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INTRODUCTION 
 

Gastric cancer (GC) is a familiar digestive tract 
malignancy, ranking fifth for incidence and third for 

mortality worldwide [1]. GC can be caused by 

environmental factors, diet, Helicobacter pylori 

infection, and individual factors [2]. In addition, the 

occurrence of GC has been linked to gender, family 

history, history of gastric disease, and occupation. The 

main treatments for GC are drug therapy, 

chemotherapy, and surgery, however, they all have poor 

therapeutic results [3]. In the early phase, GC has 

inconspicuous clinical symptoms, so once it is detected, 

it is generally at a moderate to advanced stage and 
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ABSTRACT 
 

There is a wide range of pharmacological effects for glycyrrhetinic acid (GRA). Previous studies have shown that 
GRA could inhibit the proliferation of tumor cells, showing a promising value in the treatment of gastric cancer 
(GC). Nonetheless, the precise mechanism of the effect of GRA on GC remains unclear. We explored cellular and 
molecular mechanisms of GRA based on network pharmacology and in vitro experimental validation. In this study, 
we predicted 156 potential therapeutic targets for GC with GRA from public databases. We then screened the hub 
targets using protein-protein interaction network (PPI) and conducted clinical correlation analysis. Gene Ontology 
(GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that GRA 
made anti-GC effects through multiple targets and pathways, particularly the MAPK signaling pathway. Next, 
molecular docking results revealed a potential interaction between GRA and MAPK3. In addition, qRT-PCR 
experiments revealed that 18β-GRA was able to suppress mRNA expression of KRAS, ERK1 and ERK2 in AGS cells. 
Western blotting results also revealed that 18β-GRA was able to suppress the expression of KRAS and p-ERK1/2 
proteins in AGS cells. Additionally, immunofluorescence assays revealed that 18β-GRA inhibited p-ERK1/2 nuclear 
translocation in AGS cells. These results systematically reveal that 18β-GRA may have anti-tumor effects on GC by 
modulating the MAPK signaling pathway. 
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accompanied by metastasis, which makes detection and 

treatment even more challenging with its high incidence 

and insidious features. Unfortunately, the prognosis for 

current treatments for GC is typically poor [4, 5]. Thus, 

it is pretty significant to find effective drugs which can 

cure GC.  

 

Licorice is an extremely famous traditional Chinese 

medicine (TCM) that is commonly used in clinics. It 

is made from dried licorice roots and rhizomes and is 

available in the form of decoction pieces. Apart from 

its pharmacological value, licorice is also widely used 

in various foods for its nutritional and flavoring 

properties. Modern research has identified flavonoids, 

triterpenes, and polysaccharides as the main 

biologically active compounds in licorice [6, 7]. 

Glycyrrhetinic acid (GRA), an oleanane-type 

pentacyclic triterpenoid compound, is one of the 

major active components of licorice. GRA has 

multiple pharmacological effects, including anti-

inflammatory, anti-tumor, antiviral, immuno-

modulatory, and similar [8–11]. GRA has two optical 

isomers, 18α-GRA and 18β-GRA. Their structures are 

shown below (Figure 1). 18β-GRA has a stronger 

antitumor effect than 18αGRA, and it has been found 

that 18β-GRA has a significant inhibitory effect in 

multiple types of tumors, such as breast cancer [12], 

hepatocellular cancer [13], lung cancer [14], ovarian 

cancer [15], and gastric cancer [16]. The main 

mechanisms of 18β-GRA can not only inhibit tumor 

cell proliferation, and promote tumor cell apoptosis, 

but also inhibit tumor cell invasion and migration. Of 

course, it also can inhibit tumor angiogenesis [17]. 

Previous studies have demonstrated that 18β-GRA can 

improve the inflammatory microenvironment by 

downregulating COX-2 and upregulating miR-149-3p 

to inhibit Wnt-1, thereby inhibiting the occurrence 

and progression of GC [18]. In addition, some studies 

have reported that 18β-GRA can inhibit the invasion 

and migration of GC cells through the ROS/PKC-

α/ERK pathway [19]. Recently, it was found that 

18β-GRA can regulate the apoptosis signaling 

pathway associated with MRPL35, and inhibit GC 

cells proliferation [20]. 

