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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is a type of liver 

cancer that originates from hepatocytes. It is one of the 

most common types of liver cancer and a leading cause 

of cancer-related deaths worldwide [1]. Risk factors for 

HCC include chronic liver disease, such as cirrhosis, 

hepatitis B and C, and excessive alcohol consumption 
[2]. Treatment options include surgery, radiation 

therapy, chemotherapy, and targeted therapy [1, 3]. 

Early detection and treatment can improve outcomes 

due to poor therapeutic outcomes in advanced HCC [4]. 

HCC prognosis is influenced by a variety of factors, 

including the tumor microenvironment (TME), which 

interacts with the cancer cells and can affect the growth 

and spread of the tumor [5]. TME that can impact HCC 

prognosis by multiple ways, including inflammation, 

angiogenesis, immune response stromal cells and 

extracellular matrix. Chronic inflammation can 

contribute to the development and progression of HCC 

[6]. The formation of new blood vessels in the TME 

can provide the tumor with nutrients and oxygen 

needed for growth. The immune system’s response to 

the tumor can impact the prognosis [7]. A strong 
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ABSTRACT 

Hepatocellular carcinoma (HCC) is a type of liver cancer that originates from liver cells. It is one of the most 
common types of liver cancer and a leading cause of cancer-related death worldwide. Early detection and 
treatment can improve the HCC prognosis. Therefore, it is necessary to further improve HCC markers and risk 
stratification. PANoptosome is a cytoplasmic polymer protein complex that regulates a proinflammatory 
programmed cell death pathway called “PANoptosis”. The role of PANoptosis in HCC remains unclear. In this 
study, the molecular changes of PANoptosis related genes (PAN-RGs) in HCC were systematically evaluated. We 
characterized the heterogeneity of HCC by using consensus clustering to identify two distinct subtypes. The two 
subtypes showed different survival rate, biological function, chemotherapy drug sensitivity and immune 
microenvironment. After identification of PAN-RG differential expression genes (DEGs), a prognostic model was 
established by Cox regression analysis using minimum absolute contraction and selection operator (LASSO), and 
its prognostic value was verified by Cox regression analysis, Kaplan-Meier curve and receiver operating 
characteristic (ROC) curve. Our own specimens were also used to further validate the prognostic significance 
and possible clinical value of the selected targets. Subsequently, we conducted a preliminary discussion on the 
reasons for the influence of the model on the prognosis through TME analysis, drug resistance analysis, TMB 
analysis and other studies. This study provides a new idea for individualized and precise treatment of HCC. 
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immune response can slow tumor growth, while a weak 

immune response can allow the tumor to grow 

unchecked [8]. The stromal cells in the TME, such as 

fibroblasts and myofibroblasts, can influence tumor 

growth and progression [9]. The extracellular matrix, 

the network of proteins and carbohydrates that 

surrounds the cells, can influence the behavior of 

cancer cells and impact the prognosis [10]. Due to the 

current limited research status, analysis of TME can 

further explore the risk factors associated with HCC 

prognosis, with a view to better risk stratification of 

HCC patients. 

 

PANoptosome is a cytoplasmic polymer protein 

complex containing receptor interacting protein kinase 

(RIPK1), ASC, and caspase-8 [11]. The pro-

inflammatory programmed cell death pathway regulated 

by PANoptosome is called “PANoptosis” [12], 

highlighting the crosstalk and coordination that occurs 

between pyroptosis, apoptosis and necroptosis [13, 14]. 

PANoptosis plays a very complex role in tumor 

progression, cancer therapy and cancer immune 

regulation [15]. Patterns of PANoptosis can predict 

immunotherapy response and patients’ survival in 

multiple cancer types, including gastric cancer, colon 

cancer and lung cancer [16–18]. One possible 

mechanism is that the effect of IFN treatment can be 

affected by PANoptosis [19]. There is evidence shown 

that complexes formed by AIM2, caspase-8, ZBP1, 

RIPK3, RIPK1 and FADD can sense PAMP, DAMP or 

other risk factors and drive PANoptosis [20]. Among 

these PANoptosis driver proteins, AIM2 has been 

reported to play an inhibitory role in regulating the 

growth and metastasis of HCC by regulating immune 

cell infiltration, indicating that AIM2 can be used as a 

potential therapeutic target for HCC [21, 22]. As 

another PANoptosis driver protein, ZBP1 has been 

shown to be expressed in interferon (IFN)-treated HCC, 

which indicated its potential HCC-related function [23]. 

The involvement of other PANoptosis driver protein, 

including NLRP3, RIPK3, RIPK1 and FADD, was also 

reported in HCC [24–27]. Although most PANoptosis 

driver proteins have been unveiled the role in HCC, the 

impact of PANoptosis on HCC carcinogenesis remains 

unknown. It is of great significance to further study the 

role of PANoptosis in HCC and clarify its carcinogenic 

or anticancer effect. 

