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ABSTRACT 
 

Abnormal fatty acid (FA) metabolism can change the inflammatory microenvironment and promote tumor 
progression and metastasis, however, the potential association between FA-related genes (FARGs) and lung 
adenocarcinoma (LUAD) is still unclear. In this study, we described the genetic and transcriptomic changes of 
FARGs in LUAD patients and identified two different FA subtypes, which were significantly correlated with overall 
survival and tumor microenvironment infiltrating cells in LUAD patients. In addition, the FA score was also 
constructed through the LASSO Cox to evaluate the FA dysfunction of each patient. Multivariate Cox analysis 
proved that the FA score was an independent predictor and created the FA score integrated nomogram, which 
offered a quantitative tool for clinical practice. The performance of the FA score has been substantiated in 
numerous datasets for its commendable accuracy in estimating overall survival in LUAD patients. The groups with 
high and low FA scores exhibited different mutation spectrums, copy number variations, enrichment pathways, 
and immune status. Noteworthy differences between the two groups in terms of immunophenoscore and Tumor 
Immune Dysfunction and Exclusion were observed, suggesting that the group with a low FA score was more 
responsive to immunotherapy, and similar results were also confirmed in the immunotherapy cohort. In addition, 
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INTRODUCTION 
 

Contemporary cancer statistics demonstrate that lung 

cancer (LC) constitutes one of the most ubiquitous and 

fatal oncological afflictions [1], with 2.2 million new 

cases and 1.8 million fatalities globally in 2020. 

Approximately 85% of lung cancer incidences are 

classified as non-small cell lung cancer (NSCLC) [2]; of 

these, lung adenocarcinoma (LUAD) represents the 

predominant histological subtype, constituting nearly 

63% of NSCLC cases [3]. Although the treatment of 

LUAD has been vastly improved recently, including 

new immunotherapy, molecular target, and anti-

angiogenesis therapy, however, only a small number of 

patients benefit from them [4, 5]. Even with the most 

sophisticated therapies and advancements, the 5-year 

survival rate of patients is still less than 15% due to 

tumor metastasis [1]. The lack of accurate clinical 

classification and prognostic evaluation system is the 

main problem of LUAD at present. Therefore, more 

sensitive and effective biomarkers are crucial for the 

diagnosis and prognosis of LUAD.  

 

Cancer cells frequently exhibit reprogrammed metabolic 

processes, which allow cancer cells to accumulate 

metabolic intermediates as a source of cell components 

and lipid metabolism in cells proliferating at an 

exponential rate will change as well [6–8]. Fatty acids 

(FA) synthesized by cancer cells in the process of 

metabolic capacity can be used for membrane and signal 

molecule biosynthesis. Cell membrane lipids are mainly 

phospholipids (PL), such as phosphatidylcholine (PC) 

and phosphatidylethanolamine (PE). Some of these 

lipids are derived from acetyl coenzyme A, and many 

contain FA, which can be obtained from exogenous 

uptake or de novo synthesis. Although most normal 

human cells prefer exogenous FA uptake, tumors can 

synthesize FA and usually show a shift towards de novo 

FA synthesis. Many types of tumors have been proved to 

rely on fatty acid oxidation (FAO) to provide ATP to 

maintain cell growth and survival. Recent studies have 

found that FAO metabolic reprogramming affects tumor 

metastasis. Wen et al. found that FA released from 

adipose tissue of colon cancer patients increases FA 

uptake of colon cancer cells and up-regulates mito-

chondrial FAO, promoting the growth and metastasis of 

colon cancer cells [9]. It has been reported that the key 

enzyme of FAO is abnormally expressed in malignant 

tumors, especially in ovarian cancer, and the abnormally 

high expression of CPT1A is closely related to the poor 

prognosis of ovarian cancer patients [10, 11]. The 

metastasis of ovarian cancer first involves the abdominal 

adipose tissue of the omentum. FA in omental 

adipocytes is hydrolyzed and liberated subsequent to the 

engagement between neoplastic cells and adipose tissue. 

