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INTRODUCTION 
 

Colorectal cancer (CRC) is the third most leading cause 

of cancer death in the world, accompanied by invasive 

and metastatic outcomes [1]. CRC is the third most 

clinically diagnosed cancer in China, characterized with 

increased deaths and economic burden [2]. It is reported 

that elevated incidence and mortality of CRC in China 
are involved in high red and processed meat 

consumption, low vegetable and fruit uptake, excessive 

alcohol drinking and tobacco smoking, physical 

inactivity [3]. Although modern medical screening has 

progressed, most CRC cases are diagnosed as middle- or 

late-stage at the first examination [4]. Endoluminal 

surgery and local excision can be used in clinical CRC 

management, however, these techniques are still 

considered to be challenging over time [5]. In the routine 

clinical management of CRC, existing pharmacological 

treatments are still associated with unavoidable adverse 
actions, drug tolerance, and poor prognosis after long-

time use [6]. Therefore, candidate adjuvant or alternative 

treatments characterized by potent efficacy and low 

www.aging-us.com AGING 2023, Vol. 15, No. 9 

Research Paper 

Genistein exerts anti-colorectal cancer actions: clinical reports, 
computational and validated findings 
 

Xiaoxia Liu1,*, Ying Lan1,*, Li Zhang1, Xi Ye1, Qingrong Shen1, Guangyan Mo1, Xiaoyu Chen1,& 
 
1Department of Pharmacy, Guangxi Academy of Medical Sciences and the People’s Hospital of Guangxi Zhuang 
Autonomous Region, Nanning 530021, Guangxi, People’s Republic of China 
*Equal contribution 
 
Correspondence to: Xiaoyu Chen; email: cxytgzy@163.com, https://orcid.org/0000-0002-1042-3491 
Keywords: clinical properties, colorectal cancer, genistein, bioinformatics, autophagy 
Received: February 23, 2023    Accepted: April 18, 2023  Published: May 7, 2023 
 
Copyright: © 2023 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Colorectal cancer (CRC) is presently a health challenge in China. Although clinical chemotherapy is prescribed 
availably, the negative effects and poor prognoses still occur. Genistein has antitumor properties in our 
previous studies. However, the molecular mechanisms underlying the anti-CRC effects of genistein remain 
unclear. Increasing evidences have indicated that the induction of autophagy, one of cell death models, is 
closely associated with the formation and development of human cancer. In the current study, a systematic 
bioinformatics approach using network pharmacology and molecular docking imitation was aimed at 
identifying the pharmacological targets and anti-CRC mechanisms of genistein, characterized by autophagy-
related processes and pathways. Moreover, experimental validation was conducted by using clinical and cell 
culture samples. All 48 potential targets of genistein-anti-CRC-associated autophagy were screened accordingly. 
Further bioinformatics analyses identified 10 core genistein-anti-CRC targets related to autophagy, and 
enrichment-assayed results revealed that the biological processes of these core targets might regulate multiple 
molecular pathways, including the estrogen signaling pathway. Additionally, molecular docking data 
demonstrated that genistein has a high affinity for epidermal growth factor receptor (EGFR) and estrogen 
receptor 1 (ESR1). Both EGFR and ESR1 proteins were highly expressed in clinical CRC samples. Preliminary  
in vitro data showed that genistein effectively reduced cellular proliferation, activated apoptosis, and 
suppressed EGFR and ESR1 protein expressions in CRC cells. Our research findings uncovered the molecular 
mechanisms of genistein against CRC, and the potential drug targets associated with autophagy in genistein 
treatment of CRC were identified and validated experimentally, including EGFR and ESR1. 
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toxicity are warranted to enhance the quality life of 

patients with CRC and extend their survival rate. 

Autophagy is a pathophysiological condition in the 

cellular or organelle degradation process that is involved 

in cell function and fate [7]. Other studies have indicated 

that autophagic dysfunction is closely associated with 

human tumorigenesis through affecting neoplastic 

development, immunity and treatment [8]. In the 

development of CRC, autophagy-regulated genes and 

proteins, including catenin beta 1, lysosomal associated 

membrane protein 1, microtubule associated protein 1 

light chain 3, correlate with the initiation and progression 

of CRC [9]. In CRC, the dual effects of autophagy on 

tumor promotion and inhibition are widely recognized. 