 

In this study, seven PANoptosis-related genes (PAN-

RGs) were selected, and the prognostic model of liver 

cancer was established successfully. Significance of 

prognostic prediction and the possible clinical value of 

selected targets were further verified through public 

databases and our own clinical specimens. It provides a 

new idea for individualized and precise treatment of 

HCC. 

MATERIALS AND METHODS 
 

Data acquisition 

 

Two transcriptome cohorts of HCC samples were 

acquired from the public databases. The TCGA-LIHC 

cohort was downloaded from the TCGA database 

(https://portal.gdc.cancer.gov/), including 424 

samples (50 normal and 374 HCC samples). The 

GSE76427 contains 115 HCC samples was acquired 

from the GEO database. In first, the matrix format of 

TCGA-LIHC was transformed from the FKPM into 

TPM, and the two transcriptome expression profiles 

were merger into a final file via package “sva” [28]. 

The matching clinical information of HCC was 

obtained from the TCGA and GEO database and the 

HCC samples without survival time were deleted in 

this study, and 485 HCC samples were included in 

total [29]. 

 

Analysis of copy number variation and somatic 

mutation 

 

The PANoptosis-related genes (PAN-RGs) were 

acquired from the previous literature, and 14 PAN-

RGs were collected (Supplementary Table 1). The 

expression of PAN-RGs in normal and HCC samples 

were extracted via “limma” package, and the 

threshold for differential analysis was set at |fold 

change| > 1, p < 0.05. The copy number variation 

(CNV) data and somatic mutation files (maf format) 

of HCC samples were downloaded from the TCGA 

database. R package “circos” was utilized to explore 

the location of PAN-RGs on chromosome based on 

the gene reference file. The potential protein-protein 

interaction (PPI) of PAN-RGs was explored using 

STRING database. 

 

Exploration of PAN-RG-based molecular subgroups 

via consensus cluster algorithm 

 

Firstly, we extracted the expression profile of PAN-RGs 

from the merge file (TCGA-LIHC and GSE76427). 

“ConsensusClusterPlus” R package was developed to 

cluster the HCC samples into different molecular 

subgroups with the max K set at 9. Under the best 

classification, the HCC samples were divided into PAN-

RG cluster A, B and C. R script “survival” was 

conducted to display the clinical prognosis for HCC 

samples in different unsupervised subgroups. Principal 

component analysis (PCA) was used to explore the 

intergroup difference between the different PAN-RG 

cluster subgroups via “ggplot2”. Pheatmap script was 

adopted to exhibit the relationship of PAN-RGs 

expression profile and clinical variates for HCC 

samples. 

https://portal.gdc.cancer.gov/
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Evaluation of immune infiltration landscape and 

immunotherapy response 

 

We developed single sample gene set enrichment 

analysis (ssGSEA) to evaluate the immune infiltration 

of each HCC sample. On the basis of 23 immune cells 

gene marker, the proportion of 23 immune cells was 

estimated via script “GSVA”. In addition, the immune 

status was investigated using “estimate” script in R 

environment. The IPS file included PD-1 and CTLA-4 

treatment data was downloaded from The Cancer 

Immunome Atlas (TCIA) database. 

 

Analysis of functional enrichment for PAN-RG 

cluster-based DEGs 

 

Based on the selection threshold of |fold change | > 1, 

p < 0.001, the intersection differential expression genes 

(DEGs) between the PAN-RG subgroups were 

acquired. “clusterProfiler” R script was developed to 

enrich the PAN-RG cluster-based DEGs into different 

molecular biological (GO and KEGG term) (p < 0.05) 

[30]. Refer to the gene list of different KEGG terms, the 

KEGG term of HCC samples in PAN-RG cluster 

subgroups was calculated using “GSVA” algorithm. 

 

Generation of risk subgroups based on the 

prognostic DEGs 

 

In first, the expression profile of the intersection DEGs 

was obtained and conducted a univariate Cox analysis. 

Then, based on the expression of prognostic DEGs, 

“ConsensusClusterPlus” script was employed to distinct 

the HCC samples into different gene-cluster subgroups. 

According to the multivariate Cox analysis and “caret” 

script, the independent prognostic variates were 

obtained and divided the HCC samples into training 

cohort and test cohort under the division cutoff set at 

1:1 [31]. In accordance with the expression profile and 

coefficient of the independent prognostic variates, the 

risk score of each HCC sample was calculated. 

 

Evaluation of independent prognosis and establish-

ment of nomogram 

 

The clinical features of HCC samples were enrolled 

from the TCGA-LIHC and GSE76427. To explore the 

independence of the risk score for HCC, we conducted a 

univariate and multivariate Cox analysis in the entire, 

training and test cohorts. Receiver operating 

characteristic curve (ROC) was used to explore the AUC 

of risk score, age, gender and HCC-based stage, 

respectively. Based on those clinical features and risk 
score, the nomogram model was developed to evaluate 

the 1-, 3-, and 5-years clinical survival outcome for HCC 

samples. Decision curve analysis (DCA) was used to 

appraise the accuracy of nomogram and other indicators 

in predicting clinical prognosis via “ggDCA” script. 