Ovarian tumor cells rely on the FA released by these 

adipocytes to support rapid growth and continuous 

peritoneal diffusion through FAO [12]. In breast cancer, 

excretions from malignant mammary cells incite 

adipocytes to break down and discharge free fatty acids 

(FFA), which are assimilated and sequestered by the 

cancerous cells. This process reciprocally stimulates the 

augmentation of fatty acid oxidation within the 

neoplastic cells, thereby fostering the metastatic spread 

of breast cancer cells [13]. The process of neoplastic 

metastasis encompasses numerous stages. When the 

tumor develops to a certain stage, it begins to generate 

blood vessels, and the cancer cells can infiltrate into 

blood vessels and migrate to other organs for 

colonization through the blood tract [13, 14]. Cancer 

cells can also fall off from the primary focus, enter 

lymphatic vessels and migrate to regional lymph nodes, 

survive in the lymphatic system, and colonize the target 

organs after extravasation [15]. FAO is closely related to 

these steps and a study conducted by Schoor et al. found 

that FAO supports endothelial cells to generate blood 

vessels, and abundant blood vessels play an important 

role in tumor metastasis [15]. Wong et al. confirmed that 

FAO was up-regulated in lymphatic endothelial cells, 

and FAO could promote lymphatic endothelial cells to 

generate lymphatic vessels, which was conducive to 

lymph node metastasis of cancer cells [16]. Therefore, 

FA metabolism may become a promising research 

direction for cancer in the future. However, despite our 

increasing understanding of this topic, the role of FA 

metabolism in the prognosis and treatment of LUAD 

remains unclear.  

 

This investigation aimed to devise a scoring indicator 

for stratifying LUAD patients based on fatty acid 

related metabolic genes (FARGs) expression, with  

the intent of prognostic forecasting and directing 

therapeutic approaches. Consequently, the FA score 

can be derived by constructing FA-related models 

employing the Least Absolute Shrinkage and Selection 

Operator (LASSO) Cox approach. This score 

facilitates predictions of patient outcomes, immune 

infiltration, and immunotherapeutic responsiveness. 

seven potential chemotherapeutic drugs related to FA score targeting were predicted. Ultimately, we ascertained 
that the attenuation of KRT6A expression impeded the proliferation, migration, and invasion of LUAD cell lines. In 
summary, this research offers novel biomarkers to facilitate prognostic forecasting and clinical supervision for 
individuals afflicted with LUAD. 
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Our findings revealed potential correlations between 

FA metabolism and LUAD patient prognoses, the 

immune microenvironment, and treatment responses. 

 

MATERIALS AND METHODS 
 

Data source and preprocessing 

 

The data of 539 patients diagnosed with LUAD were 

retrieved from the Cancer Genome Atlas (TCGA) 

database (https://portal.gdc.cancer.gov/), including RNA 

sequencing transcriptome (TPM format), mutation, copy 

number variation (CNV) and clinical data. The 

microarray data (GSE31210, GSE68465 and GSE72094) 

of three LUAD patient cohorts were downloaded from 

the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/). Patients with 

incomplete survival information were excluded from our 

cohort. The batch effect caused by non-biotechnology 

deviation among different data sets was reduced by using 

‘SVA’ R package’s ‘combat’ algorithm [17]. In total, 503 

patients were used from the TCGA database as training 

sets, and 1066 patients from the GEO database were 

included in our study as external validation sets. The 

baseline clinical information of patients was presented in 

Supplementary Table 1. The procedure for this study is 

exemplified in Figure 1. 

 

Unsupervised cluster analysis 

 

Gene sets related to FA metabolic processes were 

downloaded from the molecular marker database 

(MsigDB, https://www.GSEA-msigdb.org/GSEa/msigdb/ 

genesets.jsp) as FARGs. We identified 38 overlapping 

FARGs (Supplementary Table 2) in all datasets and 

extracted the expression level of FARGs from each case 

for further analysis. Using unsupervised cluster 

analysis, different FA subtypes were determined 

according to 38 FARGs, and all patients were classified. 

The ‘ConsensusClusterPlus’ R package was employed 

to perform these analyses and it was repeated 1000 

times to ensure the stability of clustering. The optimal 

number of clusters was determined according to the 

consistent clustering algorithm. 

 

Gene set variation analysis (GSVA) and single 

sample gene set enrichment analysis (ssGSEA) 

 

In order to study the differences in biological processes 

leading to FA characteristic patterns, the ‘GSVA’ 

 

 
 

Figure 1. Schematic representation of the present study. 

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/GSEa/msigdb/genesets.jsp
https://www.gsea-msigdb.org/GSEa/msigdb/genesets.jsp
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R package was used to perform GSVA [18, 19]. 

