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INTRODUCTION 
 

According to World Health Organization (WHO) 

statistics, glioma is the most common brain tumor in 

adults [1], and it is graded from I to IV [2]. Grade II and 
III gliomas are also designated as lower-grade gliomas 

(LGGs) in The Cancer Genome Atlas (TCGA) database. 

Chemotherapy and radiotherapy are used to treat LGG 
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ABSTRACT 
 

Objective: Mitochondrial genome maintenance exonuclease 1 (MGME1) is associated with DNA depletion, 
deletion, duplication, and rearrangement. However, the function of MGME1 in tumors, especially lower-grade 
gliomas (LGGs), has not been established. 
Methods: Pan-cancer analysis was used to define the expression patterns and prognostic value of MGME1 in 
various cancers. Subsequently, we systematically determined the associations between MGME1 expression and 
clinicopathological characteristics, prognosis, biological functions, immune characteristics, genomic mutations, 
and therapeutic responses of LGGs based on their expression patterns. The expression level and specific 
functions of MGME1 in LGGs was detected by conducting in vitro experiments. 
Results: Abnormally enhanced and high MGME1 expressions were associated with poor prognoses of various 
tumors, including LGG. Multivariate and univariate Cox regression analyses manifested that MGME1 expression 
was an independent prognostic biomarker for LGG. The immune-related signatures, infiltration of immune cells, 
immune checkpoint genes (ICPGs), copy number alteration (CNA), tumor mutation burden (TMB), and 
treatment responses of LGG patients were associated with the expression of MGME1. The in vitro experiments 
affirmed that MGME1 was elevated and tightly connected with the cell proliferation and cell cycle in LGG. 
Conclusions: MGME1 is an independent prognostic biomarker and closely related to the cell proliferation in 
LGG. 
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patients; however, their efficacies are suboptimal [3]. 

Therefore, new effective treatments for LGG need to be 

established. 

 

Mitochondrial genome maintenance exonuclease 1 

(MGME1) was certified as a mitochondrial DNA 

nuclease. MGME1 participated in the mitochondrial 

replication by interacting with the POLG, SSBP1, and 

TWNK and played an important part in maintaining 7S 

DNA [4, 5]. Loss-of-function mutations of MGME1 may 

lead to mitochondrial DNA deletions, depletion, 

rearrangements and duplications [6, 7]. Additionally, 

MGME1 played a part in the termination of replication 

and transcription at the end of the control region of 

mitochondria DNA [8]. During DNA double-strand 

breaks, MGME1 could cooperate with pol γ and the 

TWNK helicase to degrade linear mitochondria DNA [9]. 

This may be connected to the malignant development of 

some cancers. To clarify the specific roles of MGME1 in 

LGGs, we conducted a study to explore the specific 

functions of MGME1 in patients with LGGs. 

 

In the research, we carried out pan-cancer analysis of 

MGME1 for 33 types of cancers and detected that its 

prognostic value in pan-LGG was more significant than 

in other cancers. Thus, it is very important to examine the 

specific roles of MGME1 in LGG. Afterwards, we 

further examined the prognostic value of MGME1 in 

LGGs using three independent cohorts, including the 

TCGA cohort (n = 477), the Chinese Glioma Genome 

Atlas (CGGA) cohort (n = 170), and the GSE16011 

cohort (n = 102). We separated the samples into high- 

and low-MGME1 subtypes in the light of the median 

MGME1 expression in patients with LGG and confirmed 

that the prognosis of the high-MGME1 subtype was 

worse than that of the low-MGME1 subtype through 

survival analysis. We also investigated the relationships 

between MGME1 expression and age, isocitrate 

dehydrogenase (IDH) status, 1p/19q status gender, WHO 

classification, and MGMT status by analyzing clinical 

pathological information. We employed cox regression 

analysis of the aforementioned clinical indicators to 

inspect the independent prognostic significance of 

MGME1 expression for LGGs. The biological functions 

of MGME1 in LGGs were explored via functional 

enrichment analysis. We executed the single sample 

GSEA (ssGSEA) algorithm to ascertain the connection 

between MGME1 expression and 29 immune-related 

features, immunological features (such as ICPGs and 

stromal and immune scores and the expressions of tumor-

infiltrating immune cells (TIICs)), genomic alterations 

and treatment responses. Through in vitro experiments, 

we can affirm the abnormal expression and biological 
functions of MGME1 in LGGs. MGME1 is an 

independent prognostic biological marker and might 

represent a new therapeutic target for LGGs. 

RESULTS 
 

Pan-cancer analysis of MGME1 

 

Figure 1 is a flow chart showing the entire research 

process. Comparison of the pan-oncogene expression 

data obtained from the TCGA and GTEx databases 

manifested that MGME1 was abnormally upregulated in 

various cancers. MGME1 was significantly elevated in 

24 types of cancers, including ACC, BLCA, BRCA, 

CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC, 

LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD, 

PRAD, SKCM, STAD, TGCT, THCA, UCEC, and 

UCS, and slightly in KIRP and READ (Figure 2A). 