 

Analysis of mutation landscape and chemo-

therapeutic drug identification 

 

MAF files of somatic mutation for HCC were 

downloaded from the TCGA database. Perl script was 

utilized to extract the mutation data of HCC samples 

from the MAF files. “maftools” script was employed to 

display the somatic mutation frequency in risk subgroups 

for HCC. The response to chemotherapeutic drug for 

HCC samples was estimated using GDSC database via 

script pRRophetic. 

 

Real-time quantitative fluorescence PCR (qRT-

PCR) 

 

The experiment was approved by the Human Ethics 

Committee of the Affiliated Hospital of Qingdao 

University and the Ethics Office of Qingdao University. 

Tumor tissues and paired adjacent tissues were taken 

from HCC patients. Trizol reagent (Cat# 15596018, 

Thermo) was used to extract RNA from tumor tissues 

and adjacent tissues. The cDNA was synthesized using 

RT kit with gDNA Eraser (Perfect Real Time), and real-

time quantitative qRT-PCR (Cat# RR047A, Takara) 

was performed. mRNA expression was detected by 

SYBR Pre-mix Ex Taq II (TliRNaseH Plus) (Cat# 

RR820B, Takara). Gene specific primer pairs are listed 

in Supplementary Table 2. 

 

Statistical analysis 
 

Under the R language environment (R software 4.1.0), 

the data processing and difference analysis were carried 

out. Wilcoxon test was employed to calculate the 

statistical difference in two groups. Between multiple 

groups, ANOVA was utilized for statistical analysis. 

Spearman correlation analysis was performed to imply 

the relationship between the different variates. P < 0.05 

was considered as statistical different in this study. 

 

Data availability statement 
 

All data and clinical information involved in this paper 

were obtained from a public database, approved from 

the Ethics committee and written informed consent 

from patients were not required. 

 

RESULTS 
 

To determine the character of PAN-RGs in the tumor 
progression of HCC, we acquired 14 PAN-RGs 

expression profile from the TCGA database. After the 

calculation of differential analysis, we observed that 
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RIPK1, CASP6, CASP8, PYCARD, FADD, MAP3K7, 

TNFAIP3, RNF31, RBCK1, and PSTPIP2 were 

overexpressed in the HCC samples, nevertheless, the 

expression of NLRP3 was down expressed in the HCC 

samples (Figure 1A). On the basis of CNV file from the 

TCGA database, the CNV landscape of 14 PAN-RGs 

were explored and the result suggested higher 

amplification of RIPK1, NLRP3, RNF31, RIPK3, 

FADD, ZBP1, CASP8, and PYCARD, whereas CASP6, 

CASP1, MAP3K7, TNFAIP3, and PSTPIP2 showed 

higher deletion (Figure 1B). The PPI network illustrated 

a clear interaction of the 14 PAN-RGs (Figure 1C). In 

addition, the circle diagram displayed the location of the 

PAN-RGs on chromosome (Figure 1D). Mutation feature 

of PAN-RGs exhibited that the mutation frequency of 

NLRP3, CASP8, MAP3K7, RNF31 and RIPK3 was 2%, 

1%, 1%, 1%, and 1%, respectively (Figure 1E). 

 

Molecular subtypes characteristic of HCC based on 

the PAN-RGs 

 

In order to explore the molecular subtypes character of 

HCC, we enrolled 485 HCC samples to explain the 

relationship of PAN-RGs and tumorigenesis from the 

TCGA-LIHC dataset and GSE76427. The network plot 

illustrated the association of PAN-RGs and prognostic 

value. As shown in Figure 2A, a positive correlation 

was observed between the 14 PAN-RGs, and 5 

prognostic risk factors were obtained (MAP3K7, 

CASP8, RBCK1, FADD, CASP6). After the estimated 

of an unsupervised consensus clustering analysis, the 

HCC samples displayed an optimal categorization of 

k = 3, with 216 HCC samples in PAN-RG cluster A, 

116 HCC samples in PAN-RG cluster B, and 153 HCC 

samples in PAN-RG cluster C (Figure 2B). The PCA 

diagram displayed that the HCC samples in the different 

PAN-RG clusters could be clearly distinguished, 

indicating the accuracy of consensus clustering analysis 

(Figure 2C). Between the molecular subtypes of HCC, 

we observed a clear difference of prognosis in the 

different cluster subgroups, which the clinical prognosis 

of HCC in the cluster A was better than in cluster B and 

C (Figure 2D). The association of PAN-RGs and 

clinical features was displayed in a heatmap diagram, 

and the plot illustrated that the expression of PAN-RGs 

was greatly higher in PAN-RG cluster B (Figure 2E). 

These results demonstrate that the HCC samples could 

be accurately classify into different molecular subtypes 

based on the PAN-RGs expression, and associated with 

clinical prognosis for HCC. 