 

Network pharmacology is an essential component of 

bioinformatics, which combines bioinformatics with 

systems medicine. Network pharmacology embodies the 

multi-component, multi-functional, and multi-faceted 

characteristics of TCM. Recently, people have used it to 

research TCM [21–23]. We predicted the potential 

mechanism for GRA in GC treatment through network 

pharmacology, designed experiments to test these 

predictions, and proposed different directions and ideas 

for future research. This study workflow is illustrated in 

Figure 2. 

 

RESULTS 
 

Common targets mining 

 

We used network pharmacology to predict GRA’s 

potential mechanism in the GC therapy and obtained 

160 GRA and 15274 GC relevant targets with the target 

prediction website (Figure 3A). Afterwards, we made a 

Venn diagram for the GRA and GC targets, and 

screened 156 common targets (Figure 3B). 

 

Constructing the PPI network and analysing hub 

targets 

 

To further explore the relationship between 156 common 

targets, we analyzed the common targets through the 

STRING website (Figure 3C) and obtained the PPI 

network. We analyzed the PPI network using Cytoscape 

3.8.2 (Figure 3D). On the basis of degree value analysis, 

the top 10 hub targets in the PPI network are TNF  

(degree = 53), IL-6 (degree = 52), CTNNB1 (degree = 

42), PPARG (degree = 39), PTGS2 (degree = 38), ESR1 

(degree = 37), MAPK3 (degree = 31), PPARA (degree = 

28), AR (degree = 25), and CYP19A1 (degree = 25) 

 

 
 

Figure 1. The structure of glycyrrhetinic acid (GRA). (A) 18α-glycyrrhetic acid (18α-GRA). (B) 18β-glycyrrhetic acid (18β-GRA). 
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Figure 2. Workflow of the present study in a graphical manner. 
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(Figure 3E). The common target’s degree value were 

shown in Supplementary Table 1. DEGs were analyzed 

by the GEO database. We used |log2(fold change)| > 1 

and p < 0.05 in the volcano diagram, with red representing 

upregulated genes and green representing downregulated 

genes. PPARG (p = 0.00333) obviously downregulated, 

meanwhile PTGS2 (p = 0.0144) and CYP19A1 (p = 

0.00664) obviously upregulated (Figure 3F). 

 

 
 

Figure 3. Identification of common targets and analysis of PPI network. (A) Potential targets of GRA-related and GC-related.  
(B) Venn diagram was applied to obtain the common targets between the GC targets and GRA targets. (C) PPI network of 156 common 
targets constructed with STRING. (D) The hub targets of PPI network. Larger node sizes indicate higher degree, green indicates higher degree, 
and blue indicates lower degree. (E) The PPI network’s 10 hub targets ranked by degree ≥ 25. (F) Volcano plot of differentially expressed 
genes in GC. Red represents upregulated genes and green represents downregulated genes.  
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When we compared the normal group to the GC group 

in GEPIA, we discovered that CTNNB1 mRNA 

expression was upregulated (Figure 4A). TNF (p = 

0.0284), PPARG (p = 0.0379) and ESR1 (p = 0.0268) 

were significant in tumor staging in GC patients (Figure 

4B). We found that patients who had higher expression 

of TNF (p = 0.00039), ESR1 (p = 1.1E-06), MAPK3 (p 

=1.2E-07), PPARA (p = 3.9E-06) and AR(p =6.7E-11) 

had worse survival than patients who had lower 

expression, while the opposite was true for CTNNB1 (p 

= 7E-08), PTGS2 (p = 0.0083), PPRAG (p = 0.00022) 

and CYP19A1 (p = 0.013), in the Kaplan-Meier plotter 

database (Figure 4C). When the p < 0.001 was reached, 

we considered the gene to be a prognostic marker for 

GC (Criteria for prognostic markers were reference to 

The Human Protein Atlas website). Based on the p 

value, TNF, CTNNB1, PPARG, ESR1, MAPK3, PPARA 

and AR can be used as prognostic markers of GC.  