 

We exploited a univariant Cox regression analysis to 

inspect the association between MGME1 expression 

and OS and determine the prognostic significance of 

MGME1 in 33 cancer types. As shown in the forest 

chart, MGME1 expression was negatively correlated 

with OS for LGG, KIRC, LUAD, PAAD, UVM, and 

READ (Figure 2B). Survival analysis results also 

showed that higher expressions of MGME1 indicated 

worser OS of LGG (Figure 2C), PAAD (Supplementary 

Figure 1A), SARC (Supplementary Figure 1B), UCEC 

(Supplementary Figure 1C), and UVM (Supplementary 

Figure 1D). Additionally, we detected those higher 

expressions of MGME1 correlated with poorer disease 

special survival (DSS) of LGG (Supplementary Figure 

1E), SARC (Supplementary Figure 1F), UCEC 

(Supplementary Figure 1G), and UVM (Supplementary 

Figure 1H). 

 

Subsequently, we explored the correlation between 

MGME1 and ICPG expressions in 33 tumors. The 

results manifested that MGME1 expression was 

interrelated with the expressions of most ICPGs in 

BLCA, BRCA, KIRC, COAD, ESCA, HNSC, KIRC, 

KIRP, LGG, LUSC, OV, PRAD, SKCM, THCA, 

THYM, UCEC, and UVM (Figure 2D). We also probed 

the association between TMB and MGME1 expression 

in 33 cancers. The expression of MGME1 and TMB 

were positively correlated in BRCA, KIRC, LGG, 

LUAD, PAAD, PRAD, SARC, and STAD, and 

negatively correlated in ESCA (Figure 2E). 

 

We further conducted separate correlation studies to 

determine the clinical value of MGME1 in patients with 

LGG. 

 

MGME1 and clinicopathological characteristics in 

LGG 

 

According to the median MGME1 expression, we 

grouped the patients with LGG into low- and high-

MGME1 subgroups and examined the relationships 
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between MGME1 expression and clinicopathological 

traits in the TCGA, CGGA, and GSE16011 cohorts. 

The results proved that the upregulation of MGME1 

expression was strongly relevant with old age, 1p/19q 

non-codel, higher WHO grade, IDH wildtype, and 

MGMT unmethylation in the TCGA dataset (Figure 3A, 

3B). We obtained the same results for the CGGA 

(Supplementary Figure 2A, 2B) and GSE16011 

(Supplementary Figure 3A, 3B) cohorts. Hence, 

MGME1 expression was tightly interrelated with the 

clinicopathological features of LGG patients. 

 

Adverse prognosis of LGG is associated with 

increased expression of MGME1 

 

Kaplan-Meier analysis manifested that the OS of the 

low-MGME1 subgroup was better than that of the high-

MGME1 subgroup in the TCGA (Figure 3C), CGGA 

(Supplementary Figure 2C), and GSE16011 

(Supplementary Figure 3C) datasets. We probed into the 

associations between the expression of MGME1, risk 

score, and OS of LGG patients and found that the 

upregulation of MGME1 expression was connected 

with worse OS and higher risk scores in the TCGA 

(Figure 3D), CGGA (Supplementary Figure 2D), and 

GSE16011 (Supplementary Figure 3D) cohorts. We 

also determined the proportions of patients with LGG 

with the selected durations of survival in the TCGA 

(Figure 3E), CGGA (Supplementary Figure 2E), and 

GSE16011 (Supplementary Figure 3E) cohorts. ROC 

curves were used to determine the reliability of 

MGME1 in forecasting the OS of patients with LGG in 

the three cohorts. The AUCs for 1-, 3-, and 5-year OS 

were 0.819, 0.805, and 0.747, severally, for the TCGA 

cohort (Figure 3F); 0.726, 0.795, and 0.780, severally, 

for CGGA cohort (Supplementary Figure 2F); and 

0.733, 0.708, and 0.729, severally, for the GSE16011 

cohort (Supplementary Figure 3F). These results

 

 
 

Figure 1. Flowchart of research. (A) Pan-cancer analysis. (B) Clinical features. (C) Prognosis analysis. (D) Biological functions. (E) Immune 

features. (F) Genetic variations. (G) Experimental verification. (H) Treatment response of MGME1 in LGG. 
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forcefully suggest that MGME1 is a prognostic 

biomarker for patients with LGG. 

 

Independent prognostic implication of MGME1 in 

LGG 

 

Multivariate and univariate Cox regression analyses 

were performed to define whether MGME1 was an 

independent prognostic indicator for the three cohorts. 

The results manifested that MGME1 expression, age, 

IDH status, WHO grade, and 1p/19q status were 

independent prognostic biomarkers of LGG in the 

TCGA dataset (Figure 3G, 3H). We found that MGME1 

expression, WHO grade, and 1p/19q status were 

independent prognostic factors of LGG in the CGGA 

cohort (Supplementary Figure 2G, 2H). MGME1 

 

 
 

Figure 2. Pan-cancer analysis of MGME1. (A) Differential expressions of MGME1 in normal and cancer tissues. (B) Univariate Cox 

regression analysis of MGME1 expression in various tumors. (C) Kaplan-Meier analysis of MGME1 in pan-LGG. (D) Co-expressions of 
MGME1 and ICPGs in different cancers. (E) Differential TMB in various cancers. *P < 0.05, **P < 0.01, ***P < 0.001. 
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expression and age were also considered independent 

prognostic factors for LGG in the GSE16011 cohort 

(Supplementary Figure 3G, 3H). Based on the results 

for the above three datasets, MGME1 expression is an 

independent prognostic biomarker for LGG. 