Therefore, clarifying the biological effect of autophagy 

on CRC cells may provide a more substantial theoretical 

basis for effective CRC treatment [10]. The combined 

use of autophagic inhibitors and chemotherapy may be a 

promising treatment for human CRC by regulating the 

IL-6/JAK2/BECN1 signaling pathway [11]. Other 

preclinical studies have shown that modulation of the 

autophagic pathway for inducing cell death may sensitize 

chemotherapy effectiveness against CRC [12]. Therefore, 

targeted treatment utilizing autophagy may be promising 

for patients with CRC. Traditional Chinese medicine 

(TCM)-derived extracts or compounds are commonly 

used for potentials in prophylaxis and treatment of human 

diseases, including cancers and neurodegenerative 

disorders. And autophagy, a potential drug target, may be 

mediated functionally by bioactive compounds isolated 

from TCM [13]. Genistein, a chemical structure known 

as 4’,5,7-trihydroxyisoflavone, is a natural isoflavone 

with potent health benefits, including chemoprevention 

against human cancers and cardiovascular protection  

[14, 15]. Many experimental studies have demonstrated 

that genistein exerts anti-CRC action through different 

signaling pathways, such as Notch1/NF-κB/slug/E-

cadherin pathway, ATM/p53 molecular pathway [16, 17]. 

Our previous studies have suggested that genistein has 

anti-invasive and anti-proliferative effects on human 

CRC cells through inhibiting cell proliferation, inducing 

apoptosis [18, 19]. An in vitro study indicated that the 

combined use of genistein and indol-3-carbinol may 

induce apoptosis in CRC cells by activating autophagy 

[20]. Although underlying mechanisms in genistein 

against CRC is reported, more complete anti-CRC 

mechanisms targeting autophagy need to be explored. 

Preclinical bioinformatics has advanced significantly, and 

the application of network pharmacology has recently 

been developed to reveal the complete target and 

mechanism of natural compounds against cancers [21]. 

The network pharmacology approach, accompanied  

by molecular docking imitation, has been used in 
pharmacology research and development for potential 

drug against cancers [22–23]. Therefore, our study aimed 

to use comprehensive bioinformatics approach, including 

network pharmacology and molecular docking, to reveal 

the anti-CRC biotargets and molecular mechanisms  

of genistein-induced autophagy. Furthermore, the 

bioinformatic findings were validated experimentally by 

using human and cell culture samples. Taken together, 

the current findings may provide insights to identify that 

genistein may be a promising medication for treating 

patients with CRC in future clinical application. 

 

MATERIALS AND METHODS 
 

Databases used for screening targets in genistein, 

autophagy, and CRC 

 

The keyword of “genistein” was used to screen the target 

genes using Traditional Chinese Medicine Database  

and Analysis Platform (TCMSP) [24], Bioinformatics 

Analysis Tool for Molecular mechANism of  

TCM (BATMAN-TCM) [25], SuperPred [26], and 

SwissTargetPrediction [27] databases. Canonical targets 

of autophagy were obtained from GeneCards [28], 

National Center for Biotechnology Information (NCBI), 

and Online Mendelian Inheritance in Man (OMIM) [29] 

databases. Finally, the GeneCards, OMIM, and 

DrugBank [30] databases were used to screen CRC 

targets. All unmet targets were rectified through the 

Uniprot [31] database reviewed (Swiss-Prot) and 

Human. 

 

Acquisition of intersection targets in autophagy-

genistein-CRC 

 

The intersection targets within autophagy, genistein and 

CRC were screened and mapped using Venn Diagrams 

software, as described previously [32]. 

 

Network construction and core target identification 

 

The STRING database [33] was used to construct a 

protein-protein interaction (PPI) network for genistein-

anti-CRC interactions to determine the functional 

interactions among target protein nodes. The parametrical 

confidence score of 0.09 was used to obtain candidate 

targets with “Homo sapiens” that were identified in  

the Cytoscape software [34]. The Cytoscape-based 

NetworkAnalyzer plug-in was used to produce the core 

targets in genistein-anti-CRC, determined from the 

screening degree values. 

 

Enrichment analysis of core target genes 

 

R software with the GOplot package and Database for 

Annotation, Visualization and Integrated Discovery 
(DAVID) was used to analyze the Gene Ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway to reveal the key biological functions 
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and molecular pathways targeting autophagy-associated 

genes in genistein against CRC. Genistein exerted 

potential anti-CRC effects by modulating the biological 

functions of the target genes and pharmacological 

pathways. Bubble graphs were plotted to visualize the 

enrichment analysis results. The protocols used were 

obtained from a published study [35]. 