 

 
 

Figure 1. Genetic expression and variation landscape of PAN-RGs in HCC. (A) Genetic expression of 14 PAN-RGs in normal and HCC 

samples. (B) CNV exploration of PAN-RGs. (C) Interaction network of 14 PAN-RGs. (D) The location of PAN-RGs on chromosome. (E) 
Mutation evaluation of PAN-RGs in HCC samples. 
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Exploration of immune infiltration in PAN-RG 

molecular subtypes 

 

The TME feature of HCC samples in the different PAN-

RG molecular subtypes was explored in the next study. 

On the basis of ESTIMATE algorithm, the proportion 

of stromal and immune cells in different PAN-RG 

cluster subgroups was evaluated. The ESTIMATE 

result revealed that the HCC samples in PAN-RG 

cluster B had higher stromal, immune, ESTIMATE 

scores, and lower tumor purity (Figure 3A). A 

remarkable distinction was explored in the immune 

infiltration of 23 kind immune cells in PAN-RG cluster 

A, B, and C via ssGSEA assessment (Figure 3B). 

 

 
 

Figure 2. Identification of molecular subtypes of PAN-RGs for HCC. (A) Prognostic factor exploration of PAN-RGs. (B) Unsupervised 

consensus clustering analysis. (C) PCA diagram of HCC samples in cluster A, B, and C. (D) Clinical prognostic outcome of HCC in different 
PAN-RG cluster subgroups. (E) Expression of PAN-RGs in different PAN-RG cluster subgroups and clinical features. 
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Furthermore, giving the significant difference in 

immune infiltration, we further estimated the immuno-

therapy response of HCC in PAN-RG cluster A, B, and 

C. The IPS assessment analysis revealed that the HCC 

samples in the PAN-RG cluster C displayed a worse 

immunotherapy response to PD-1 and CTLA-4 than 

PAN-RG cluster A and B (Figure 3C–3F). According to 

the GSVA algorithm, the regulatory role of crucial 

KEGG in the development of HCC was explored. 

Between PAN-RG cluster A and B, several metabolism-

associated pathways were greatly down-regulated of 

HCC in the PAN-RG cluster B, involving in linoleic 

acid metabolism, histidine metabolism, tyrosine 

metabolism, retinol metabolism, and fatty acid 

metabolism. Of note, some tumor-associated signaling 

pathways were up-regulated for those poor prognosis 

HCC samples in PAN-RG cluster B, such as ubiquitin 

mediated proteolysis, Fc gamma R-mediated 

phagocytosis and pancreatic cancer (Figure 3G).  

In PAN-RG cluster C, a series of down-regulation 

 

 
 

Figure 3. The TME characteristic of HCC in the PAN-RG molecular subgroups. (A) Evaluation of ESTIMATE score in PAN-RG cluster 

subtypes. (B) The immune infiltration exploration of HCC in PAN-RG cluster A, B, and C. (C–F) Immunotherapy response investigation of 
PAN-RG molecular subgroups via TCIA database. (G, H) GSVA algorithm shows the different regulation KEGG pathways in PAN-RG cluster 
A, B, and C. 



www.aging-us.com 4165 AGING 

immune-associated pathways were explored, such as T 

cell receptor signaling pathway, B cell receptor 

signaling pathway, Toll like receptor signaling pathway, 

NOD like receptor signaling pathway (Figure 3H). 

These discoveries exhibit that the PAN-RG-based 

molecular subtypes of PAN-RG were closely associated 

with immune infiltration, and could reveal the 

immunotherapy response of HCC in different PAN-RG 

molecular subgroups. 

 

Generation of DEGs and gene-cluster subgroups 

identification for HCC 

 

In order to better understand the molecular biological 

function of the PAN-RG cluster subgroups, differential 

expression analysis was carried out to identify the 

DEGs between the PAN-RG cluster subgroups with 

the screening threshold set at |fold change| ≥ 1 and 

p.adjust < 0.001. On the basis of difference analysis 

calculation, we obtained 1077 intersection DEGs 

between the PAN-RG cluster subgroups. GO 

enrichment analysis exhibited that the PAN-RG 

cluster-based DEGs were enriched in T cell activation, 

leukocyte cell-cell adhesion, external side of plasma 

membrane, and immune receptor activity (Figure 4A). 

KEGG analysis result displayed that Epstein-Barr 

virus infection, tuberculosis, and phagosome were 

enriched of the PAN-RG cluster-based DEGs (Figure 

4B). Under the estimation of univariate Cox analysis, 

we acquired 376 DEGs which associated with clinical 

prognosis for HCC. On the basis of unsupervised 

consensus clustering analysis, the HCC samples were 

successfully divided into 3 cluster subgroups (K = 3), 

including 151 HCC samples in gene-cluster A, 219 

HCC samples in gene-cluster B, and 115 HCC samples 

in gene-cluster C (Figure 4C). The clinical survival 

results of HCC samples displayed that the prognosis 

outcome of HCC in gene-cluster C was even worse 

than those HCC samples in gene-cluster A and gene-

cluster B (p < 0.001, Figure 4D). The heatmap plot 

exhibited the expression profile of prognosis DEGs in 

the different clinical variates, PAN-RG- and gene-

cluster subgroups (Figure 4E). Additionally, we found 

that the gene-cluster C with worse clinical prognosis 

displayed higher expression level of PAN-RGs 

(Figure 4F). 