Additionally, GSVA was also performed by downloading 

‘c2.cp.kegg.v6.2.symbols’ from MsigDB. Calibration  

p<0.05 was considered as the statistical significance of the 

‘limma’ software package among different subgroups. 

Simultaneously, the tumor-infiltrating immune cells in 

each sample were quantified using ssGSEA algorithm of 

the ‘GSVA’ R package. In addition, the distribution of 

LUAD patients according to the mRNA expression level 

of FARGs was shown by using principal component 

analysis (PCA).  

 

Determination and annotation of differentially 

expressed genes (DEGs) in different FA metabolic 

patterns 

 

‘limma’ package was used to obtain DEGs among 

patients with different FA subtypes and the 

significance criteria for selecting DEGs were set as 

false discovery rate (FDR) <0.05 and | log2 fold 

change (FC) | ≥ 1. Database for Annotation, 

Visualization and Integrated Discovery (DAVID, 

https://david.ncifcrf.gov/) tools were then used to 

perform Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) enrichment pathway 

analysis to conclude the potential function of these 

DEGs. FDR <0.05 was considered to be statistically 

significant. 

 

Construction and validation of FA metabolism score 

 

Univariate Cox analysis was used to distinguish DEGs 

related to prognosis. The generation of gene clusters 

and evaluation of their stability was done by the 

unsupervised clustering algorithm. Furthermore, the 

LASSO method in the ‘survminer’ package was used 

to deal with them to avoid overfitting and deleting 

those closely related genes and the minimum penalty 

item (λ) was selected by utilizing five-fold cross-

validation. The FA-related prognostic marker was 

established for LUAD patients, and the calculation 

formula for FA score was as follows: FA score= 

esum(UBE2S expression* 0.150928887713532+ HMMR expression* 

0.153839775933459+ TMPRSS11E expression* 0.0892095657835886+ CHIT1 

expression *-0.0625439224900231 +KRT6A expression* 0.125096336613015). 

Two groups of patients were created following the 

median FA score: the high FA score group and the low 

FA score group. The Kaplan-Meier (K-M) survival 

curve was drawn, and the differences between various 

FA score groups were evaluated with a log-rank test. 

The ‘time-dependent receiver operating characteristic 

(time-ROC)’ package was used to construct the time-

ROC curve, which was then validated in three GEO 
cohorts. The additional prognostic value of the FA 

score was further confirmed by stratified analysis, and 

univariate and multivariate cox analyses were both 

used to identify the independent prognostic indicators 

of LUAD. 

 

Construction of nomogram 

 

According to the results of univariate and multivariate 

cox analysis, the ‘rma’ R package was used to construct 

a comprehensive nomogram of independent factors to 

quantitatively evaluate the prognosis of FA score [20]. 

The nomogram was tested for its accuracy by 

constructing a calibration curve of 1, 3 and 5 years. The 

predictive ability of the nomogram was evaluated by 

using Concordance index (C-index) curve and the time-

ROC curve. The nomogram’s prognostic value and FA 

score were compared according to the C-index [21]. In 

addition, the net benefit of the nomogram was measured 

by decision curve analysis (DCA). 

 

Analysis of genome variation  

 

In order to explore the somatic mutation of FA score, 

the waterfall diagram was drawn with the ‘maftools’ R 

package to show the mutation of different FA score 

groups in LUAD patients. The TMB value reflecting 

the total mutation variable of each LUAD patient was 

calculated by non-synonymous mutation, and 38MB 

was used as the estimated value of exon size [22, 23]. 

In addition, ‘maftools’ R package was employed for 

the analysis of the significantly mutated genes and the 

interaction of gene mutations between high and low 

FA score groups. In these two analyses, only genes 

with more than 30 mutations in at least one group were 

considered. The GISTIC2.0 algorithm was employed 

to study the changes in somatic copy number between 

two different FA score groups. The fraction genome 

altered (FGA), the fraction of genome gained (FGG) 

and the fraction of the genome lost (FGL) values of 

each LUAD sample was determined [24]. The gene 

position on the chromosome was located using 

‘RCirco’ R package.  

