

characteristics of ECG changes in the early stage of 

CAD. Therefore, the model may not be able to extract 

valuable features from single-lead ECG only. On the 

contrary, we believe that 8 leads can provide a richer 

dimension and more information, and the model can 

learn more valuable features, so as to produce a better 

recognition result. In addition, deep learning often 

requires a large amount of data. After increasing the 

amount of data, the model using single lead may extract 

more valuable features, and may also achieve a better 

recognition ability. Nonetheless, these findings 

demonstrated possibility and feasibility of developing a 

well-trained CNN model to detect CAD patients using 

only a standard 12-lead ECG. 

CAD is a common disease that continue to be the 

leading cause of mortality and morbidity worldwide, 

imposing enormous health and economic burdens. 

Delayed diagnosis and treatment of CAD can have 

significant consequences for patients, such as 

myocardial infarction (MI) and ischemia-induced 

congestive heart failure (CHF), which is linked to a 

lower quality of life [24]. As a result, for CAD patients, 

timely diagnosis and early intervention are critical 

factors in improving prognosis. 

 

Many cardiac imaging technologies, such as transthoracic 

echocardiography (TTE), magnetic resonance imaging 

(MRI) and myocardial perfusion imaging, have been 

widely used to detect cardiac function or structure injury. 

These methods, however, are time consuming and 

expensive, making them unsuitable for CAD screening. 

Coronary angiography (CAG) has long been regarded as 

the ‘gold standard’ for detecting CAD. However, only 

patients with typical clinical signs and symptoms or high 
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risks for CAD were ever referred to CAG for further 

evaluation and treatment [25]. As a result, in the current 

study we defined CAD based on cCTA to reduce the 

selection bias. 

 

ECG is a fundamental tool in the everyday practice of 

clinical medicine due to its wide availability and low 

cost and has frequently been used to non-invasively 

detect and diagnose cardiac arrhythmia and acute 

coronary syndromes. When CAD is in its early stages, 

the ECG may only show minimal alterations and are 

difficult to detect by the naked eye. We hypothesized 

that AI could assist us in diagnosing asymptomatic 

CAD by detecting minor alterations and delivering 

relevant information. 

 

To test our idea, we created a novel approach based on 

deep learning algorithm as a reliable CAD screening 

tool. DL is a collection of new techniques. It has  

shown advantages of automatically discovering best 

representations needed for classification task from raw 

data without handcrafted feature engineering. The 

greatest advantage of DL is its ability to process various 

complex data, such as time-series data, 2D data and 

images. In the CNN algorithm, we used the raw ECG 

data (numerical matrix, 4000 × 8) rather than the ECG 

image itself to ensure that the complete information of 

the ECG raw signal was fully utilized. Although more 

computational power was needed to process and use the 

raw signal for the CNN in the model’s training process, 

we could use the features of ECG itself which were 

extracted by the CNN model over human bias. Similar 

to our use of ECG raw data for the diagnosis of CAD, a 

research from the Mayo Clinic [23] showed that a CNN 

model based on DL technology was able to detect 

patients with asymptomatic left ventricular dysfunction 

(ALVD), defined as ejection fraction ≤35% by echo-

cardiography, using the ECG data alone and 

demonstrated its feasibility. Indeed, the ECG is an 

excellent substrate for AI applications, which yields 

 

 
 

Figure 1. Study flowchart. Abbreviations: CAD: coronary artery disease; cCTA: coronary computed tomography angiography; ECG: 

electrocardiogram; CABG: coronary artery bypass grafting; PCI: percutaneous coronary intervention. 
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Table 2. Clinical characteristics of the three datasets. 