 

Molecular docking procedures 

 

A molecular docking evaluation was conducted on 

core target proteins with larger scores using the 

interactive network genistein-anti-CRC core target 

data. The chemical and crystal structure files were 

obtained from the NCBI PubChem 

(https://pubchem.ncbi.nlm.nih.gov/) and the Protein 

Data Bank (https://www.rcsb.org/) databases. The 

binding energy of these structures were optimized 

using ChemBio3D Draw in ChemDraw software [36]. 

The target proteins/crystals were then hydrogenated 

and charges balanced using AutoDock Vina [37]. 

Then, the selected data were converted to the pdbqt 

format. AutoDockTools were used to assess the 

affinity between genistein and the protein models. The 

molecular docking complexes of the ligand and 

binding residues were visualized using PyMOL 

software [38]. 

 

Human CRC sampling 

 

The clinical design using human CRC samples was 

implemented in accordance with the Code of Ethics of 

the World Medical Association (Declaration of 

Helsinki). All five patients with CRC were recruited at 

the Department of Oncology in People’s Hospital of 

Guangxi Zhuang Autonomous Region before being 

diagnosed using medical imaging and pathological tests. 

Human CRC samples were prepared as 5-μm paraffin-

embedded sections for hematoxylin-eosin (HE) stain 

and immunofluorescence analysis. 

 

Cell culture and biochemical analysis 

 

A human CRC cell line, named HCT116, was used to 

assess the pharmacological effectivity of genistein 

against CRC. The cells were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM; Solarbio, Beijing, 

China) supplemented with 10% fetal bovine serum 

(Dibo Biotechnology, Shanghai, China) and 1% 

antibiotics (Solarbio). The cells were then placed in 

an incubator at 37° C and 5% CO2. Cells were treated 

with genistein as they grew at 0, 25 and 50 μM doses 

for 48 h. The cells were then collected for further cell 
proliferation assessment and immunofluorescence 

testing. Cell counting kit-8 (CCK-8) was applied for 

cell proliferation test in genistein-treated cells, and 

immunofluorescent staining procedure for apoptosis, 

EGFR ESR1, was reported previously [39]. 

 

Statistical analysis 

 

Statistical Product and Service Solutions (SPSS, 

Chicago, IL, USA) software was used for the 

statistical analysis. All data are expressed as mean ± 

standard deviation (SD). One-way analysis of variance 

was used to compare the differences between different 

comparisons. Statistical significance was set at p < 

0.05. 

 

RESULTS 
 

Identification of autophagy-genistein-CRC targets 

and construction of correlative network 

 

A total of 1898 autophagy, 112 genistein, and 8913 

CRC targets were identified. As a result, 48 mutual 

targets within autophagy-genistein-CRC were obtained 

using the Venny tool in Venn Diagrams (Figure 1A). 

These target genes were used for further analysis using 

the STRING database for construction network. The 

PPI network diagram is presented in Figure 1A. 

 

Identification of the core targets 

 

Cytoscape 3.7.1 software was used to determine the 

parametric scores, and the screening range for core 

targets was set to 4–24. A computational assay was 

conducted for individual target genes and all candidate 

genes with significant scores were collected 

accordingly. Finally, 10 core targets with the highest 

connection degree were identified for genistein against 

CRC relating autophagy, these included MAPT, ESR1, 

SNCA, MMP9, EGFR, CDK1, APP, CDK5, IGFBP3, 

and GSK3B (Figure 1B). 

 

Functional findings in enrichment analysis 

 

The GO-related annotation results from core target genes 

revealed that genistein against CRC targeting autophagy 

proteins were involved in the regulation of biological 

processes, including tau protein binding, dynactin 

binding, heat shock protein binding, protein serine/ 

threonine kinase activity, tau-protein kinase activity, 

cyclin-dependent protein serine/threonine kinase 

activity, and Hsp90 protein binding (Figure 2). KEGG 

enrichment data indicated that these core target genes in 

genistein against CRC were intimately associated with 

Alzheimer’s disease, pathways of neurodegeneration-

multiple diseases, prostate cancer, endocrine resistance, 
estrogen signaling pathway, and breast cancer (Figure 3). 