 

Analysis of tumor immune characteristics and 

pathway enrichment of FA score 

 

The evaluation of tumor immune characteristics 

includes two aspects: (1) The expression level of 

immune checkpoints [25]; (2) The score and degree of 

infiltration of infiltrative immunity and stromal cells 

calculated by Estimation of Stromal and Immune cells 

in malignant Tumor tissues using Expression data 

(ESTIMATE) [26] and ssGSEA algorithm [27]. GSEA 

was employed to enrich potential pathways related to 

FA score, whereas GSVA was utilized to verify the 
tumor pathway differences between high and low FA 

score groups. FDR values <0.05 were considered 

significant enrichment.  

https://david.ncifcrf.gov/
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Prediction of immunotherapy response and 

chemosensitivity 

 

The clinical response of patients to immune 

checkpoint inhibitors (ICIs) was predicted using 

Tumor Immune Dysfunction and Exclusion (TIDE) 

algorithm [28]. A high TIDE score indicated a worse 

response to immunotherapy. The calculation process 

of immunophenoscore (IPS) was described in the 

previous article [29], where we observed a higher 

score indicated a better effect of immune checkpoint 

inhibition treatment. We can obtain IPS from the cancer 

immune Atlas website (TCIA, https://tcia.at/home). The 

sensitivity of patients to chemotherapeutic drugs was 

predicted using CTRP2.0 and PRISM databases, 

containing the data of area under the curve (AUC) of 

drug sensitivity, which is used as the standard to 

measure the drug sensitivity by these two databases.  

A lower value of the AUC indicates a higher sensitivity 

to the treatment [30]. Additionally, for the evaluation  

of the FA score’s potential to predict the response  

to immunotherapy, an independent anti-PD-L1 

immunotherapy cohort (IMvigor210) was included in 

this study [31].  

 

Acquisition of tissue samples and cell culture 

 

Fresh cancer and adjacent tissue samples from  

30 LUAD patients, who were not treated before 

surgery, were collected from the Fujian Provincial 

Hospital. The consent forms were signed by all 

patients after the specimen extraction, and the ethical 

approval of the Fujian Provincial Hospital (Ethics 

Approval Number K2022-05-019) was taken for our 

research plan. Each specimen was placed in a 

centrifuge tube containing RNA preservation solution 

and stored at -80° C. All cell lines were bought from 

the cell bank of the Chinese Academy of Sciences. 

BEAS-2B was cultured in high sugar DMEM (Sigma-

Aldrich, USA) containing 10% FBS (GIBCO, USA). 

RPMI-1640 medium (Sigma-Aldrich, USA), containing 

FBS was used to culture A549, HCC827, and BEAS-

2B cells in a humid environment containing with 5% 

CO2 at 37° C. 

 

Extraction of total RNA and analysis of real-time 

quantitative polymerase chain reaction (RT-qPCR) 

 

The Trizol reagent (Invitrogen, USA) was used for total 

RNA extraction from tissues and cell lines following the 

manufacturer’s instructions. cDNA synthesis was 

carried out by RNA reverse transcription using 

PrimeScript RT kit (Promega Corporation, Madison, 
WI, USA). RT-qPCR (Roche, Germany) was performed 

on the Roche LightCycler480 II system according to the 

instructions of Promega SYBR-Green PCR Master Mix 

(Promega Corporation, Madison, WI, USA). The 

determination was carried out on a 96-wells plate, and 

each sample had three duplicate holes. GAPDH was 

used as the internal reference gene, and the relative 

expression level of mRNA was calculated using 2-ΔΔCT 

method. The primer sequence of RT-qPCR is shown in 

Supplementary Table 3. 

 

Western blot analysis 

 

The Western blot analysis was conducted following the 

established protocol [32]. Tissues and cells underwent 

homogenization in radioimmunoprecipitation assay 

buffer (RIPA, Solarbio, China, R0010), supplemented 

with 1% protease inhibitor cocktail, and the supernatant 

concentration was ascertained utilizing the bicinchoninic 

acid assay. Target proteins were loaded onto a sodium 

dodecyl sulfate-polyacrylamide gel, followed by protein 

transfer to a polyvinylidene fluoride membrane.  

The membranes were then incubated overnight at 4° C 

with the following primary antibodies: KRT6A 

(ABclonal, China, 1:1000), TMPRSS11E (Thermo 

Fisher Scientific, USA, 1:1000), HMMR (ABclonal, 

China, 1:1000), UBE2S (ABclonal, China, 1:1000) 

CHIT1 (ABclonal, China, 1:1000) and GAPDH 

(ABclonal, China, 1:1000) antibodies after a 1.5 hour 

blocking period. Upon washing with Tris-Buffered 

Saline with EDTA and Tween 20, the membranes  

were exposed to horseradish peroxidase-conjugated 

secondary antibodies for 1 hour at ambient temperature. 