Functions of MGME1 in LGG 

 

We identified the DEGs based on the average MGME1 

(|log2 (fold change)| > 0.5 and P < 0.05) expression to 

assess the effect of MGME1 on the OS of patients with 

 

 
 

Figure 3. Correlation analysis of MGME1 in TCGA. (A) Association between MGME1 expression and clinical characteristics of LGG in 

TCGA. (B) Variance analysis of MGME1 expression and different clinical characteristics (including age, gender, grade, and 1p/19q, IDH, and 
MGMT statuses) in the TCGA dataset. (C) Prognostic analysis of high-MGME1 and low-MGME1 subtypes in the TCGA dataset. (D) 
Distribution of risk scores and OS of high-MGME1 and low-MGME1 subtypes in the TCGA dataset. (E) Distributions of OS of the two 
subtypes. (F) ROC curves representing the predictive value of the risk score in TCGA. (G, H) Univariate and multivariate Cox regression 
analyses of MGME1 expression and clinicopathological characteristics in TCGA. *P < 0.05, **P < 0.01, ***P < 0.001. 
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LGG. We selected 600 downregulated (Supplementary 

Table 1) and 2207 upregulated (Supplementary Table 2) 

DEGs from the TCGA cohort and 899 downregulated 

(Supplementary Table 3) and 2253 upregulated 

(Supplementary Table 4) DEGs from the CGGA cohort. 

The heatmap shows the DEGs in the TCGA (Figure 4A) 

and CGGA (Supplementary Figure 4A) datasets. We 

carried out GO-BP and KEGG analysis to deal with 

these downregulated and upregulated DEGs. In the 

TCGA cohort, the downregulation of MGME1 

expression was related to the regulation of the 

modulation of the chemical synaptic transmission, 

signal release, regulation of membrane potential, and 

neurotransmitter transport according to the GO-BP 

 

 
 

Figure 4. Biological functions of MGME1 in LGG in TCGA. (A) DEGs in the low-MGME1 and high-MGME1 expression subgroups. (B, C) 

The GO-BP (B) and KEGG (C) analyses for MGME1 in patients with LGG in the TCGA dataset. (D) GSVA in the TCGA dataset. 
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analysis results of the downregulated DEGs. In 

addition, the upregulated genes were mainly enriched 

for neutrophil activation, T cell activation, neutrophil-

mediated immunity, B cell activation leukocyte cell-cell 

adhesion, and response to drugs (Figure 4B). These 

results were also obtained for the CGGA cohort 

(Supplementary Figure 4B). The KEGG pathway 

analysis of the TCGA (Figure 4C) and CGGA 

(Supplementary Figure 4C) data indicated that the 

downregulated DEGs were enriched for neuroactive 

ligand-receptor interaction, cAMP signal pathway, 

nicotine addiction, and synaptic vesicle circulation, 

while the upregulated DEGs were enriched for the 

PI3K-Akt signal pathway, MAPK signaling pathway, B 

cell receptor signal pathway, NF kappaB signal 

pathway, leukocyte transcutaneous migration, cell cycle 

and T cell receptor signal pathway. 

 

GSVA analysis was used to inspect the molecular 

pathways for the low- and high-MGME1 isoforms of 

LGG. The results indicated that the high-MGME1 

isoform was mainly interrelated with the cell cycle, 

DNA replication, and P53 signaling pathway in TCGA 

(Figure 4D) and CGGA (Supplementary Figure 4D) 

cohorts. 

 

MGME1 and immune characteristics 

 

The relationship between MGME1 and immune 

regulation in LGG was revealed by the GO-BP and 

KEGG results for the upregulated DEGs. Therefore, we 

examined the combination of MGME1 and LGG immune 

characteristics. We implanted the ssGSEA algorithm to 

identify the abundance of 29 immune-related factors to 

examine the combination of MGME1 expression and 

immune infiltration. In the CGGA (Supplementary 

Figure 5A) and TCGA (Figure 5A) datasets, the low-

MGME1 subgroup had significantly fewer immune-

related characteristics than the high-MGME1 subgroup. 

The ESTIMATE algorithm showed that MGME1 

expression was positively correlated with estimation, 

immune scores, and stromal but negatively correlated 

with tumor pureness in the TCGA (Figure 5B) and 

CGGA (Supplementary Figure 5B) cohorts. The 

CIBERSORT algorithm was applied to study the 

infiltration abundance of TIIC in the two MGME1 

subgroups. In the TCGA cohort, the infiltration 

abundance of resting memory CD4+T cells, and 

macrophage M1 were positively correlated with MGME1 

expression, while those of macrophage M2 and B cell 

memory cells were negatively correlated with MGME1 

expression (Figure 5C, 5D). We obtained the same result 

for the CGCA cohort (Supplementary Figure 5C, 5D). 
 

We executed differential correlation analysis to further 

investigate the differential expressions of ICPGs and 

MGME1 in patients with LGG. MGME1 expression 

and the expressions of most ICPGs in the TCGA cohort 

presented a positive correlation (Figure 5E). We used 

correlation analysis to explore the associations between 

MGME1 and some known ICPGs (such as PD1, PD-L1, 

LAG3, CD28, CD80, and CD86) in the TCGA dataset 

(Figure 5F). We obtained the same results for the 

CGGA cohort (Supplementary Figure 5E, 5F). 