 

GO and KEGG enrichment analysis 

 

We performed it to further explore the potential 

mechanisms of GRA treatment of GC, The top 10 

enrichment terms of biological processes (BP), cellular 

components (CC), and molecular function (MF) were 

presented in a bubble diagram (Figure 5A). The results 

of GO enrichment analysis suggested that common 

targets were mainly related to BP and metabolic 

process, such as lipid biosynthetic process, mono-

carboxylic acid metabolic process, steroid metabolic 

process, fatty acid metabolic process, and small 

molecule biosynthetic process. The MF mainly involved 

enzyme activity, transmembrane transporter activity, 

and receptor activity. Additionally, the CC were 

primarily associated with protein complexes and 

mitochondria. We also performed KEGG pathway 

enrichment analysis for common targets and the results 

showed that GRA modulates GC progression through 

multiple pathways associated with survival, 

differentiation, division and apoptosis (Figure 5B). 

Among them, MAPK signaling pathway is often 

activated in tumors, and its related proteins’ abnormal 

expression and tumors’ occurrence go hand in hand 

(Figure 5C).  

 

Molecular docking 

 

Molecular docking verifies the binding energy of GRA 

and hub targets. The results of 18α-GRA and 18β-GRA 

docking with hub targets (Figure 6A). A binding 

energy < − 5.0 kcal/mol indicates excellent binding 

capability. The results showed that GRA can be 

combined with all the hub targets (Figure 6B). 18α-
GRA and MAPK3 binding energy was -7.0 kcal/mol 

(Figure 6C), and 18β-GRA to MAPK3 was -7.5 

kcal/mol (Figure 6D). 

18β-GRA inhibited the GC cells proliferation 

 

Consequently, we designed experiments to validate 

our prediction. 18β-GRA’s effect on AGS cells 

viability was demonstrated by the CCK-8 method. We 

treated AGS cells with different concentrations of 

18β-GRA for 24 h, 48 h, and 72 h for cell viability 

assay. The results demonstrated that 18β-GRA could 

significantly decrease AGS cells viability in a dose-

dependent manner (Figure 7A). The IC50 of 18β-GRA 

intervention on AGS cells is shown in Figure 7B. The 

IC50 of AGS cells treated with 18β-GRA for 24 h  

was 63.56 μM, so 63.56 μM intervention for 24 h  

was the dose administered in our subsequent 

experiments. As shown in Figure 7C, 7D, 18β-GRA 

effect on AGS cells colony formation ability was 

observed. The results showed that the cell colony 

formation ability of 18β-GRA intervention group was 

obviously lower (p < 0.001) compared with the 

control group. 

 

18β-GRA promoted GC cells apoptosis and arrested 

cell cycle 

 

To further explore the ability of 18β-GRA to inhibit 

AGS cells proliferation, we analyzed the cells cycle in 

AGS and apoptosis with 18β-GRA intervention in AGS 

cells. Flow cytometry function was to confirm the effect 

of 18β-GRA on AGS cells apoptosis. The results 

illustrated that 18β-GRA made AGS cells apoptotic rate 

increase from 3.64 ± 0.50% to 10.67 ± 0.31% (p < 

0.001) (Figure 7E, 7F). 18β-GRA effect on cell cycle 

distribution was detected. The results suggested that the 

G0/G1 proportion increased in the 18β-GRA 

intervention group (Figure 7G, 7H). The G0/G1 

proportion was 63.20 ± 0.55%, which was higher than 

the control group’s 44.64 ± 5.18% (p < 0.001). The 

above results indicated that 18β-GRA can effectively 

promote AGS cells apoptosis, arrest the AGS cell cycle 

in the G0/G1 phase, and thus have certain effects on 

AGS cells proliferation. 