The blots were developed using an enhanced 

chemiluminescence substrate (ECL reagents) and 

subsequently analyzed by Image Lab image analysis 

software. 

 

Cell transfection  

 

The HanBio Company (Fuzhou, Fujian, China) 

provided KRT6A small interfering RNAs (siRNA-

KRT6A) and non-target small interfering RNA (siRNA-

control). Two siRNA and si-control sequences are 

presented in Supplementary Table 4. Following the 

manufacturer’s instructions, transfection was carried out 

using HanBio RNA-specific transfection reagent 

(Invitrogen, Carlsbad, CA, USA) in Opti-MEM medium 

(Gibco, Rockville, MD, USA). mRNA expression levels 

after 48 hours and protein expression levels after 72 

hours were carried out to assess the efficiency of cell 

transfection. After stable transcription, the cells were 

collected for the other cell-related experiments.  

 

CCK8 (cell counting kit-8) assay 

 
The cell proliferation ability after transfection was 

studied by CCK8. Briefly, the KRT6A-knockdown 

cells in the logarithmic phase of growth were seeded 

https://tcia.at/home
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into 96-well plates with 2000 cells per well. After  

the cells adhered, 10μl CCK8 reagent (Cellcook, 

Guangzhou, China) was added to the into wells and 

OD (optical density) was measured after incubation at 

37° C and 5% CO2 for 2 hours. The detection time 

was set as 0, 24, 48 and 72 hours respectively. The 

absorbance at 450nm for each well was read using a 

microplate reader. 

 

Clone formation assay 

 

The transfected cell suspension was seeded in a 6-well 

plate at 1000 cells/well. Cells in 6-well plates were  

then grown in a complete medium. The cells were 

cultured for 10 days, the cells were fixed with 4% 

paraformaldehyde for 30 minutes and stained with 0.1% 

crystal violet for 30 minutes. The formed cell colonies 

were observed and photographed with a microscope. 

The number of colonies formed was counted by ImageJ. 

 

5-Ethynyl-20-deoxyuridine (EdU) assay 

 

Employing an EdU Kit (Beyotime, China, C0071s), the 

EdU assay was conducted. Approximately 60,000 cells 

per well were distributed in 24-well plates and 

subsequently cultured with EdU reagent at a 1:1000 

dilution for 2 hours on the subsequent day. The cells 

were then fixed utilizing 4% paraformaldehyde and 

stained with fluorescent dye and Hoechst. Post-staining, 

the cells were imaged and enumerated under a 

fluorescence microscope. The EdU-positive cell index 

was ascertained by calculating the proportion of 

positive cells relative to the total cell count. 

 

Transwell assay 

 

To determine the migratory capacity of cells, 100μl of 

the cell suspension (50000 cells) with serum-free 

medium were seeded into the upper chamber of a 

transwell plate. Next, 500μl complete 15% FBS-

containing medium was added to the lower 

compartments. After incubation for 24 hours, the cells 

were fixed with 4% paraformaldehyde and stained with 

0.1% crystal violet for 30 minutes respectively. Then a 

cotton swab was used on the cells in the upper 

chambers. Eventually, the cells on the lower surface of 

the membrane were observed and photographed by the 

microscope, and the results were measured and recorded 

using ImageJ. For the invasion assay, the upper 

chamber was coated with 100μl of 10% Matrigel. The 

rest of the procedure was the same as migration assay. 

 

Statistical analysis 

 

R software (version 4.2.1), GraphPad Prism (version 

9.0) and SangerBox web tool (http://sangerbox.com/) 

were used to perform all the statistical analyses. Some 

standard tests which included Student’s T test, 

Wilcoxon rank sum test, chi-square test, and Fisher 

exact test, were employed to determine the differences 

in variables among different groups. The p-value  

for multivariate multiple comparisons underwent 

adjustment employing the Benjamin-Hochberg method, 

and all tests utilized two-tailed p-values [33]. Moreover, 

the statistical significance was set to p <0.05. 

 

RESULTS 
 

Genetic and transcriptional changes of FARGs in 

LUAD 

 

A total of 38 FARGs were enrolled in this study and the 

incidence of somatic mutations analysis in these 38 

FARGs revealed that the overall frequency of mutation 

was relatively low in the LUAD cohort (Figure 2A). 