Therefore, MGME1 may be closely related to the 

immune microenvironment. 

 

MGME1 is related to genomic variations 

 

Several research have indicated that genomic variations 

may fulfil a crucial role in regulating immune invasion 

and tumor immunity [10–12]. Given the value of 

genomic variations in tumor immune regulation and 

infiltration, we used CNA and somatic mutation 

analysis to distinguish the differential genomic 

mutations in the low-MGME1 and high-MGME1 

expression subgroups. The frequency of CNAs, 

including amplification and deletion, in the low-

MGME1 subgroup was sensibly lower than that in the 

high-MGME1 subgroup (Figure 6A, 6B). Subsequently, 

we established a “waterfall” map of somatic mutations 

to show that low-MGME1 expression subgroups had 

specific mutant genes. The mutation frequencies of 

IDH1 and CIC in the high-MGME1 subgroup were 

lower than those in the low-MGME1 subgroup. 

Nevertheless, the mutation frequencies of TP53 and 

ATRX were higher in the high-MGME1 than in the low-

MGME1 subgroup (Figure 6C, 6D). The expression of 

MGME1 was positively correlated with TMB in 

patients with LGG (Figure 6E, 6F). Besides, MGME1 

expression and TMB levels were negatively interrelated 

with the OS of LGG patients (Figure 6G, 6H). These 

results suggested that LGG patients with high MGME1 

expression may show special immunological models. 

 

In vitro study of MGME1 expression in patients with 

LGG 

 

Protein expressions levels of MGME1 in LGG tissues 

were sensibly higher, and the results were analyzed 

using ImageJ software (Figure 7A). We assessed the 

protein and mRNA expressions of MGME1 in these 

LGG cell lines, including the SW-1783, SW-1088, 

BT142, and NHA lines, and found that the MGME1 

expression in the NHA cell lines was lower than that in 

the LGG cell lines (Figure 7B, 7C). 

 

Afterwards, we performed functional experiments to 

rate the relationship between LGG cells and MGME1 
expression in different groups. CCK-8 assays (Figure 

7D), and colony formation assays (Figure 7E, 7F) 

manifested that the proliferation ability of SW1088  
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si-MGME1 group was noteworthily decreased 

compared with the si-NC group. What’s more, we found 

that downregulating MGME1 expression had a strong 

effect on cell cycle. Specifically, after MGME1 

silencing in SW1088 cells, the number of cells in 

G0/G1 phase increased, while the number of cells in S 

and G2/M phase decreased (Figure 7G, 7H). Moreover, 

the downregulation of MGME1 expression could 

 

 
 

Figure 5. TME and immunological features of the low-MGME1 and high-MGME1 subtypes in TCGA. (A, B) Relationship 

between MGME1 expression and 29 immune-associated signatures, ESTIMATE scores, immune scores, stromal scores, and tumor purity. (C) 
Comparison of 22 types of immune cell infiltration in the two subgroups. (D) Lollipop plots showing the relationships between MGME1 
expression and TIICs. (E, F) Co-expression analysis of MGME1 and 25 ICPGs. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 6. Contradistinction of genomic mutations in the two subgroups in the TCGA dataset. (A, B) Circos plots of low- and high-
MGME1 subgroups show the amplifications and deletions of chromosomes, and the boxplots show a lower burden of copy number 
amplifications and deletions in the low-MGME1 subgroup. (C, D) The waterfall diagrams show the mutated genes in the low-MGME1 (C) 
and high-MGME1 (D) subgroups. (E, F) An association between MGME1 expression and TMB levels. (G, H) Association between TMB levels 
and the prognosis of patients with LGG (G) and the differential prognostic value in the two subtypes with different TMB level (H). *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001. 
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significantly restrain cell proliferation by EdU assays in 

SW1088 cells (Figure 7I, 7J). These results suggest that 

MGME1 was closely connected with the cell 

proliferation and cell cycle of LGG cells in vitro. 

 

 
 

Figure 7. In vitro experimental verification of MGME1 in LGG. (A) Western blot analysis of MGME1 expression in LGG tissues and 
corresponding para-carcinoma tissues. (B) Western blot and (C) qRT-PCR analysis of MGME1 expression in NHA and LGG cell lines. (D) The 
cell viability of si-MGME1-transfected and si-NC-transfected SW1088 cells by CCK-8 assays. (E, F) Effect of MGME1 knockdown on colony 
formation was counted in SW1088 cells. (G, H) Cell cycle assays were executed to assess the cell cycle distribution of the SW1088 cells 
transfected with si-MGME1 or si-NC lentiviruses. (I, J) Representative images (I) and histogram analysis (J) of EdU assays after silencing 
MGME1 in SW1088 cells. 
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Association between MGME1 expression and 

therapeutic response 

 

We determined the associations between MGME1 

expression and PI3K/AKT inhibitors: TGX221, 

ZSTK474, AS605240, and A-443654 (Figure 8A–8D); 

the MAPK inhibitors: TAK-715 and NG-25 (Figure 8E, 

8F); NF kappaB inhibitor: bortezomib (Figure 8G); 

DNA replication inhibitor: Etoposide (Figure 8H) to 

assess the value of MGME1 expressions in guiding 

 

 
 

Figure 8. Different responses to chemotherapy of the low-MGME1 and high-MGME1 subtypes in the TCGA dataset. (A–D) 

the PI3K/AKT inhibitors: TGX221 (A), ZSTK474 (B), AS605240 (C), and A-443654 (D). (E, F) the MAPK inhibitors: TAK-715 (E) and NG-25 (F). 
NF kappaB inhibitor: bortezomib (G). DNA replication inhibitor: Etoposide (H). 
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chemotherapy. The high MGME1 expression was 

relevant to the lower inhibitory centration (IC50) of 

these anti-cancer drugs. In effect, the high-MGME1 

expression subtype was more susceptible to the anti-

cancer drugs. Therefore, these anti-cancer drugs may be 

used for chemotherapy for patients with LGG with high 

MGME1 expressions in the future. 