Molecular pharmacotherapy commonly functions at 

different cellular and molecular levels, as demonstrated 

https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
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by multiple targets and pathways in genistein against 

CRC targeting autophagy. The visualization network 

results were shown in Figure 4. 

 

Molecular docking validation 

 

Following the docking score data, genistein-EGFR  

and genistein-ESR1 resulted in significant correlation 

scores. This suggested that EGFR and ESR1 proteins 

displayed marked affinity for genistein. In EGFR (PDB 

ID:2GS2), genistein formed hydrogen bonds with the 

following amino acid residues, MET-769 (2 Å), THR-

766 (1.8 Å), LYS-721 (1.9 Å), and GLU-738 (2 Å), and 

the binding free energy was -7.3 kcal/mol. In ESR1 

(PDB ID:3OS8), genistein formed hydrogen bonds with 

the MET-421 (2.3 Å) amino acid residue, and the 

 

 
 

Figure 1. (A) Venn diagrams aimed to show respective targets in genistein, CRC, and autophagy before identifying mutual targets within 

genistein-CRC-autophagy. And all mutual targets were highlighted in the gene-connected network. (B) All core target genes in genistein-CRC 
relating autophagy were identified through highest screening scores. 
 

 
 

Figure 2. All core targets were used for GO functional enrichment analysis, and biological processes of genistein anti-cancer 
activity against CRC were revealed in bubble graphs. 
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Figure 3. The core targets were used for KEGG pathway enrichment analysis, and molecular mechanisms underlying 
genistein activity against CRC were uncovered in bubble graphs. 

 

 
 

Figure 4. The association network among target genes and pathways associated with autophagy in genistein against CRC 
were highlighted connectedly. 
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binding free energy was -7.7 kcal/mol. Molecular 

docking data are characterized in Figure 5. 

 

Clinical validation in human samples 

 

To validate EGFR and ESR1 protein expressions in 

human CRC and non-CRC samples, we performed 

immunostaining. The CRC samples were collected from 

patients with an average age of 55.4 ± 6.1 years. The 

CRC cases were diagnosed medically using imaging 

and HE staining tests, as shown in Figure 6A. 

Immunofluorescence staining results showed that CRC 

sections resulted in increased endogenous positive cells 

of EGFR and ESR1 in comparison with those in non-

CRC sections (p < 0.01, Figure 6B). 

 

Experimental validation in cell culture 

 

A cell line study was performed to validate the 

molecular docking bioinformatics results. Genistein-

dosed treatments showed an increased induction of 

cell growth suppression in comparison to untreated 

cells in control group (p < 0.01, Figure 7A). Hoechst 

33258 staining resulted in elevated apoptosis-positive 

cells in genistein-treated cells compared to that in 

untreated cells in control group (p < 0.01, Figure 7B). 

In immunofluorescence staining analysis, genistein-

treated groups showed reduced EGFR-positive and 

ESR1-positive cell quantities in comparison with 

those in untreated cells in control group (p < 0.01, 

Figure 7C). 

 

DISCUSSION 
 

Human malignant tumor refers to an obstinate disease 

characterized by uncontrolled cell growth and division. 

Autophagy is abnormally modulated in human cancers 

through facilitating cell proliferation, metastasis and 

survival. Thus, targeting autophagy may be a promising 

strategy for the treatment of cancers [40]. Natural anti-

cancer compounds characterized by potent treatment 

action and fewer side effects should be explored in 

response to clinical challenges, such as drug resistance 

induced by autophagy and poor prognosis over time 

[41]. Historically, abundant natural resources are 

available in China for medicinal and food homology. 

Traditional Chinese medicine (TCM), with its potential 

advantages, may pave the way for drug exploration to 

 

 
 