 
Training set Validation set 

P-valuea 
Test set 

P-valueb 
(n = 8430) (n = 1054) (n = 1054) 

CAD   >0.05  <0.05 

Yes 3414 (40.5%) 422 (40%)  464 (44%)  

No 5016 (59.5%) 632 (60%)  590 (56%)  

Sex   >0.05  <0.001 

Male 4697 (55.7%) 590 (56%)  656 (62.2%)  

Female 3733 (44.3%) 464 (44%)  398 (37.8%)  

Age(years) 60.9 ± 11.7 60.8 ± 11.8 >0.05 62.8 ± 10.6 >0.05 

ECG   <0.001  >0.05 

Normal 6025 (71.5%) 588 (55.8%)  610 (57.8%)  

ST-segment changes 1053 (12.5%) 171 (16.2%)  191 (18.1)  

T-wave changes 618 (7.3%) 79 (7.5%)  91 (8.6%)  

Atrial fibrillation 179 (2.1%) 31 (2.9%)  27 (2.6%)  

LBBB or RBBB 119 (1.4%) 18 (1.7%)  21 (2.0%)  

LV hypertrophy 85 (1.0%) 20 (1.9%)  19 (1.8%)  

Atrioventricular block 70 (0.8%) 16 (1.5%)  15 (1.4%)  

Others 281 (3.3%) 131 (12.4%)  80 (7.6%)  

Abbreviations: LV: left ventricular; LBBB: left bundle branch block; RBBB: right bundle branch block. aP-value was obtained by 
comparison of the Training set and Validation set. bP-value was obtained by comparison of the Training set and Test set. 

 

Table 3. Confusion matrix for classification of CAD, the model (8 leads) vs. cCTA. 

 Predicted 

CAD Non-CAD Acc PPV NPV Sen Spec 

Original 
CAD 290 132 0.7 61.20% 77.20% 68.70% 70.90% 

Non-CAD 184 448 (0.69–0.70) (60.0%–61.2%) (76.8%–77.3%) (68.1%–68.9%) (70.3%–71.0%) 

The model performance in predicting CAD was assessed in the test group. Abbreviations: CAD: coronary artery disease; cCTA: 
coronary computed tomography angiography; Acc: accuracy: PPV: positive predictive value; NPV: negative predictive value; 
Sen: sensitivity; Spec: specificity. 

 

Table 4. Test data set performance for CAD from single lead of the ECG. 

Lead PPV NPV Sen Spec AUC 

I 82.60% 51.00% 40.00% 88.10% 0.69 

II 56.10% 74.50% 66.60% 65.20% 0.71 

V1 64.10% 67.20% 37.20% 86.10% 0.72 

V2 56.80% 72.10% 59.50% 69.80% 0.71 

V3 64.40% 69.40% 41.90% 84.50% 0.73 

V4 63.80% 68.50% 42.20% 84.00% 0.73 

V5 73.90% 68.40% 37.00% 91.30% 0.70  

V6 51.30% 72.60% 67.80% 57.00% 0.69 

The model performance in predicting CAD was assessed in the test group. Abbreviations: CAD: coronary artery disease; cCTA: 
coronary computed tomography angiography; PPV: positive predictive value; NPV: negative predictive value; Sen: sensitivity; 
Spec: specificity; AUC: area under the receiver operating characteristic curve. 
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Table 5. Confusion matrix for classification of CAD, the model (single lead) vs. cCTA. 

Lead 
Test data set (n = 1054) No. (%) 

True positive False positive True negative False negative Accuracy 

I 247 (23.4) 52 (4.9) 385 (36.5) 370 (35.2) 632 (60.0) 

II 281 (26.6) 220 (20.9) 412 (39.1) 141 (13.4) 693 (65.7) 

V1 157 (14.9) 88 (8.3) 544 (51.6) 265 (25.2) 701 (66.5) 

V2  251 (23.8) 191 (18.1) 441 (41.8) 171 (16.3) 692 (65.7) 

V3 177 (16.8) 98 (9.3) 534 (50.7) 245 (23.2) 711 (67.5) 

V4 178 (16.9) 101 (9.6) 531 (50.4) 244 (23.1) 709 (67.3) 

V5 94 (8.9) 55 (5.2) 577 (54.7) 328 (31.2) 671 (63.7) 

V6 286 (27.1) 272 (25.8) 360 (34.2) 136 (12.9) 646 (61.3) 

The model performance in predicting CAD was assessed in the test group. Abbreviations: CAD: coronary artery disease; cCTA: 
coronary computed tomography angiography. 
 

reproducible and large amounts of raw data, such as 

portable wearable ECG device. Importantly, such large 

amounts of ECG data are relatively easy to store and 

converted to a digital format [17]. 