 

DISCUSSION 
 

Despite the advances of surgery and postoperative 

comprehensive treatment of LGG, the overall clinical 

prognosis of patients with LGG is still poor [13, 14]. 

Thus, it is necessary to define the effective prognosis 

and treatment goals of these patients. MGME1 is key to 

the regulation of cell proliferation. And yet, the role of 

MGME1 in LGG is unknown. Therefore, we 

comprehensively studied the relationships between 

MGME1 expression, clinical characteristics, tumor 

immunity, gene mutations, prognosis, biological 

functions, and treatment responses of LGG patients. 

We used pan-cancer analysis of MGME1 for 33 cancers. 

The results showed that higher expressions of MGME1 

were interrelated with shorter survival durations of 

patients with pan-LGG, higher ICPG expressions, and 

higher TMB. To assess the prognostic role of MGME1 in 

LGG, we conducted survival analysis for the TCGA 

cohort and found that the prognosis of the high-MGME1 

subgroup was worse than that of the low-MGME1 

subgroup. The upregulation of MGME1 expression was 

associated with worse OS. ROC curves and AUC values 

were exploited to confirm the accuracy of MGME1 

expression for predicting the OS of LGG patients. The 

connection between MGME1 expression and clinico-

pathological characteristics of patients with LGG further 

confirmed that there were significant differences between 

the clinical factors. In addition, MGME1 was an 

independent prognostic biomarker of LGG, which was 

confirmed by Cox regression analysis. Analogous results 

were for the CGGA and GSE16011 datasets. Thus, 

MGME1 could be a forceful prognostic biomarker of 

LGG patients. 

 

 
 

Figure 9. The underlying biological mechanisms of MGME1 in LGG. 
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We analyzed the upregulation of DEGs in the TCGA 

and CGGA cohorts using KEGG and GO-BP 

enrichment analyses. The increase in MGME1 

expression was observed in the PI3K-Akt signal 

pathway, MAPK signaling pathway, B cell receptor 

signal pathway, NF kappaB signal pathway, leukocyte 

transcutaneous migration, cell cycle and T cell receptor 

signal pathway. The high MGME1 expression was 

majorly related to DNA replication, the cell cycle, and 

P53 signaling pathway, which was confirmed by GSVA 

analysis. 

 

On the basis of the results of GO-BP, KEGG, and 

GSVA analyses, we exploited the ssGSEA, 

ESTIMATE, and CIBERSORT algorithms to inspect 

the differences in the immune-related features of the 

two subgroups in the CGGA and TCGA cohorts and 

determine the compositions of tumor microenvironment 

and tumor-infiltrating immune cells. These results 

manifested that the expression of MGME1 is closely 

correlated to immune infiltration in LGG. The 

activation of specific immune cells in the tumor 

microenvironment (TME) has become the new strategy 

of immunotherapy for the treatment of tumors [15–17]. 

As a new immunotherapeutic drug, immune-checkpoint 

blockade has demonstrated good efficacy for the 

treatment of different types of tumors [18–20]. Hence, 

we investigated the relationship between MGME1 and 

ICPG expressions in patients with LGG. We found that 

the expressions of some common ICPGs, including 

PD1, PD-L1, LAG3, CD28, CD80, and CD86, and the 

expression of MGME1 based on the CGGA and TCGA 

datasets showed a positive correlation. In addition, 

somatic mutation and CNA analyses showed that the 

TMB and CNA loads of the high-MGME1 expression 

subgroup were higher than those of the low-MGME1 

expression subgroup. In summary, MGME1 may play 

an important part in immunotherapy for patients with 

LGG. The underlying molecular mechanisms of 

MGME1 expression in LGG are shown in Figure 9. 

 

At present, TMZ-targeted chemotherapy is the most 

frequently used treatment for LGG patients [21]. 

Nevertheless, its effectiveness is limited. Therefore, it is 

necessary to excavate novel chemotherapy drugs that 

may be exploited to treat LGG. The chemotherapy 

sensitivity analysis showed that the high-MGME1 

subtype was more responsive than the low-MGME1 

subtype to chemotherapy, such as TGX221, ZSTK474, 

AS605240, A-443654, TAK-715, NG-25, bortezomib, 

and etoposide. MGME1 may be a latent predictor of 

chemosensitivity in patients with LGG. Based on the 

above results, we conducted in vitro experiments to 

confirm that MGME1 was elevated and vital for cell 

proliferation and cell cycle in LGG. Importantly, we 

detected that the proliferation ability of the LGG cells 

was impaired after knockdown the MGME1. 