 

18β-GRA inhibited the related targets expression of 

MAPK signaling pathway 

 

To identify the expression of hub targets in the MAPK 

signaling pathway, we used western blotting, qRT-PCR, 

and immunofluorescence techniques. The results of the 

qRT-PCR experiment demonstrated that the mRNA 

expression levels of KRAS (p < 0.01), ERK1 (p < 0.01) 

and ERK2 (p < 0.01) obviously decreased in 18β-GRA 

intervention group (Figure 8A). According to the results 

of western blotting, KRAS (p < 0.01) and p-ERK1/2 (p 
< 0.01) decreased in the 18β-GRA intervention group, 

and ERK1/2 did not alter significantly (p > 0.05) 

(Figure 8B, 8C).  
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Figure 4. Clinical correlation analysis of hub targets. (A) mRNA expression level of hub targets between GC tissues and normal gastric 

tissues, *p <0.05. (B) The significance of hub target in staging of GC, p <0.05 is considered to be statistically significant. (C) Survival analysis of 
hub targets, Log-rank p <0.05 is considered to be statistically significant. 
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An immunofluorescence assay was employed to find 

the nuclear translocation of p-ERK1/2 brought on by 

18β-GRA intervention. The results demonstrated that 

the p-ERK1/2 expression in the cell nucleus decreased 

in the 18β-GRA intervention group (p < 0.001) (Figure 

8D, 8E). 

 

DISCUSSION 
 

For thousands of years, the Chinese have used natural 

herbs in clinical settings. Nowadays, it has been 

attracting increasing attention due to its wide range of 

pharmacological effects. Numerous studies have shown 

that some herbal extracts and monomeric components 

have an essential anticancer role [24]. TCM has 

multiple targets, pathways, and mechanisms of action 

[25], but it is challenging to clarify them. Recently, the 

combination of bioinformatics analysis and 

pharmacology has been complemented by network 

pharmacology. People use it to systematically elucidate 

the mechanisms of TCM. 

 

This study utilized public databases to predict the 

relationship between GRA and GC, and analyzed the 

PPI network to identify hub targets. The key target 

MAPK3 in the MAPK signaling pathway ranks higher 

 

 
 

Figure 5. GO and KEGG enrichment analysis. (A) The results of GO enrichment analysis (Top 10). (B) The results of KEGG pathway 

enrichment analysis (Top 30). (C) Schematic drawing of the MAPK signaling pathway.  
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in the PPI network. Further analysis showed that 

MAPK3 was closely related to GC staging and 

prognosis in clinical correlation analysis. GO functional 

enrichment analysis identified common targets of GRA 

in the treatment of GC involved transmembrane 

transporters and nuclear receptor proteins, and KEGG 

enrichment results predicted that the MAPK signaling 

pathway may be a potential pathway for GRA in GC 

 

 
 

Figure 6. The results of molecular docking. (A) The results of molecular docking binding energy. (B) Heat map of molecular docking 

binding energy. (C) 18α-GRA and MAPK3 molecular docking visualization. (D) 18β-GRA and MAPK3 molecular docking visualization. 
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Figure 7. The effect of 18β-GRA on the phenotype of AGS cells. (A) The effect of 18β-GRA on AGS cells viability. (B) IC50 values of 
18β-GRA interfered with AGS cells after 24 h, 48 h, and 72 h. (C, D) The results of colony formation and statistical chart. (E, F) The results of 
cell apoptosis and statistical chart. (G, H) The results of cell cycle and statistical chart. All the values are expressed as mean ± SD. Compared 
with the control group, ***p < 0.001. 
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therapy. In MAPK signaling pathway, KRAS is located 

on the cell membrane, and p-ERK1/2 can participate in 

signal transduction across the nuclear membrane. 

Furthermore, molecular docking predicted that GRA 

could strongly bind with MAPK3, one of the hub 

targets. To further verify the prediction, we conducted 

in vitro experiments to investigate the therapeutic 

potential of 18β-GRA on GC cells. The results showed 

that 18β-GRA could obviously inhibit GC cells 

proliferation, promote cell apoptosis, and arrest cell 

cycle. 