In fact, the unprecedented progress in DL technology 

have enabled computers to make an accurate automatic 

interpretation and diagnose of ECG in the early stage of 

the disease. Galloway et al. [26] developed an AI–ECG 

 

 
 

Figure 2. The ROC curve for the model's screening performance on the test dataset using 8 leads. The minimum distance 

between the ROC curve and the upper left corner was used to determine the optimal cutoff for best discrimination between CAD and non-
CAD. Abbreviations: AUC: area under the curve; TPR: true positive rate; FPR: False Positive Rate. 
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model to screen hyperkalemia in patients with chronic 

kidney disease. At an appropriate cut-off point, the 

model yielded values for the sensitivity and specificity 

of 90%, 89% respectively in a multicenter, external 

validation. Diagnosis delay is a clinical conundrum in 

acute ST-segment elevated myocardial infarction 

(STEMI). Base on ECG alone, Zhao et al. [22] created 

an AI-based STEMI autodiagnosis algorithm to identify 

STEMI, which achieved an AUC of 0.9954 with high 

accuracy, specificity, and sensitivity of 99.01%, 

99.20%, 96.75% respectively, in the external 

evaluation. In our study, considering that the ECG 

showed no any specific changes and may only occur 

minor alterations in the early stages of CAD. Therefore, 

in order to improve diagnostic accuracy, we embedded 

the SE module into the original ResNet-50 network 

structure, which considered the interdependence of the 

model channels and could reinforce the extracted 

important features. To our knowledge, such model 

construction method is rarely seen in the study of its 

kind. Although compared with these similar studies, our 

model only yielded moderate performance (AUC 0.75). 

We thought it may be related to the following reasons. 

First, whether hyperkalemia or STEMI, the ECG 

features of this kind of disease are often more obvious, 

and the model is easier to extract such abnormal 

features. Second, as shown in Table 1, the ECGs we 

enrolled were from patients with various diseases in 

different departments. The underlying disease may also 

cause ECG changes, which might interfere with the 

model extracting ECG features related to CAD. In 

addition, non-specific changes in ECG such as  

ST-segment changes, flat T, T wave inversion, and so 

forth may affect or conceal the ECG features related to 

CAD, thereby affecting the effectiveness of the model 

to screen for CAD. Nevertheless, we still believe our 

research holds significant implications, because it is 

almost impossible for clinicians to judge whether a 

patient has potential CAD based only on the ECG. 

 

The traditional automatic diagnosis of ECG mainly 

relies on ML algorithms and is mainly used in the 

diagnosis of acute coronary syndrome and arrhythmia 

[18]. However, the traditional ML algorithm mainly 

uses artificially extracted time or ECG morphological 

features as input, such as QT interval, RR interval or P 

wave amplitude, ST segment elevation et al. Advanced, 

it is not only time-consuming and labor-intensive, but 

also the selection of features is very dependent on the 

knowledge and experience of researchers [27]. Different 

from the traditional ML algorithm, the DL algorithm 

can directly process the ECG original signal, realize the 

layer-by-layer feature extraction of the input signal, get 

rid of the dependence and restraint on the prior 

knowledge and manual feature extraction, and thus 

realize a new approach that unifies data preprocessing, 

feature extraction and classification into one frame-

work. In other words, the CNN structure can 

accomplish all these steps “end-to-end” without 

requiring class-specific feature extraction [28]. 