Figure 5. The molecular docking analysis of genistein and core targets. (A) genistein docking with target EGFR protein (PDB ID:2GS2) 

in details. (B) genistein docking with target ESR1 protein (PDB ID:3OS8) in details. 
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manage malignancies [42]. Genistein is a Chinese herb-

isolated compound with promising properties, including 

anti-cancer, anti-oxidant, anti-inflammatory, and anti-

obesity activities [43]. There is preclinical evidences 

indicate that genistein exerts anti-CRC properties 

through suppressing cell differentiation and invasion 

[44]. The anti-proliferative mechanisms of genistein 

against CRC may be involved in the modulation of the 

caspase-3/p38 MAPK pathway for inducing cell 

apoptosis [45], Akt, and nuclear factor-κB pathway for 

tumor microenvironmental regulation [46]. However, the 

molecular mechanisms in genistein against CRC 

targeting autophagy need to be further explored. In this 

study, our network pharmacology findings of correlative 

target genes in genistein and CRC by targeting 

autophagy suggested that 10 core genes had the highest 

degree scores, this included microtubule-associated 

protein tau (MAPT), ESR1, alpha-synuclein (SNCA), 

matrix metallopeptidase 9 (MMP9), EGFR, cyclin-

dependent kinase 1 (CDK1), amyloid precursor protein 

(APP), CDK5, insulin-like growth factor binding protein 

3 (IGFBP3), and glycogen synthase kinase 3beta 

(GSK3B). Further molecular docking analysis showed 

that ESR1, and EGFR had the highest affinities for 

genistein, implying that these core proteins are targeted 

for autophagy in the treatment of CRC using genistein. 

Mutations and overexpression of ESR1 have been 

detected in tumor samples, suggesting potential drug 

target against human cancers [47]. Methylation of  

ESR1 has been implicated in the molecular mechanism 

of endocrinological tolerance in metastatic cancers, 

including metastatic breast cancer patients [48]. Another 

study indicated that ESR1 may be a potential 

pharmacological target for CRC treatment as ESR1 may 

 

 
 

Figure 6. Patients clinically diagnosed with CRC through imaging and HE staining tests (A). The intracellular EGFR and ESR1 positive 
expressions detected in human CRC samples were more than those in non-CRC sections (B). 
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serve as a tumor-regulated gene via methylation 

regulation [49]. EGFR is a carcinogenic marker 

responsible for colorectal oncogenesis and development 

through regulating EGFR signaling in epithelial cells 

[50]. EGFR is closely linked to the progression of  

tumor resistance mechanisms when using anti-cancer 

medication, accompanied by the marked induction  

of specific point mutations in EGFR and ALK 

rearrangements [51]. Abnormally overactivated EGFR 

has been found in human CRC samples, and EGFR 

Mutation may be as CRC predictive biomarkers [52]. 

These reference analyses forementioned imply that 

genistein may treat CRC by modulating ESR1 and 

EGFR expressions and activities. Other GO functional 

data indicated that the top terms/core targets were 

enriched in the BP, CC, and MF sections. Among these 

BP-based annotations, heat shock protein binding, 

protein serine/threonine kinase activity, tau-protein 

kinase activity, and cyclin-dependent protein serine/ 

threonine kinase activity may be linked to CRC 

formation and development, and genistein action against 

CRC. Additionally, other top KEGG pathways were 

identified using enrichment analysis. The signaling 

pathways with enriched target genes were detailed in the 

anti-CRC mechanisms of genistein via targeting of 

autophagy, including the estrogen signaling pathway. 

The estrogen signaling pathway is required for many 

molecular functions, including cell proliferation, gene 

transcription, and cellular kinase activation [53]. The 

estrogen signaling pathway is positively associated with 

CRC cell proliferation via the regulation of key 

molecular functions [54]. Genistein is a potential anti-

CRC candidate that functions with target core genes 

annotated in the estrogen molecular pathway. Chinese 

herb-isolated ingredients, including genistein, have a 

long history of managing human cancers. However, the 

precise mechanisms and core targets involved remain 

unclear. In this study, molecular docking analyses 

validated the feasibility of network pharmacology to 

identify autophagy targets, and this was confirmed by 

experimental validation using clinical and cell line 

samples. In addition, further validated study will be 

conducted for genistein against CRC targeting auto-

phagy in our future determination. 

 

 
 

Figure 7. Genistein reduced cell growth and induced apoptosis of CRC cells than those in untreated cells (A, B). In addition, Genistein-treated 

CRC cells showed decreased positive cells of EGFR and ESR1 than those in untreated cells (C). 
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CONCLUSIONS 
 

The network pharmacology, molecular docking, and 

experimental validation results show that genistein may 

exert the promising anti-CRC effects by targeting 

autophagy-associated genes and pathways. The results 

generated from the bioinformatics and biochemical 

analyses may be useful for future clinical applications 

of genistein for treating CRC. 
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