 

It is well known that cell apoptosis plays an important 

role in various biological processes related to 

tumorigenesis [26]. The maintenance of cellular 

homeostasis relies on the balance between pro-apoptotic 

and anti-apoptotic signals [27], and the disruption  

of apoptotic regulatory pathways is a significant 

contributor to carcinogenesis [28]. Insufficient apop-

tosis resulting from a deficiency of appropriate pro-

apoptotic signaling pathways or increase activity of 

anti-apoptotic factors can lead to continued proliferation 

of cancer cells. The processes of cell proliferation and 

 
 

Figure 8. The effect of 18β-GRA on MAPK pathways in AGS cells. (A) qRT-PCR detection of KRAS, ERK1, and ERK2 expression levels. 
(B) Western blotting analysis revealed the presence of KRAS, ERK1/2, p-ERK1/2 protein expression levels. (C) The results quantify protein 
levels of KRAS, ERK1/2 and p-ERK1/2 used Image J software. (D, E) The effects of 18β-GRA on nuclear transfer of p-ERK1/2 in AGS cells and 
statistical chart. All the values are expressed as mean ± SD. Compared with the control group, **p < 0.01, ***p < 0.001.  
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cell cycle are inextricably linked [29]. Cell cycle 

progression involves the activation of various 

complexes that prevent cell from entering a new phase 

until the previous phase is successfully completed. Our 

results indicated that 18β-GRA promoted GC cells 

apoptosis and arrested cell cycle in the G0/G1 phase, 

thereby inhibiting their proliferation. 

 
Tumor proliferation and growth relied on the activation 

and regulation of multiple signaling pathways. The 

MAPK signaling pathway is frequently activated in 

tumors and plays a crucial role in regulating cell 

growth, development, survival, differentiation, division 

and apoptosis [30]. ERK1 and ERK2, mitogen-activated 

protein kinases (MAPKs), are cytoplasmic kinases that 

are activated in response to various stimuli and are key 

elements of signaling from the cell surface to the 

interior of the cell [31]. They are also essential 

components in signal transduction from the surface to 

the interior of the cell. The MAPK signaling pathway 

plays an essential role in regulating cell growth, 

development and division. The pathway is composed of 

MAP3K, MAP2K, and MAPK, and follows a three-

stage enzymatic reaction. Ras is a guanosine 

triphosphatase (GTPase) located in the cell membrane, 

which binds GTP proteins and activates the 

phosphorylation cascade to deliver cellular signals. Ras 

has three isoforms, namely K-Ras, H-Ras, and N-Ras, 

which are expressed widely [32]. The Ras-Raf-MEK-

ERK signaling pathway consists of Ras acting as an 

upstream activator protein, MEK1/2 as a MAP2K, and 

ERK1/2 as a MAPK [33, 34]. Once activated, p-

ERK1/2 can be transported to the nucleus, where it 

binds to transcription factors, ultimately affecting the 

expression of cell-related genes. Previous studies have 

shown that ERK1/2 is abundantly expressed in various 

human tumors, including GC, hepatocellular carcinoma, 

glioblastoma multiforme, breast cancer, and lung cancer 

[35–39]. In this study, the results of western blotting 

and qRT-PCR demonstrated that treatment with 18β-

GRA in GC cells led to significant suppression of 

KRAS and p-ERK1/2 expression in the MAPK 

signaling pathway. Additionally, immunofluorescence 

experiments showed that 18β-GRA could affect the 

nuclear translocation of p-ERK1/2 and block its entry 

into the nucleus in GC cells. These findings provide 

evidence that 18β-GRA may have anti-GC properties by 

suppressing the expression of KRAS and p-ERK/2 in 

the MAPK signaling pathway, as well as blocking p-

ERK1/2 from entering the nucleus and binding to 

related transcription factors in the nucleus. 

 
In summary, this study showed that 18β-GRA can 
reduce GC cells clone formation ability, promote cell 

apoptosis and arrest cell cycle in the G0/G1 phase by 

suppressing the MAPK signaling pathway and thus 

inhibiting the proliferation of GC cells, which could 

provide a scientific basis for the related research of 18β-

GRA in the treatment of GC. Nevertheless, our research 

is limited to in vitro cell experiments, and more 

experiments are needed to support our future research. 

Therefore, we will continue to explore the link between 

18β-GRA and GC in the future with the following 

study. First, the therapeutic effect of 18β-GRA on GC is 

investigated by in vivo animal experiments. Second, to 

explore the effect of 18β-GRA in reducing chemo-

therapeutic drug sensitivity in combination with 

chemotherapy drugs. Third, the molecular mechanism 

of 18β-GRA in GC treatment through gene silencing, 

co-IP, EMSA, and other methods should be further 

investigated. 