Currently, DL is mostly used to identify myocardial 

infarction [22, 29] or arrhythmia [30] in the automatic 

diagnosis of ECG, because the ECG characteristics of 

these types of heart diseases are more obvious, and the 

feature identification is relatively easy, and the results 

are often better. However, what we’ve done is to 

 

 
 

Figure 3. The ROC curve for the model's screening performance on the test dataset using every single lead (I, II, V1-V6). (A) 
The ROC curve for I lead. (B) The ROC curve for II lead. (C) The ROC curve for V1 lead. (D) The ROC curve for V2 lead. (E) The ROC curve for 
V3 lead. (F) The ROC curve for V4 lead. (G) The ROC curve for V5 lead. (H) The ROC curve for V6 lead. 
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identify patients with coronary artery disease from the 

ECG that is basically normal or has no obvious specific 

changes. To our knowledge, our study showed for the 

first time to explore the application of a deep learning–

based algorithm for detecting CAD using only ECG. Our 

model yielded moderate values (AUC 0.75, sensitivity 

68.7%, specificity 70.9%) in the test dataset, which 

showed a comparable performance to the traditional 

Diamond–Forrester model [31] and the widely available 

CAD consortium model [32]. The Diamond–Forrester 

model provided an easy way for determining the pre-test 

CAD probability by using simple demographic data and 

clinical factors which included sex, age and type of chest 

pain [31, 33]. However, it has been shown that this 

model overestimates CAD risk in more contemporary 

populations because of the obsolescence of model 

development population [34]. Although other updated 

models such as CAD consortium model included more 

clinical factors and have improved performance and 

versatility, the multi-dimensional variables contributed 

to the complexity of the model and difficulty in clinical 

application [32, 35–37]. 

 

It is well known that CAD is related to many factors, 

such as sex, age, weight, body mass index, smoking 

status, systolic blood pressure, and so forth. Zheng et al. 

[38] developed a CNN model to detect CAD patients 

based on facial photos, which achieved moderate 

performance of AUC 0.730, sensitivity of 80.0% and 

specificity 54.0% in an independent test dataset. 

However, they fund it did not further improve the 

model’s performance when additional clinical variables 

were added. That is, it is easy to use this model only 

based on facial photos without additional demographic 

data or clinical variables. However, as stated by the 

author, privacy protection and data security were major 

obstacle to the application of this technology. Similarly, 

in the present study, our model did not use any 

demographic data or clinical variables but input ECG 

raw data only for model training, validation, testing 

mainly because the following reasons. First, to avoid 

selection bias, we included patients from all 

departments of the hospital and nearly 30% of the 

enrolled patients were from outpatient and physical 

examination center. For these patients, we could not get 

access to the clinical variables from the healthcare 

system of our hospital. Second, too many variables will 

increase the complexity of the model, which is not 

conducive to the practical application of the model. In 

addition, we believe that because the research of DL 

technology in ECG is still in the early stage, too many 

additional variables may conceal the actual screening 

ability of DL model based on ECG. Therefore, we are 
committed to improving the diagnosis accuracy of CAD 

based on the ECG raw data alone through DL 

technology. Fortunately, our model also obtained 

moderate performance for detecting CAD (AUC 0.75, 

sensitivity 68.7%, specificity 70.9%). 
 

This study showed the possibility and feasibility of a 

deep learning-based algorithm for CAD screening only 

based on ECG. While this area of research is still in 

relative infancy, there is reason to be optimistic about 

the applications of such technology in the future, that is, 

the AI-ECG could be implemented into early or 

asymptomatic CAD screening as an effective, low-cost, 

and non-invasive assay. Even though the model training 

process were highly reliant on significant computing 

power and time, however, once the model was 

complete, only a smaller amount of computational 

power is needed to analyze and interpret the input ECG. 

In future clinic, for patients with suspected 

asymptomatic CAD, the computers using our algorithm 

can make prediction on ECG inputs and the prediction 

result will be sent back and displayed to the clinicians. 

Then, clinicians may interpret the result combining with 

patients’ general conditions and clinical symptoms or 

signs. According to the comprehensive results, 

physicians can help patients guide some general 

recommendations or further diagnostic tests. However, 

it is clear that we still have a long way to go before the 

actual clinical applications of this tool, which requires 

the joint effort of scientific researchers and clinicians 

around the globe. 
 

Some limitations of our study should be noted. First, 

since the present study was based at only one hospital, 

the lack of external validation may result less accuracy 

compared with the performance in internal validation. 