 

Establishment of risk subgroups for HCC based on 

the prognostic DEGs 

 

Based on the prognostic factors for HCC, the LASSO 

algorithm selected 10 feature variates from the 376 

DEGs (Supplementary Figure 1). Then, 7 feature 
variates were obtained for the risk score calculation via 

multivariate Cox analysis. According to the 7 feature 

variates, the HCC samples from the TCGA-LIHC and 

GSE76427 were divided into training cohort and test 

cohort under the division set at 1:1 via package “caret”. 

In the PAN-RG cluster subgroups, we observed that the 

risk score of HCC samples in cluster B was greatly 

higher than those in the cluster A, and C (Figure 5A). 

As for gene-cluster subgroups, the HCC samples in 

gene-cluster C with worse prognosis had remarkable 

risk score than other gene-cluster subgroups (Figure 

5B). The Sankey plot displayed the detail relationship 

of clinical survival outcome, risk score, PAN-RG 

cluster, and gene-cluster (Figure 5C). PCA diagram 

illustrated that the risk score could clearly distinguish 

the HCC samples with low- and high-risk score (Figure 

5D). After the estimation of clinical prognostic 

outcome for HCC samples, an obvious difference 

between low- and high-risk groups for HCC was 

observed in the entire cohort (p < 0.001, Figure 5E). In 

the training cohort and test cohort, the same clinical 

prognosis outcome was obtained, the HCC samples 

with low-risk score had better survival rate 

(Supplementary Figure 2). The ROC of risk score 

revealed that the AUC was 0.755 (cutoff: 1.142), 

indicating a favorable diagnostic ability for HCC 

(Figure 5F). These results demonstrate that 

establishment of the risk score could divide the HCC 

samples into different risk subgroups and could 

accurately evaluate the clinical prognosis for HCC. 

 

Independent prognostic evaluation of risk score for 

HCC 

 

Considering the role of the risk score in estimating 

clinical prognosis outcome for HCC, we further 

explored the independent prognostic significance of risk 

score. The clinical variates of HCC were acquired from 

the TCGA-LIHC and GSE76427, including age, gender 

and stage. Under the calculation of univariate Cox 

analysis, the HCC-based stage (HR = 1.670 (1.383–

2.018), P < 0.001) and risk score (HR = 1.343 (1.251–

1.443), P < 0.001) were related to poor prognosis for 

HCC (Figure 6A). For multivariate Cox analysis, the 

risk score (HR = 1.313 (1.220–1.412), P < 0.001) was 

regarded as an independent prognosis factor for HCC 

(Figure 6B). The AUC of risk score, age, gender and 

HCC-based stage was 0.755, 0.544, 0.492 and 0.661, 

showing a favorable predictive ability of risk score for 

HCC (Figure 6C). As displayed in Figure 6D–6I, the 

result of univariate/multivariate Cox analysis suggested 

that the risk score was an independent prognosis 

indicator for HCC in the training cohort and test cohort. 

Moreover, the AUC of risk score in the training cohort 

and test cohort was 0.803 and 0.698. Taken together, 

our results illustrate that the risk score is an independent 
prognostic factor for HCC, showing a favorable 

diagnostic power than other clinicopathological 

characteristics. 
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Development of nomogram based on risk score and 

clinicopathological features for HCC 

 

We developed a nomogram model to explore the one-, 

three-, and five years clinical outcome for HCC based 

on the risk score and clinical variates. As illustrated in 

Figure 7A–7C, the nomogram results in entire, training 

and test cohorts revealed that the risk score could 

accurately estimate the survival probability for HCC. 

The DCA curve exhibited that the development of 

 

 
 

Figure 4. Identification of DEGs in the PAN-RG molecular subtypes. (A) GO and (B) KEGG enrichment assessment of the PAN-RG 
cluster-based DEGs. (C) Unsupervised consensus clustering of the DEGs in HCC. (D) Clinical prognosis analysis of HCC in gene-cluster 
subgroups. (E) Heatmap plot illustrates the relationship of clinical variates and prognostic DEGs in PAN-RG- and gene-cluster subgroups. (F) 
PAN-RGs expression landscape of HCC in gene-cluster A, B, and C. 
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nomogram in estimating clinical prognosis for HCC 

was better than other variates in the entire, training and 

test cohorts (Figure 7D–7F). Furthermore, the 

calibration analysis showed that the clinical outcome of 

nomogram assessed in one-, three-, and five years was 

consisted with the real survival status for HCC, 

indicating the favorable accuracy of nomogram (Figure 

7G–7I). 