 

CONCLUSIONS 
 

In this study, we investigated the molecular 

mechanism of 18β-GRA in the treatment of GC 

through network pharmacology and experimental 

verification. The results showed that 18β-GRA could 

inhibit the proliferation of GC cells by suppressing the 

MAPK signaling pathway, induce apoptosis, arrest cell 

cycle, and reduce colony forming ability. Our results 

confirm the reliability of network pharmacology 

analysis and provide a strong scientific basis for 

further research. 

 

MATERIALS AND METHODS 
 

Acquisition of GRA-related targets 

 

We obtained the 2D or 3D structure of GRA by PubChem 

(https://pubchem.ncbi.nlm.nih.gov/). The TCMSP 

database (https://tcmsp-e.com/), the PharmMapper 

database (https://www.lilab-ecust.cn/pharmmapper/),  

the ETCM database (http://www.tcmip.cn/ETCM/ 

index.php/Home/) and the SIB database 

(http://www.swisstargetprediction.ch/) were used to 

predict GRA targets. The search results were combined 

and deduplicated to obtain GRA-related targets. 

 

Acquisition of GC-related targets 

 

We searched the keywords “gastric cancer,” “stomach 

neoplasm,” “stomach cancer” and “gastric 

carcinoma,” from the GeneCards database 

(https://www.genecards.org/). Then, we combined and 

deduplicated the search results to obtain GC-related 

targets. 

 

Protein-protein interaction (PPI) network analysis 

 

We used the Venny 2.1.0 platform (https://bioinfogp. 

cnb.csic.es/tools/venny/index.html) to obtain the 

https://pubchem.ncbi.nlm.nih.gov/
https://tcmsp-e.com/
https://www.lilab-ecust.cn/pharmmapper/
http://www.tcmip.cn/ETCM/index.php/Home/
http://www.tcmip.cn/ETCM/index.php/Home/
http://www.swisstargetprediction.ch/
https://www.genecards.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
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common targets of GRA and GC, and make a Venn 

diagram. We entered the common targets into the 

STRING database (https://string-db.org/), selected 

Homo sapiens, and set the confidence range to 

“scoring value >0.7”. Next, we downloaded the TSV 

file and uploaded it to the Cytoscape 3.8.2 to make the 

PPI network and filter hub targets based on degree 

ranking. 

 

Clinical correlation analysis of hub targets 

 

We downloaded GC patients’ differentially expressed 

genes (DEGs) from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/), series: GES79973, 

then adjusted for p < 0.05 and | log 2 (fold change) | > 1. 

We used the GEPIA (http://GEPIA.cancer-pku.cn/) to 

obtain the expression levels of hub target gene in GC 

and normal tissues, and analyzed the differences and 

changes in expression level at different stages.  

We used the Kaplan-Meier plotter database 

(http://kmplot.com/analysis/) to analyze the hub target 

genes’ influence on the prognosis of GC patients. 

 

Enrichment analysis 

 

We used the Metscape database (https://metascape.org/ 

gp/index.html#/main/step1) to analyze Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) of common targets. Sort by the number of 

enrichments. We visualized the results as a bubble 

diagram. 

 

Molecular docking 

 

We obtained the protein structures of the hub targets 

from the PDB database (https://www.rcsb.org/) and 

used chem3D software to convert 2D structure to a 3D 

structure of GRA. We used the Auto Dock Tools to 

modify the protein [24], perform molecular docking of 

the receptor and the ligand, and evaluate the binding 

energy. We visualized the molecular docking results by 

Pymol. 

 

Cell culture 

 

Human GC cell line AGS cells (Cat. No. CL-0022, 

Procell, China) were cultured in DMEM/F12 medium 

which contain 10% fetal bovine serum (FBS, Cat. No. 

SH30256, Gibco, USA) in a humidity incubator with 

5% CO2 at 37° C. 

