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The morphological correlates of brain aging in 

neuroimaging are characterized grosso modo by a 

decline in gray matter volume and a reduction in white 

matter integrity - these changes are associated with 

cognitive decline including memory, attention, and 

executive functions and are thought to be the result of a 

combination of factors from predisposition and 

environment. There is converging evidence that 

regionally differential aging processes in the human 

brain exist, mainly affecting the frontal lobe and 

relatively sparing posterior and infratentorial areas [1]. 

Magnetic Resonance Imaging (MRI) is capable of 

providing high-resolution images of the brain that can 

be assessed for age-related changes [2]. Machine 

learning (ML), as an emerging artificial intelligence 

(AI)-based field in medicine, has been applied to 

quantify these MRI changes in the human brain, 

commonly accomplished by (1) extracting features from 

brain images and (2) training an ML model to predict 

the age from the extracted features [3]. Application to 

(advanced) MRI data obtains an age estimation that is 

considered to be representative of an individual’s brain 

age/health. The difference between estimated brain age 

and chronological age is called the brain age gap 

(BrainGAP) or brain predicted age difference (Brain-

PAD) and is thought to potentially serve as a biomarker 

for processes like accelerated/delayed brain aging. The 

BrainGAP was shown to correlate with other imaging 

biomarkers of brain aging, such as white matter 

hyperintensities [4], and appears to be related to 

cardiovascular risk factors associated with accelerated 

aging in general, such as systolic/diastolic blood 

pressure, smoking habits, and cardiac function. 

Although the performance of most brain age estimators is 

promising [3, 5], a major challenge in moving to a 

clinical application is the lack of an automated, scanner-

independent data preprocessing pipeline as well as robust 

and generalizable ML models that work with any MRI 

data type [5]. Diffusion tensor imaging (DTI) as an 

established MRI modality to map structural brain white 

matter connectivity is one first-line candidate: diffusivity 

can be robustly measured across different MRI scanners 

and field strengths and different tract systems of the brain 

have been shown to demonstrate differential alterations 

during (healthy) aging [6]. Proof-of-concept ML studies 

have already demonstrated the validity of DTI in  

single modality approaches for brain age estimation [7]. 

In the technical domain, data preprocessing and feature 

extraction are generally required to prepare DTI data for 

ML. For this purpose, diffusion metrics are usually 

aggregated at the tract level. Multiple ways to automate 

tract segmentation have been proposed, such as tract-

based spatial statistics, fiber tracking, and U-Nets. 

Recently, a large-scale application of tract segmentation 

was demonstrated using the UK Biobank imaging 

dataset, paving the way for multisite and finally 

transnational DTI data analyses [8]. 

For brain age estimation, artificial neural networks 

(ANN) have been established as very promising ML 

models due to their superior performance in solving 

complex non-linear problems. ANN are capable of 

grasping complex interactions of different white matter 

tracts which are important for assessing brain health. 

Although multimodal ML models perform best, single 

MRI modality approaches may be a better candidate to 

achieve widespread clinical adoption, where ease of use 

is important. In addition, convolutional neural networks 

and other deep learning algorithms applied to 

conventional T1w images have the potential to match 

DTI in its predictive power [3]; however, it remains to 

be explored to what extent these algorithms can be 

made scanner-agnostic. 

In a recent study on brain aging, an ANN was capable 

of estimating the subjects’ chronological age with high 

accuracy by solely relying on DTI data [7]. In addition 

to brain age estimation, the ANN could also perform the 

inverse operation, i.e., age correction, which was done 

by modifying the gradient descent algorithm to alter the 

input data [7]. The proposed age correction algorithm 

might be extended to create synthetic data and possibly 

aid in data augmentation, which is important for 

training large-scale ML models and for studying rare 

diseases. Although still in its infancy, ANN age 

correction algorithms may increase diagnostic accuracy 

by separating “normal” brain aging (i.e., without a 

recognized pathological process) from degenerative, 

vascular, inflammatory, and other diseased conditions. 

(As a side note: possibly, the term “normal” or 

“healthy” aging of the brain might receive a new 

definition by this approach.) For that purpose, age-

corrected models could be applied to large, longitudinal 

datasets with well-defined and verified pathologies. 
Using longitudinal data, healthy people at baseline can 

be further distinguished from those with already 

subclinical prodromal diseases and pathological aging 

with early signs of prefrailty and frailty. 
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Beyond these developments in brain aging research, 

recent advances in ML have exceeded the expectations 

of many AI experts, with transformer-based deep 

learning models leading the field. In the resources-

intensive field of geriatrics, automation and intelligent 

systems are the keys to mastering the challenges of 

demographic change in societies worldwide. In this 

environment, the application of AI to neuroimaging 

targeted at aging in particular is well positioned to 

improve and expand geriatric diagnostics in the future. 
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