Nevertheless, there are still some limitations in the 

study. The underlying roles of MGME1 in LGG should 

be inspected by performing in vivo and in vitro 

experiments in the future research. Additionally, further 

research should be adopted to examine whether MGME1 

is an effective therapeutic target for LGG patients. 

 

CONCLUSION 
 

This research ascertained that MGME1 was a forceful 

prognostic biomarker and tightly connected with cell 

proliferation and cell cycle of LGG. Therefore, 

MGME1 may an effective therapeutic target for LGG 

patients. 

 

METHODS 
 

Data acquiring and processing 

 

We carried out a pan-cancer analysis of gene expression 

data, survival data, and clinicopathological information 

collected from public databases. We obtained data on 

the expression of MGME1, related clinical information, 

and the TMB of 33 tumor types from TCGA database. 

MGME1 expression data of normal tissues were 

obtained from Genotypic-Tissue Expression (GTEx). 

 

We used three independent LGG datasets, including 

TCGA, CGGA (CGGA_325), and GSE16011. The gene 

expression data, survival data, and clinical pathological 

information were gathered from CGGA 

(http://www.cgga.org.cn/), TCGA (https://portal.gdc. 

cancer.gov/), and Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/) websites. RNA-seq 

expression data, in FPKM format, were converted to 

TPM values. To facilitate comparison, we converted the 

transformed TPM values for the RNA-seq data and the 

robust multichip average analysis processing values of 

GSE16011 by log2. We also obtained genome variation 

data of the LGG samples from the TCGA dataset. 

 

Samples inclusion criteria 

 

Patients with LGG who conformed to the following 

standards were contained in the present study: (1) 

WHO grade II and III gliomas; (2) availability of gene 

expression information; and (3) overall survival (OS) 

of >30 days. Of the LGG samples used in this study, 

477 (Supplementary Table 5), 170 (Supplementary 

Table 6), and 102 (Supplementary Table 7) were 

obtained from CGGA, TCGA, and GEO databases, 

respectively. We added the data of patients with LGG 
with OS of <30 days to the pan-cancer analysis of 

MGME1 to ensure the uniformity of survival data for 

the 33 cancer types. 

http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
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Predictive value of MGME1 and related verification 

 

The LGG samples were split into the low- and high-

MGME1 subtypes on the basis of the median MGME1 

expression in the three datasets. We used Kaplan-Meier 

analysis to identify the prognosis of LGG in patients 

with the low- and high-MGME1 subtypes. We used the 

survival status ratio, receiver operating characteristics 

(ROC), and area under curve (AUC) values. Cox 

regression analysis was applied to determine the value 

of MGME1 expression as an independent biomarker for 

LGG in the three cohorts. 

 

Functional enrichment analysis 

 

Using a false-discovery rate (FDR) of <0.05 and 

|log2FC| of >0.5, we employed the R package, “limma,” 

to examine the differentially expressed genes (DEGs) in 

the two subgroups [22]. Based on the DEGs, we 

exploited the R package, “clusterProfiler,” to perform 

Gene Ontology biological process (GO-BP) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

enrichment analyses [23]. We executed Gene set 

variation analysis (GSVA) to evaluate the molecular 

pathways with significant enrichment in the low- and 

high-MGME1 subgroups [24]. According to the 

standards of |log2 FC |>0.1, p < 0.05, and FDR < 0.05, 

the most abundant molecular pathways between the two 

subgroups were determined by using KEGG analysis 

(c2.cp.kegg.v7.2.symbols) genesets. 

 

Immunological features of LGGs 

 

Immunological signatures, the abundance of immune 

cells and stromal cells, and the level of expression of 

ICPGs are immunological features. First, we obtained 

immune-related signatures from previous studies [25, 

26] and exploited the ssGSEA algorithm to distinguish 

the differential enrichment of 29 immune-related 

features of the low- and high-MGME1 subtypes. In the 

light of the expression profiles of the patients with 

LGG, the ESTIMATE algorithm was applied to assess 

the enrichment of stromal and immune cells and tumor 

purity [27, 28]. Next, we measured four types of 

scores, including tumor purity, estimated score 

(representing non-tumor complex), stromal score 

(representing the richness of stromal cells), and 

immune score (representing the richness of immune 

cells). 

 

Thereafter, the level of infiltration of TIICs was 

determined using the CIBERSORT algorithm in line 

with the gene expression data of patients with LGGs 
[29]. We also selected 25 ICPGs with potential 

therapeutic value based on previous studies [30] and 

studied their association with MGME1 expression. 

Genomic mutation analysis 

 

Using the RCircos tool, we identified and visualized 

significant deletions and amplifications in the entire 

genomes of the low and high MGME1 expression 

subgroups [31]. The types and frequencies of gene 

mutations in the low- and high-MGME1 subgroups 

were explained and visualized using Maftools and 

GenVisR [32, 33]. Currently, the newly developed 

biomarker TMB for predicting immunotherapeutic 

response reflects the total number of non-synonymous 

mutations. First, the combination between MGME1 

expression and TMB level in 33 tumor types was 

explored using the R package “fmsb.” At the same time, 

the binding between MGME1 expression and TMB was 

assessed using the “ggplot2” R package in an 

independent LGG TCGA cohort. 