 

Cell viability assay 

 
We inoculated AGS cells in 96-well plates at 5×104 

cells/ml and incubated for 24 h. Next, we added 18β-

GRA (Cat. No. G10105-10G, Sigma, USA) at 

concentrations of 0-150 μM incubation was continued 

for 24 h, 48 h and 72 h. Then, we added 10 μl CCK-8 

(Cat. No. KGRA317, KeyGEN, China) to each well and 

incubated for 2 h at 37° C. Finally, we detected optical 

density (OD) at 450 nm. All experimental groups 

repeated 4 wells. 

 

Colony formation assay 

 

We inoculated AGS cells in 6-well plates with 500 cells 

per well and incubated for 24 h, intervened with 18β-

GRA and incubated for approximately 14 days. We 

used 4% paraformaldehyde to fixate the cells, crystal 

violet to stain, and distilled water to wash. Finally, the 

cell clones were photographed and statistical analysis 

based on clone sizes (Diameter > 1 mm). All 

experimental groups repeated 3 samples. 

 

Cell apoptosis and cell cycle assay 

 

We inoculated AGS cells in culture flask and incubated 

for 24 h, intervened with 18β-GRA. Next, we collected 

the cells and stained with an apoptosis detection kit 

(Cat. No. KGRA107, KeyGEN, China), then detected 

by flow cytometry. We collected the cells from each 

group, washed with PBS, and fixed overnight at 4° C 

with 70% ethanol. We stained the cells with a cell cycle 

kit (Cat. No. KGRA512, KeyGEN, China), and detected 

by flow cytometry. All experimental groups repeated 3 

samples. 

 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) 

 

We extracted the total RNA from AGS cells with Trizol 

(Cat. No. DP419, Tiagen Biochemical Technology, 

China). Subsequently, we synthesized cDNA based on 

the instructions of the PrimeScriptTM RT kit (Cat. No. 

RR047A, TaKaRa, Japan). We performed qRT-PCR 

with the SYBR Green kit (Cat. No. FP205, Tiagen 

Biochemical Technology, China). The expression levels 

of Kirsten rat sarcoma viral oncogene (KRAS), 

extracellular-regulated protein kinase 1 (ERK1), and 

extracellular-regulated protein kinase 2 (ERK2) were 

quantified. The primer sequences are as follows: KRAS: 

forward: 5’-TGTGGACGAATATGATCCAACA-3’, 

reverse: 5’- GCAAATACACAAAGAAAGCCCT-3’; 

ERK1: forward: 5’-ATGTCATCGGCATCCGAGAC-

3’, reverse: 5’- GGATCTGGTAGAGGAAGTAGCA -

3’; ERK2: forward: 5’- TACACCAACCTCTCGT 

ACATCG -3’, reverse: 5’- ATGTCTGAAGCGCAGT 

AAGATT -3’; GAPDH: forward: 5’- CACCCA 

CTCCTCCACCTTTGA -3’, reverse: 5’- TCTCTCT 
TCCTCTTGTGCTCTCTTGC -3’. GAPDH was used as 

an internal reference gene. All experimental groups 

repeated 3 samples. 

https://string-db.org/
https://www.ncbi.nlm.nih.gov/geo/
http://gepia.cancer-pku.cn/
http://kmplot.com/analysis/
https://metascape.org/gp/index.html#/main/step1
https://metascape.org/gp/index.html#/main/step1
https://www.rcsb.org/
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Western blotting 

 
Western blotting detected changes in protein 

expression. 18β-GRA intervened in AGS cells for 24 h. 

We extracted the total protein by RIPA lysis buffer 

(Cat. No. PC102, Epizyme Biotech, China), assessed 

the protein content by the BCA method. Next, we 

separated the total protein by SDS-PAGE, transferred 

onto PVDF membranes (Cat. No. ISEQ00010, 

Millipore, USA), and sealed the membrane with 5% 

BSA for 1 h. After that, we incubated the membranes in 

the corresponding primary antibody overnight at 4° C. 

The corresponding primary antibodies included anti-

KRAS (Cat. No. ab275876, Abcam, 1:1000), anti-

ERK1/2 (Cat. No. 9102, CST, 1:2000), anti-p-ERK1/2 

(Cat. No. 4370, CST, 1:2000), and anti-β-tubulin (Cat. 