So additional validation in patients from other hospitals 

even other countries and races would be necessary to 

examine model’s performance. However, it does not 

affect our main purpose of evaluating the feasibility of 

detecting CAD using ECG alone. In the near future, we 

will first plan to launch a multi-center validation of this 

AI algorithm in our city. Second, it is currently 

unknown how deep learning algorithm contribute to 

decision process. The lack of transparency inherent to 

CNN has been linked to a “black box”, which makes it 

difficult for clinicians to understand how exactly the AI 

arrives at a solution. Third, in our study, the relatively 

low specificity (70.9%) and up to 29.1% false-positive 

rate may place additional confusion and anxiety on 

patients. Thus, identifying a higher risk population that 

might benefit most from the algorithm based on basic 

clinical data should be explored, which is also our 

future study direction. 
 

CONCLUSION 
 

In this study, we developed a model based on deep 

learning algorithm, which brought up feasibility and 
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possibility of predicting the presence or absence of CAD. 

The AI-ECG could be as a relatively low cost, noninvasive 

and efficient screening tool for CAD only using routine 

12-lead ECG. Additional prospective studies from 

multicenter will be urgently needed to accurately access 

the screening ability of the model and determine whether 

the AI-ECG can relieve some economic burden on CAD 

patients as well as the health care system. 

 

MATERIALS AND METHODS 
 

Participants 
 

Patients who were evaluated for suspected CAD and 

underwent clinically indicated cCTA were included in 

the study. This study excluded: (i) minors (aged <18 

years); (ii) prior coronary artery bypass grafting 

(CABG) surgery; (iii) prior percutaneous coronary 

intervention (PCI); (iv) history of myocardial infarction 

or clinically significant cardiac disease (e.g., congenital 

heart disease, rheumatic heart disease, or aortic disease); 

(v) ECG with severe interference or missing leads; (vi) 

ECG suggested myocardial ischemia or ST-segment 

changed significantly (ST-segment elevation/depression 

>0.1 mV in at least 2 contiguous ECG leads) and (vii) 

ECG or cCTA information was missing (e.g., without 

ECG raw data or conclusive cCTA diagnosis) 

(Figure 1). 

 

Data collection and pairing 

 

We respectively collected ECG and cCTA data from the 

cardiac electrophysiology laboratory and radiology 

department of Sun Yat-sen Memorial Hospital, Sun 

Yat-sen University from 2010 to 2020. ECG signals 

were obtained at rest in supine position using a 1250-P 

ECG machine (Nihon Kohden) with a sampling 

frequency of 500 Hz, and all the ECGs were formatted 

as raw data for further analysis. All enrolled patients 

were divided into two groups based on presence or 

absence of CAD, with CAD defined as the presence of 

no less than 50% stenosis in at least one major coronary 

artery (left main artery, left anterior descending 

coronary artery, left circumflex artery or right coronary 

artery) based on cCTA [31, 39]. The cCTA results of 

each patient were reviewed by two qualified 

radiologists to determine the presence and severity of 

coronary stenosis. If the first 2 radiologists disagreed, a 

third senior cardiologist was consulted and a final 

decision was reached. Each ECG for each included case 

was matched to one cCTA based on the hospitalization 

or outpatient ID. 

 

 
 

Figure 4. Integrated process for developing and testing the AI model. Abbreviations: cCTA: coronary computed tomography 

angiography; ECG: electrocardiogram; AI: artificial intelligence; CAD: coronary artery disease; CNN: convolutional neural network. 
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Then the standard 10-second, 12-lead ECG and cCTA 

performed at 4 weekly intervals or lesser from each 

adult patient were paired. The ECG raw data were used 

as inputs to train, validate and test the CNN model for 

each paired ECG-cCTA, with cCTA labels indicating 

whether or not a case had CAD. 

 

Processing of ECG data 

 

Each raw digital ECG data consisted of a 5000 × 12-

matrix (500 Hz data for 10 seconds in 12 leads). This 

study included eight independent ECG leads of I, II and 

V1-V6, since the four augmented leads (avR, avL, avF, 

III) are created as a linear function of leads I and II and 

do not contain incremental information [15]. As a result, 

a 5000 × 12-matrix was reduced to a 5000 × 8-matrix. 