 

Therapeutic responses of MGME1 

 

We investigated the difference between the responses of 

the low- and high-MGME1 subtypes to several chemo-

therapeutic drugs using the “pRRophetic” R package [34]; 

the chemotherapy drugs included PI3K/AKT inhibitors 

(TGX221, ZSTK474, AS605240, and A-443654), MAPK 

inhibitors (TAK-715 and NG-25), and proteasome 

inhibitors (bortezomib and Etoposide). 

 

Cell culture and transfection 

 

We obtained normal human astrocyte (NHA) cell line 

from the Culture Collection of the Chinese Academy of 

Sciences (Shanghai, China), and SW-1088, SW-1783, 

BT142 human LGG cell lines from the American Typical 

Culture Collection (ATCC). Dulbecco’s modified 

Eagle’s/F12 (ATCC) medium was used to culture the 

NHA and BT142 cell lines. Leibovitz’s L-15 medium 

(ATCC), which contained 10% fetal bovine serum 

(Gibco), was used to culture the SW-1088 and SW-1783 

cell lines. The above cell lines were cultured with 37°C 

and 5% CO2. We obtained a lentivirus expressing 

MGME1 shRNA from Obio Technology (Shanghai, 

China), where the target sequence of MGME1 shRNA 

was 5′-GCTTAATTGTGGTGGCCTACA-3′. According 

to the protocol, lentivirus shRNA and negative control 

(NC) vectors were transfected into SW1088 cell line. The 

multiplicities of infection (MOIs) were 10 in SW1088 

cells. Additionally, the transfection efficiency was 

improved by polybrene, and the positive cells were 

filtered by puromycin. 

 

Western blot analysis and quantitative real-time 

PCR 

 

The Ethics Committee of the Second Affiliated Hospital 

of Nanchang University had authorized the use of 
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human tissue in this research. We utilized a 

radioimmunoprecipitation assay buffer (Solarbio, China) 

containing a mixture of protease inhibitors to extract cell 

and human tissue lysates. We exploited 10% sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis to 

separate the pyrolysis product, which was shifted to the 

polyvinylidene fluoride (PVDF) membrane and 

incubated with primary antibodies, including MGME1 

(1:2000, 67468-1-Ig, Proteintech, China) and beta-tubulin 

(1:2000, 10068-1-AP, Proteintech, China). Subsequently, 

the PVDF membranes were further incubated with 

related secondary antibodies. Finally, we incubated the 

membranes with an enhanced chemiluminescence (ECL) 

substrate (Thermo Fisher Scientific, USA) and observed 

the protein bands on the membranes through the 

GV6000M imaging system (GelView6000pro). We 

employed the Simple P total RNA extraction kit (Biolux, 

China) to isolate the RNA from the cells and HiScript III-

RT SuperMix (Vazyme, China) to reverse transcribe it to 

complementary DNA. We used the 2-∆∆CT method to 

process the result. The primer sequences of these genes 

were as below: forward MGME1 primer, 5′-

TGTGGCTTAATTGTGGTGGC-3′; reverse MGME1 

primer, 5′-AGTCGAAGAAGCCACTTGGT-3′; beta-

tubulin forward primer, 5′-ACGCGGTTCTGT 

CTATCCAC-3′; and beta-tubulin reverse, 5′-

GAGGTGGTTATGCCGCTCAT-3′. 

 

CCK-8 assay 

 

The transfected SW-1088 cells were sowed in 96-well 

plates at 2 × 103 per well and cultured for 4 days. Cell 

multiplication was checked by Cell Counting Kit 8 

assay (Glpbio, USA, GK10001) on the basis of the 

protocol. 

 

Colony formation assay 

 

The 2×103 cells/well were plated in 6-well plates and 

cultured for 2 weeks. The cells were then stained with 

0.1% crystal violet solution, and the number of colonies 

was recorded by ImageJ. 

 

EdU assay 

 

The transfected SW-1088 cells (2 × 104) were sowed in 

24-well plates and incubated for 72 hours. Next, we 

cultured the cells with EdU reagent for 2 h. The cells 

were fixed by 4% paraformaldehyde and 0.5% Triton 

X-100, and then stained by the Hoechst staining. ImageJ 

was used to calculate the EdU inclusion rate. 

 

Cell cycle analysis 

 

The transfected SW-1088 cells were immobilized with 

70% ethanol at 4°C overnight and stained with RNase A 

containing propidium iodide (Suzhou, China). The cell 

cycle distribution was surveyed by implementing flow 

cytometer. 

 

Statistical analysis 

 

Kaplan-Meier analysis using a two-sided logarithmic 

rank test was utilized to distinguish the prognosis of the 

high-MGME1 subset from that of the low-MGME1 

subset. The AUC values and ROC curves were applied to 

verify the exactitude of the prognostic prediction on the 

basis of MGME1 expression. Cox regression analysis 

was applied to estimate the independent prognostic 

significance of MGME1. Student’s t-test was employed 

to contrast the immune-related factors associated with the 

two subtypes, such as 29 immune-related characteristics, 

TIIC, 25 ICPGs, TMB, and CNA loads. We conducted 

Pearson’s or Spearman’s correlation test to determine the 

relevance between the distributed variables. Wilcoxon’s 

signed-rank test was employed to inspect the discrepancy 

in sensitivity between the two subtypes of anticancer 

drugs. We used R version 4.1.0, GraphPad Prism 8 

(GraphPad Software, Inc., USA), and SPSS Statistics to 

perform the statistical analyses. The results were 

supposed to be significant for p-values of < 0.05. 