Only 171 of 503 patients had mutations (Figure 2A), 

among which ACSL1 had the highest mutation 

frequency (3%), while 14 FARGs had no mutation. 

Furthermore, the somatic CNV in these FARGs was 

studied and it was found that CNV was common in all 

38 FARGs (Figure 2B). ALDH9A1 and ACOX1 

exhibited a significant increase in CNV, whereas 

ACADM displayed a decrease in CNV. The location of 

CNV changes in FARGs on their respective 

chromosomes is illustrated in Figure 2C. Additionally, 

the level of expression of all FARGs in tumor and non-

tumor tissues were statistically different (Figure 2D). In 

univariate Cox analysis, 18 FARGs related to prognosis 

were detected. Figure 2E illustrates the network of 

FARGs interactions, prognostic values, and regulator 

connections in patients with LUAD. 

 

Identification of FA subtypes 

 

A total of 1569 samples from four independent LUAD 

cohorts were retained with complete survival 

information. Through unsupervised clustering of 38 

FARGs expressions, the whole cohort was divided into 

two subtypes: subtype A and B (Supplementary Figure 1 

and Supplementary Table 5). Through PCA analysis, 

significant differences in FARGs transcriptional profiles 

were revealed between the two subtypes (Figure 3A). 

Survival analysis revealed that patients with subtype A 

had a significantly smaller OS than those with subtype 

B (Figure 3B). Moreover, the comparison of the clinical 

characteristics of different subtypes of LUAD indicated 

significant differences in the FARGs expression and 

clinical pathological characteristics, and the subtype of 

patients was related to age and T stage (Figure 3C). The 

KEGG enrichment pathway and the immune cell 

composition of tumor microenvironment (TME) 

between the two subtypes were analyzed to understand 

http://sangerbox.com/
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the association between intrinsic biological traits and 

various clinical phenotypes. GSVA revealed that 

subtype A was enriched in the cell process, while 

subtype B was mainly related to the metabolism of 

various substances (Figure 3D and Supplementary 

Table 6). According to the results of the ssGSEA 

analysis, subtype B had considerably higher levels of 

infiltration of B cells, DC cells, eosinophils, T cells, and 

Th cells than subtype A, while subtype A had 

significantly higher levels of infiltration of NK cells, 

Treg cells, and Th2 cells than subtype B (Figure 3E and 

Supplementary Table 7). 

 

Gene cluster identification based on DEGs 

 

To investigate the potential biological behavior inherent 

in each FA pattern, we identified 222 DEGs related  

to FARGs subtypes. Subsequently, we conducted a 

meticulous functional enrichment analysis to gain a 

deeper understanding of these DEGs (Supplementary 

Table 8). These DEGs were then enriched and analyzed. 

The FARGs were significantly enriched in the process  

of metabolism and cell cycle (Figure 4A, 4B and 

Supplementary Table 9), indicating that FA plays a 

significant role in cell cycle and metabolism. The  

Cox regression analysis was then used to detect the 

relationship between these FARGs and OS in LUAD 

patients, and 197 FARGs with strong prognostic values 

were identified to help with further analysis of the core 

characteristics of FA (Supplementary Table 10). To 

verify this conclusion, we undertook an additional 

unsupervised clustering step on a set of 197 FARGs, 

which resulted in the identification of three distinct  

gene clusters for FARGs (Supplementary Figure 2 and 

Supplementary Table 11). Obviously, significant 

differences in the mRNA expression of FARGs were 

observed between gene clusters in the metadata set 

(Figure 4C). The PCA map displays the relative distances 

of the three gene clusters using current prognostic DEGs 

(Figure 4D). Similar to FARGs subtyping, gene clusters 

can also be utilized to differentiate immune-infiltrating 

cells and OS in all patients. (Figure 4E, 4F). 

 

 
 

Figure 2. Genetic and transcriptional alterations of FARGs in TCGA-LUAD patients. (A) Mutation frequencies of 38 FARGs. (B) CNV 

alteration frequency of 38 FARGs. (C) Location of the CNV alteration of 38 FARGs on chromosomes. (D) Expression of 38 FARGs between 
normal and tumor tissues. (E) The interactions among FARGs in LUAD are visually represented in the diagram. The interconnecting lines 
between FARGs signify their interdependence, with the line width representing the strength of the correlation between FARGs. Negative 
correlations are illustrated in green, while positive correlations are denoted in pink. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. 
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Construction and validation of prognostic FARGs 

score 

 

In the establishment of a model for quantification of 

each patient, five of the 197 prognostic DEGs were 

maintained by applying multivariate Cox regression 

analysis and the LASSO regression model. These were 

used to establish FARGs scores, named ‘FA score’ 

(Supplementary Figure 3 and Supplementary Table 12). 