No. 2146, CST, 1:5000). Moreover, we used TBST to 

wash the membranes 3 times and incubated them with 

anti-mouse/rabbit IgG antibodies (Cat. No. S0001 / 

S0002, Affinity, 1:5000) for 1 h. Finally, we detected 

the proteins by ECL and measured band intensities by 

ImageJ. All experimental groups repeated 3 samples. 

 
Immunofluorescence 

 
We treated AGS cells with 18β-GRA and fixated the 

cells with 4% paraformaldehyde. Afterwards, we used 

PBS to wash the cells three times, 0.5% Triton X-100 

solution to treat for 15 min, and 5% BSA to seal for 1 h. 

After that, we used the primary antibody (p-ERK1/2, 1: 

500) to incubate the cells overnight at 4° C. The next 

day, we used PBS to wash the cells again, added the 

fluorescent secondary antibody (Cat. No. 111-545-144, 

Jackson ImmunoResearch Inc, USA), and then 

incubated for 1 h. Subsequently, we stained the nucleus 

with DAPI for 5 min. We used confocal scanning 

microscopy (LSM 900, Zeiss, Germany) to take photos. 

All experimental groups repeated 3 samples. 

 
Statistical analysis 

 
All data were analyzed using GraphPad Prism 7 

software and presented as the mean ± SD of at least 

three independent samples. Using t-tests analyzed the 

statistical differences, p < 0.05 indicated a significant 

difference. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. The 
common target’s degree value.  

Number Targets Degree 

1 TNF 53 

2 IL6 52 

3 CTNNB1 42 

4 PPARG 39 

5 PTGS2 38 

6 ESR1 37 

7 MAPK3 31 

8 PPARA 28 

9 AR 25 

10 CYP19A1 25 

11 NCOA1 24 

12 PGR 23 

13 NR3C1 22 

14 NCOA2 21 

15 CYP2E1 19 

16 CYP17A1 18 

17 MMP2 18 

18 PTGS1 17 

19 PRKCA 17 

20 ESR2 16 

21 ALOX5 16 

22 MDM2 16 

23 FABP4 15 

24 FABP1 15 

25 HSD3B1 15 

26 NFKB1 14 

27 SCD 14 

28 PTPN11 14 

29 AKR1C3 14 

30 HSD11B1 14 

31 PTGER4 14 

32 CYP2C19 14 

33 PTPN1 13 

34 SRD5A1 13 

35 PTGES 13 

36 GJA1 12 

37 PPARD 12 

38 HMGCR 12 

39 MMP3 11 

40 NR1H4 11 

41 NR1H3 11 

42 PLA2G1B 11 

43 NR3C2 11 

44 TERT 10 

45 NOS2 10 

46 HSD17B2 10 

47 HSD17B3 10 

48 ALOX5AP 10 
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49 SHBG 10 

50 FABP3 9 

51 G6PD 9 

52 CDC25B 9 

53 MMP1 8 

54 HSD11B2 8 

55 GSTP1 8 

56 ITGB2 8 

57 NFKB2 8 

58 TOP2A 8 

59 CTNNA1 7 

60 FABP5 7 

61 FDFT1 7 

62 ANXA1 7 

63 FAAH 7 

64 NR1I2 7 

65 GLUL 6 

66 NR1I3 6 

67 PTPN6 6 

68 ACP1 6 

69 PTPN2 6 

70 EPHA2 6 

71 LTB4R 6 

72 IDO1 6 

73 CD81 6 

74 BACE1 6 

75 CDC25A 6 

76 COX7A1 6 

77 RORC 5 

78 PTGER1 5 

79 SLC6A3 5 

80 SLC6A4 5 

81 COX4I1 5 

82 MT-CO1 4 

83 JUP 4 

84 NPPB 4 

85 PTGDR2 4 

86 PTGER2 4 

87 PRKCH 4 

88 BCHE 4 

89 RORA 3 

90 PTPRF 3 

91 ESRRG 3 

92 TRPA1 3 

93 ITGAL 3 

94 TOP1 3 

95 FFAR1 2 

 