 

Availability of data and materials 

 

The data analyzed in this research can be found in  

the TCGA (https://portal.gdc.cancer.gov/), CGGA 

(http://www.cgga.org.cn/), and GEO (http://www.ncbi. 

nlm.nih.gov/geo/) websites. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Kaplan-Meier analysis of MGME1 in pan-cancer. (A–D) Correlation between MGME1 expression and OS 

of PAAD (A), SARC (B), UCEC (C), and UVM (D). (E–H) Correlation between MGME1 expression and disease special survival of LGG (E), SARC 
(F), UCEC (G), and UVM (H). 
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Supplementary Figure 2. Clinical correlation analysis of MGME1 in CGGA. (A) Association between MGME1 expression and clinical 

characteristics of LGG in CGGA. (B) Variance analysis of MGME1 expression and various clinical features (including age, gender, grade, and 
1p/19q, IDH, and MGMT statuses) in the CGGA dataset. (C) Prognostic analysis of high-MGME1 and low-MGME1 subtypes in the CGGA 
dataset. (D) Distribution of the risk score and OS of the high-MGME1 and low-MGME1 subgroups in the CGGA dataset. (E) Survival analysis 
of the two subgroups. (F) ROC curves representing the predictive role of the risk score in CGGA. (G, H) Univariate and multivariate Cox 
analyses of MGME1 expression and clinicopathological features in CGGA. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Supplementary Figure 3. Clinical correlation analysis of MGME1 in the GSE16011 dataset. (A) Association between MGME1 

expression and clinical characteristics of LGG in the GSE16011 dataset. (B) Variance analysis of MGME1 expression and different clinical 
features (including age, gender, grade, and 1p/19q, IDH, and MGMT statuses) in the GSE16011 dataset. (C) Prognostic analysis of high-
MGME1 and low-MGME1 subtypes in the GSE16011 dataset. (D) Distribution of risk score and OS of high-MGME1 and low-MGME1 
subgroups in the GSE16011 dataset. (E) Survival of the two subgroups. (F) ROC curves representing the predictive role of the risk score in 
GSE16011. (G, H) Univariate and multivariate Cox regression analyses of MGME1 expression and clinicopathological characteristics in 
GSE16011. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Supplementary Figure 4. Biological functions of MGME1 in LGG in CGGA. (A) DEGs in the low-MGME1 and high-MGME1 

expression subgroups. (B, C) The GO-BP (B) and KEGG (C) analyses of MGME1 in patients with LGG patients in the CGGA dataset. (D) GSVA 
of the CGGA data. 
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Supplementary Figure 5. Different TME and immunological characteristics of the low-MGME1 and high-MGME1 subtypes 
in CGGA. (A, B) Associations between MGME1 expression and 29 immune-associated signatures, ESTIMATE scores, immune scores, 
stromal scores, and tumor purity. (C) Comparisons of infiltration of 22 types of immune cells in the two subgroups. (D) Lollipop plots 
show the relationships between MGME1 expression and TIICs. (E, F) Co-expression analysis of MGME1 and 25 ICPGs. *P < 0.05, **P < 0.01, 
***P < 0.001. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. Down-regulated DEGs in TCGA dataset. 

 

Supplementary Table 2. Up-regulated DEGs in TCGA dataset. 

 

Supplementary Table 3. Down-regulated DEGs in CGGA dataset. 

 

Supplementary Table 4. Up-regulated DEGs in CGGA dataset. 

 

Supplementary Table 5. Clinical features of LGG patients from TCGA. 

Clinical features  Total (477) % 

Age 
Age ≤45 287 60.17% 

Age >45 190 39.83 % 

Gender 
Female 216 45.28% 

Male 261 54.72% 

Grade 
WHO II 231 48.43% 

WHO III 246 51.57% 

1p/19q 
Non-codel 321 67.30% 

Codel 156 32.70% 

IDH 

Mutant 389 81.55% 

Wildtype 85 17.82% 

Unknow 3 0.63% 

MGMT 
Unmethylated 82 17.19% 

Methylated 395 82.81% 

 

 

Supplementary Table 6. Clinical features of LGG patients from CGGA. 

Clinical features  Total (170) % 

Age 
Age ≤45 129 75.88% 

Age >45 41 24.12% 

Gender 
Female 65 38.24% 

Male 105 61.76% 

Grade 
WHO II 97 57.06% 

WHO III 73 42.94% 

1p/19q 

Non-codel 113 66.47% 

Codel 55 32.35% 

Unknow 2 1.18% 

IDH 

Mutant 125 73.53% 

Wildtype 44 25.88% 

Unknow 1 0.59% 

MGMT 

Unmethylated 70 41.18% 

Methylated 84 49.41% 

Unknow 16 9.41% 
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Supplementary Table 7. Clinical features of LGG patients from GSE16011. 

Clinical features  Total (102) % 

Age 
Age ≤45 57 55.88% 

Age >45 45 44.12% 

Gender 
Female 35 34.31% 

Male 67 65.69% 

Grade 
WHO II 22 21.57% 

WHO III 80 78.43% 

1p/19q 

Non-codel 35 34.31% 

Codel 40 39.22% 

Unknow 27 26.47 

IDH 

Mutant 44 43.14% 

Wildtype 37 36.27% 

Unknow 21 20.59% 

 

 