Furthermore, the value of the FA score was determined 

by the prediction of the prognosis of patients. The 

patients were divided into two groups: the high FA score 

group and the low FA score group according to the 

median score. Figure 5A illustrates the distribution of 

patients in two FA subtypes, three gene phenotypes and 

two FA score groups. There were differences detected in 

relation to expressions of the great majority of FARGs in 

the high and low FA score groups (Figure 5B). Besides, 

significant differences in FA score among FA clusters 

and gene clusters were identified (Figure 5C, 5D). We 

observed that the low FA score group had a significant 

survival advantage over the group with a high FA  

score (Figure 5E). To showcase the comprehensive 

significance of the FA score, its validation across 

supplementary cohorts produced consistent results 

(Supplementary Figure 4A–4C and Supplementary 

Table 12). Additionally, with the use of time-ROC 

analysis, it was further verified that the FA score is a 

good indicator for predicting the prognosis of LUAD 

patients (Figure 5F and Supplementary Figure 4D–4F). 

In order to test the good applicability of the FA score, a 

stratified analysis of LUAD cancer patients was 

performed based on clinical and pathological data. The 

comparison between patients with high and low FA 

scores revealed that individuals with high FA scores had 

a shorter OS period at most levels including age over 

 

 
 

Figure 3. Consistent clustering for FARGs clusters, biological processes, and characteristics of immune infiltration cells of 
each cluster. (A) PCA plot based on the FARGs. (B) Kaplan–Meier survival curves for the different FARGs clusters. (C) Heatmap for 

different clinicopathologic features and expression levels of FARGs between two clusters. (D) GSVA of biological pathways between two 
clusters. (E) Different expressions of immune infiltration cells in each FARGs cluster. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. 
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60 years (Supplementary Figure 5). However, it may be 

because of the small sample size, and no statistical 

difference in OS of M1 patients of the high and low FA 

score groups. The correlation analysis between FA 

score and several clinical features showed that the 

survival status, M, N, T, age and stage of LUAD 

patients were notably associated with FA score  

(Figure 5G) and these findings indicate that FA score is 

a highly reliable marker. As a result, the FA score was 

included in Cox regression analysis as an effective 

index and clinical characteristics, and we observed that 

FA score, N, and T are independent variables that 

impact the prognosis of LUAD patients (Table 1). 

 

Construction of nomogram for predicting the survival 

rate 

 

Considering the inconvenience of using FA score to 

predict OS in LUAD patients clinically, a nomogram 

was established featuring the FA score and 

clinicopathological parameters to predict the OS rate of 

patients (Figure 6A). Predictive factors included 

independent factors N, T, and FA score, and the 

calibration chart illustrated that the proposed nomogram 

had a similar performance in the TCGA queue 

compared with the ideal model (Figure 6B). The time-

ROC and C-index curves both suggested that the 

nomogram had the best prediction effect (Figure 6C, 

6D). In addition, DCA disclosed that the nomogram 

garnered greater net advantages in predicting 1, 3, and 

5-year prognostic outcomes compared to univariate 

analysis (Figure 6E, 6F). More importantly, these 

results were validated in the independent cohort 

GSE68465 (Supplementary Figure 6). 

 

Correlation between genomic changes and FA score 

 

The distribution of somatic variation in LUAD driver 

genes was evaluated across groups with high and low 

FA scores. The top 20 driver genes with the highest 

frequency of change were analyzed and evaluated using 

the ‘maftools’ tool. (Figure 7A, 7B). These findings 

provide a new direction for studying the composition of 

tumor ICIs and the mechanism of gene mutation in 

immune checkpoint blockade (ICB) treatment. When 

comparing the mutation frequency between samples 

from high and low FA score groups, more somatic 

mutations, including non-synonymous mutations and 

synonymous mutations, were observed in the high FA 

score group (Figure 7C–7E). The TCGA cohort 

mutation annotation file analysis revealed a substantial 

difference in the mutation frequency of 37 genes, 

including TP53 and UBR4, and between the two FA 

score groups, a significant co-occurrence of mutations in 

 