 

The immune infiltration evaluation of risk 

subgroups for HCC 

 

The immune infiltration of HCC samples in the two risk 

subgroups were further explored in the subsequent 

investigation. The correlation analysis indicated that the 

risk score was positively correlated with type 17 T 

helper cell, but negatively associated with eosinophil, 

activated CD8+ T cell, activated B cell, type 1 T helper 

cell, mast cell, gamma delta T cell and immature B cell 

(Figure 8A). Moreover, we explored the potential 

relationship between 7 independent prognostic factors 

and immune infiltration, and the heatmap displayed a 

clearly positive association of 4 prognostic factors 

(S100A9, HMOX1, RGL4 and IL18RAP) and most of 

immune cells, however, another 3 prognostic factors 

(TRIM21, TRAF3 and TMC7) were negatively 

correlated with most of immune cells (Figure 8B). 

These results illustrated a potential relation between the 

risk score and immune infiltration. 

 

Based on the ESTIMATE assessment algorithm, we 

observed a remarkable difference of immune, 

ESTIMATE and tumor purity between the two risk 

subgroups (Figure 8C). Additionally, the ssGSEA 

algorithm suggested that the proportion of activated B 

cell, CD8+ T cell, eosinophil, mast cell and type 1 T 

helper cell was higher of HCC samples in the high-risk 

group, whereas the proportion of natural killer T cell 

was greatly higher for HCC in the low-risk group 

(Figure 8D). These results illustrate a clear distinction 

 

 
 

Figure 5. Evaluation of risk score for HCC samples based on the prognostic DEGs. (A) Risk score of HCC samples in PAN-RGs 

cluster subgroups. (B) Risk score of HCC samples in gene cluster-subgroups. (C) Association of risk score and clinical survival status for HCC 
samples in the PAN-RG- and gene-cluster subgroups. (D) The PCA plot of HCC samples in the risk subgroups. (E) Prognosis analysis of HCC 
samples in the risk subgroups. (F) The diagnostic effectiveness of the risk score for HCC. 
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in immune infiltration of HCC samples in low- and 

high-risk groups, and associated with the risk score. 

 

Genetic mutation feature and immunotherapy 

response of HCC in the risk subgroups 

 

In first, we investigated the mutation characteristic of 

somatic in the risk subgroups for HCC. As illustrated in 

Figure 9A, 9B, about 149 samples had somatic mutation 

in 190 samples (78.42%), with lower mutation 

frequency of TP53 (17%), TTN (22%), ALB (7%) and 

RYR2 (6%). In high-risk group, we observed 144 

samples had somatic mutation in171 samples (84.21%), 

with lower mutation frequency of CTNNB1 (24%) and 

MUC16 (13%). Based on the TCIA database, the 

immunotherapy response to PD-1 and CTLA-4 of HCC 

samples in the risk subgroups was further explored. The 

IPS evaluation analysis revealed that the low-risk group 

was more sensitive to PD-1 and CTLA-4 treatment 

(Figure 9C–9F). The analysis of immune checkpoints 

displayed that the expression profile of most immune 

checkpoints was higher in the high-risk group (Figure 

9G). These results demonstrate that the risk score is 

associated with mutation feature and could indicate the 

immunotherapy response of HCC samples in the risk 

subgroups. 

 

Prediction of potential chemotherapeutic compounds 

for HCC in risk subgroups 

 

To better understand the application of the risk model in 

the clinical treatment for HCC, we explored several 

potential chemotherapeutic compounds which may 

benefit for the treatment of HCC samples in the risk 

subgroups based on the GDSC database. As implied in 

Figure 10, the IC50 of VX-680, sorafenib, 

pyrimethamine, KIN001-135, GW843682X, GNF-2, 

crizotinib and CGP-082996 in the high-risk group was 

greatly lower than low-risk group; notably, the IC50 of 

TGX221, roscovitine, parthenolide and erlotinib was 

higher in the high-risk group. Overall, these findings 

illustrate that the risk model could indicate the 

 

 
 

Figure 6. Exploration of independent prognostic for risk score in HCC. (A, B) Univariate and multivariate Cox analysis in entire 
cohort. (C) ROC curve analysis of risk score and clinical variates of HCC. Univariate/multivariate Cox analysis and ROC curve in training 
cohort (D–F) and test cohort (G–I). 
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chemotherapeutic compounds response of HCC samples 

in the different risk subgroups. 

 

Analysis of expression profile for prognostic 

signatures 

 

We used HCC clinical samples to detect the expression 

levels of selected prognostic signatures. As shown in 

Figure 11, HCC tumor tissues contain high levels of 

HMOX1, S100A9, TMC7, TRAF3 and TRIM21, 

whereas the expression of IL8RAP and RGL4 were 

higher in the control group (Figure 11A–11G). 

DISCUSSION 
 

In this study, seven PAN-RGs were selected and the 

prognostic model of HCC was established successfully. 