Furthermore, in order to further explore the ability of 

the AI model to identify CAD, we trained the CNN 

network on 8 single-lead (lead I, II, V1-V6) and also 

evaluated the AI model’s ability to identify CAD in the 

test dataset using every single-lead. And according to 

the research reported, some leads (lead I, II, V2) have 

been used to enable patient self -monitoring 

[40]. The whole dataset was randomly divided into 

training/validation/test sets with a proportion of 8:1:1. 

We built the model using the training and validation 

datasets, and then tested it on the test dataset. Figure 4 

depicted the overall model creation process. 

 

Overview of the deep-learning model 

 

Deep learning is a method which employs many hidden 

layers of neurons to learn arbitrarily complex data 

features at multiple levels of abstraction. It is ideal for 

 

 
 

Figure 5. The architecture of the proposed CNN model. We used ResNet-50 uniting a mixed “attention” module (the Squeeze-and-

Excitation module) as backbone architecture to extract useful features from the input ECG raw data. Abbreviations: ConV: Convolution; BN: 
Batch Normalization; Relu: Rectified Linear Units. 
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classification task of complex medical data, such  

as ECGs. A typical CNN is constructed using 

convolutional layers, pooling layers and fully-connected 

layers [41], with convolutions layers extracting useful 

features from the input dataset, which in our current 

study is ECG signals. The pooling layers are used to 

reduce the dimensions of the feature maps while 

retaining useful information. Finally, the fully-

connected layers connect all of the previous layer’s 

inputs, followed by an output layer. In our study, we 

used a CNN with ResNet-50 backbone architecture and 

a Squeeze-and-Excitation (SE) module as our classifier 

model. We created the SeResNet-50 network by 

embedding the SE module into the original ResNet-50 

network structure, with a slightly increased 

computational cost and markedly enhanced perfor-

mance. The SE module’s main consideration was the 

interdependence of the model channels. Graphical 

representation of the network’s general architecture was 

depicted in Figure 5. A deep learning framework called 

PyTorch (version1.7.1, Facebook) was used for training 

and evaluation of our network, which was implemented 

using the Ubuntu operating system through the use of 

Numpy, Pandas and scikit-learn libraries. 

 

We used a backpropagation algorithm with an 85-batch 

size to update model parameters after calculating the 

binary cross-entropy loss function between predicted 

and real values. This deep learning model was 

optimized using Adam optimizer with the following 

parameters: weight decay (L2 regularization) = 2 × 

10−5, learning rate = 3 × 10−3 with poly learning rate 

scheduler. These parameters can help with overfitting 

issues, achieve fast data convergence, and adjust the 

learning speed. 

 

Model evaluation 

 

Our study’s primary goal was to see if the AI model 

could tell the difference between patients with and 

without CAD just by looking at their ECGs. The model 

calculated the likelihood of CAD on the scale of 0  

(non-CAD) to 1 (CAD). The model’s performance 

characteristics, such as sensitivity, specificity, PPV, NPV 

and diagnostic accuracy were calculated. Because the 

output was continuous, the final classification decision 

was made by choosing a threshold and testing whether 

the output was below or above it. The receiver operating 

curve (ROC) displayed all possible thresholds with their 

associated sensitivity and specificity, and the area under 

the receiver operating curve (AUC) was calculated. 

 

Statistical analysis 

 

The baseline characteristics of the CAD and control 

groups were compared. Continuous variables that 

exhibited a normal distribution were shown as mean ± 

standard deviation (SD) and tested using the unpaired 

Student’s test. Categorical variables were represented as 

percentages and analyzed using Chi-square tests or 

Fisher’s exact tests. Two-sided P values of less than 

0.05 were considered statistically significant. Measures 

of diagnostic performance were summarized using 2-

sided 95% confidence intervals (CIs). The optimal cut-

off point for discriminating between CAD and non-

CAD was determined using the minimum distance 

between the ROC curve and the upper left corner or the 

Youden index (specificity + sensitivty-1). All routine 

statistical analyses were performed using R, version 

3.4.2 (R Foundation). 
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