Subsequently, through TME analysis, drug resistance 

analysis, TMB analysis and other studies, we conducted 

a preliminary discussion on the reasons for the influence 

of the model on the prognosis. 

 

Among the selected genes, TRAF3 encodes for a 

protein which plays a role in the regulation of the 

immune response and is involved in signaling pathways 

 

 
 

Figure 7. Development of the nomogram for evaluating the survival probability in HCC. (A–C) Nomogram development of risk 

score and clinical variates in entire, training and test cohorts. (D–F) DCA curve analysis. (G–I) Calibration curve estimation between the 
actual OS and predicted OS. 
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that control cell survival, growth, and differentiation 

[32]. TRAF3 has been studied in the context of its 

potential as a therapeutic target in cancer [33]. Some 

studies have suggested that targeting TRAF3 may be a 

promising approach for the treatment of certain types of 

cancer, including HCC [34, 35]. Further research is 

needed to determine its full implications in the 

development and progression of HCC. TRIM21 is 

involved in several processes that play a role in 

controlling the immune response, including the 

clearance of viruses and other pathogens and the 

regulation of antibody production [36]. In addition, 

some studies have suggested that TRIM21 may play a 

role in the development and progression of certain 

diseases, including cancer [37]. The prognostic value of 

TRIM21 in HCC has been reported [38]. TRIM21 

promotes liver cancer by inhibiting the p62-Keap1-Nrf2 

antioxidant pathway [39]. In addition, TRIM21 is 

involved in regulating ACTL6A/MYC axis activity in 

hepatocellular carcinoma progression [40]. 

 

S100A9 is a secreted protein associated with an 

inflammatory microenvironment, and its expression in 

tumor tissues is associated with poor survival in HCC 

 

 
 

Figure 8. Assessment of immune infiltration of HCC samples in the risk subgroups. (A) Correlation coefficient of risk score and 

immune infiltration. (B) Correlation analysis of 8 prognostic factors and immune infiltration. (C) ESTIMATE score. (D) Immune infiltration 
evaluation of HCC samples in the risk subgroups. 
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patients [41]. Reported mechanisms include that 

S100A9 enhances cancer stem-like properties of hepato-

cellular carcinoma [42]. Activation of RAGE/TLR4-

ROS signaling pathway leads to the formation of 

Neutrophil extracellular traps (NETs) that promote 

HCC growth and metastasis [43]. Depletion or 

pharmacological inhibition of S100A9 significantly 

inhibited HCC growth and metastasis ability [44]. Thus, 

 

 
 

Figure 9. Genetic mutation characteristic and immunotherapy response of risk subgroups. Evaluation of somatic mutation 

landscape of HCC samples in (A) low- and (B) high-risk groups. (C–F) Immunotherapy response exploration of risk subgroups. (G) Difference 
analysis of immune checkpoints in the risk subgroups. 
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targeting S100A9 may be a promising therapeutic 

strategy for patients with hepatocellular carcinoma. 

HMOX1 has been shown to play a role in the regulation 

of oxidative stress and inflammation. In HCC, HMOX1 

can reduce the sensitivity of hepatocellular cancer cells 

to sorafenib, which may be mediated by regulating the 

expression of ABC transporters [45, 46]. At the same 

time, as an important target of NRF2 and KEAP1, 

HMOX1 may be involved in ferroptosis induction [47]. 

The exact role of IL18RAP, RGL4 and TMC7 in cancer 

and its potential as a therapeutic target or marker is still 

not well understood, and further research is needed to 

determine its full implications in the development and 

progression of cancer. 

We provide the first evidence that PANoptosis plays a 

role in HCC. In the PANoptosis process, as an 

important driving protein, caspase-8 plays an active but 

complex role. Activated caspase-8 promotes the 

activation of caspase 3 in the process of inducing 

apoptosis, leading to secondary necroptosis or 

pyroptosis, and thus inhibiting tumor growth [48]. 

However, the opposite effect of caspase-8 in HCC has 

also been reported. It promotes tumor cell migration and 

inhibits Fas induced apoptosis by assembling caspase-

8/RIPK1/FADD/cFLIP complex [49]. In addition, other 

reports have suggested the role of PANoptosis in the 

evaluation of HCC treatment. The antitumor effect of 

oxaliplatin is achieved at least in part by increasing the 

 

 
 

Figure 10. Exploration of potential chemotherapeutic compounds for HCC in the different risk subgroups. The drug sensitivity 

evaluation of (A) VX-680; (B) TGX221; (C) Sorafenib; (D) Roscovitine; (E) Pyrimethamin; (F) Parthenolide; (G) KIN001-135; (H) GW843682X; 
(I) GNF-2; (J) Erlotinib; (K) Crizotinib and (L) CGP-082996. 
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level of intracellular reactive oxygen species triggering 

PANoptosis [16]. Oxaliplatin can be used for hepatic 

arterial infusion chemotherapy [50] due to its unique 

pharmacokinetic, cytotoxic and immunological 

properties. Thus, the level of PANoptosis is 

theoretically helpful in evaluating the selection of drugs 

during hepatic arterial perfusion chemotherapy. In 

addition, IFN treatment can be affected by PANoptosis 

[19]. IFN-γ is approved as a cytokine for several cancer 

species and has been shown to induce apoptosis of HCC 

cells [51]. IFN was also used for chronic hepatitis B 

[52]. As a critical risk factor for HCC, whether the 

therapeutic effect of hepatitis B virus infection is 

affected by PANoptosis level needs to be further 

demonstrated. 

 

Additionally, 5 PAN-RGs were shown to be prognostic 

risk factors (MAP3K7, CASP8, RBCK1, FADD, 

CASP6). Caspase (CASP) is a conserved family 

member involved in signaling and execution of 

apoptotic pathways [53]. Its members CASP6 and 

CASP8 have been shown to be associated with HCC 

prognosis, mediated by the connexin32 (Cx32)-Src axis, 

and the inactivation of caspase-8 contributes to the 

activation of necrotic apoptosis in HCC cells [54–56]. 

MAP3K7 has been reported to affect mTOR 

phosphorylation and expression levels, and may 

contribute to HCC tumorigenesis via the MAP3K7-mtor 

axis [57]. RIPK1 kinase activity can induce FADD-

dependent apoptosis. In HCC, FADD and RIPK1 act 

synergistically to influence tumorigenesis through 

mediating apoptosis [26]. These PAN-RGs provide 

interesting clues to the mechanism by which 

PANoptosis affects prognosis. 

 

The role of eosinophils in liver hepatocellular 

carcinoma (HCC) prognosis is still not well understood 

and the subject of ongoing research. Some studies have 

found that high numbers of eosinophils in the tumor 

microenvironment (TME) are associated with HCC 

prognosis [58]. Our results showed lower levels of 

eosinophils in the high-risk group, indicating the 

association between eosinophils and a better prognosis 

in HCC. Eosinophil has shown its anti-tumor effects in 

 

 
 

Figure 11. Validation of mRNA level for prognostic signatures in HCC. (A) HMOX1; (B) IL18RAP; (C) RGL4; (D) S100A9; (E) TMC7; 

(F) TRAF3; (G) TRIM21. 
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HCC [59]. Additionally, increased percentage of 

eosinophils may also reflect tumor cell death and 

indicate the responding to treatment or other procedures 

[60]. Lower blood eosinophil counts were reported to be 

associated with poor therapeutic responsiveness in 

patients with hepatocellular carcinoma treated with 

sorafenib [61]. One hypothesis is that eosinophils 

contribute to tumor angiogenesis, inflammation, and 

immunosuppression in the TME, which can impact the 

growth and spread of the tumor [62, 63]. However, the 

exact mechanism by which eosinophils impact HCC 

prognosis is not yet clear, and further research is needed 

to determine their potential as targets for new 

treatments. 

 

To summary, we established a prognostic model 

consisting of seven PAN-RGs, and verified the 

significance of prognostic prediction and the possible 

clinical value of selected targets through public 

databases and our own clinical specimens. However, 

this article only provides a preliminary idea of the 

principles behind this risk stratification. Further 

research on this basis will provide new ideas and targets 

for HCC treatment. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The LASSO-univariate Cox algorithm of 376 DEGs. (A) Univariate Cox analysis of DEGs. (B) Identification 

of feature prognostic DEGs based on LASSO model. 
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Supplementary Figure 2. Development of risk model based on the PAG score in the training and test cohorts. The clinical 

prognostic analysis of HCC samples with low- and high PAG score in the (A) training and (B) Test cohorts. 
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Supplementary Tables 
 

Supplementary Table 1. The gene list of PANoptosis-related genes. 

Gene symbol 

ZBP1 

NLRP3 

RIPK1 

RIPK3 

CASP1 

CASP6 

CASP8 

PYCARD 

FADD 

MAP3K7 

TNFAIP3 

RNF31 

RBCK1 

PSTPIP2 

 

 

Supplementary Table 2. Gene specific primer pairs. 

RGL4 
F CCCCCAGAGAGTCCAGATGA 

R TTTCCTGCAGAACTCGGACC 

IL18RAP 
F AGAGCACTTCCTACTGAAAGAGG 

R GGCTACACCTTCAGCTGTCT 

S100A9 
F CGGCTTTGACAGAGTGCAAG 

R GCCCCAGCTTCACAGAGTAT 

HMOX1 
F TCCTGGCTCAGCCTCAAATG 

R CACGCATGGCTCAAAAACCA 

TMC7 
F GCGTCCTCATCCAATCCAGT 

R GTCTCGGTCAACAGCTGGAA 

TRAF3 
F ACCGCGAGAACTCCTCTTTC 

R TCAGGGACAAAAACTGGCGT 

TRIM21 
F CCCCTCTAACCCTCTGTCCA 

R CTGCTAAAGCTCGCTTGCTG 

 

 