 
 

Figure 4. Identification of gene clusters based on DEGs. (A, B) GO and KEGG enrichment analyses of DEGs among two FARGs clusters. 
(C) Expression of FARGs between gene clusters A, B and C. (D) PCA plot based on the DEGs. (E) Kaplan–Meier curves for the different gene 
clusters. (F) Different expressions of immune infiltration cells in each gene cluster. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. 
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these genes was observed (Figure 7F, 7G). Additionally, 

the patients’ TMB was considerably higher in the high 

FA score group than that in the low FA score group 

(Figure 7H and Supplementary Table 13). According to 

the optimal cut-off value of TMB, patients were divided 

into two groups. K-M survival analysis revealed that the 

patients in the high TMB group had a substantially ideal 

OS rate (Figure 7I). Subsequently, the TMB score and 

FA score were combined to conduct a stratified survival 

analysis, which showed that the high and low TMB 

subgroups classified in accordance with the FA score 

displayed significant survival differences (Figure 7J). 

Further analysis was performed of the GISTIC score and 

copy number gain/loss frequency of high and low FA 

 

 
 

Figure 5. Construction of FA score. (A) Alluvial diagram of clusters distributions in groups with different FA score and survival outcomes. 

(B) Expression of FARGs between high and low FA score groups. (C) Differences in FA score between FARGs clusters. (D) Differences in FA 
score between gene clusters. (E) Kaplan–Meier curves for patients with high and low FA score in the TCGA-LUAD cohort. (F) Time-dependent 
receiver operating characteristic curve of FA score for predicting the prognosis of the LUAD patients in the TCGA-LUAD. (G) The circular pie 
chart for the proportion difference of clinical indices. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Table 1. Univariate and multivariate Cox analysis of the clinicopathological features and 
FA score with OS. 

Characteristics 
Univariate Cox Multivariate Cox 

HR(95%CI) P value HR(95%CI) P value 

Stage 1.977(1.586-2.463) < 0.001 1.256(0.883-1.786) 0.205 

M 1.727(1.18-2.527) 0.005 1.184(0.75-1.87) 0.469 

N 1.942(1.575-2.394) < 0.001 1.584(1.193-2.104) 0.001 

T 1.816(1.386-2.38) < 0.001 1.495(1.067-2.094) 0.02 

Age 1.038(0.822-1.31) 0.754   

Sex 1.041(0.847-1.28) 0.7   

FA score  0.579(0.467-0.717) < 0.001 0.695(0.535-0.903) 0.006 

Significant value is given in bold. 

 

score groups and the results illustrated that the frequency 

of copy number increase/decrease in the high FA score 

group was greater than that in low FA score group 

(Figure 7K). Furthermore, the differences in FGA, FGG, 

and FGL between subtypes were evaluated and we 

observed greater values of the FGA, FGG and FGL in 

the high FA score group than those in the low FA score 

group (Figure 7L and Supplementary Table 14). This 

result indicated that the increase in copy number/loss 

frequency might be a factor leading to the higher FA 

score in LUAD patients. 

Evaluation of TME between high FA score and low 

FA score patients 

 

The effects of immunotherapy and its consequences on 

the cancer cells are determined by the state of TME. 

The correlation between FA score and cancer immune 

cycle activity was analyzed and the activity of some 

anti-cancer immune responses, such as Release of 

cancer cell antigens, Priming and activation, CD8 T cell 

recruiting, Neutrophil recruiting and MDSC recruiting, 

was observed to be substantially different in the 
 

 
 

Figure 6. Development of a nomogram by integrating the FA score and clinicopathological characters in TCGA-LUAD cohort. 
(A) Nomogram for predicting the 1-, 3-, 5-years OS. (B) Calibration curve of the nomogram for predicting the 1-, 3-, and 5-years OS. (C) ROC 
curve for predicting the different years’ OS. (D–F) Decision curves showing the comparison of net benefits of the nomogram, N, T and FA 
score for 1-, 3-, and 5-years OS. 
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Figure 7. Integrated comparisons of somatic mutation and CNVs between FA score groups in the TCGA cohort. (A, B) Waterfall 

plots showing the mutation information of the top 20 genes with the highest mutation frequency in high and low FA score groups. (C–E) 
Association between all mutation counts, synonymous mutation counts, nonsynonymous mutation counts, and FA score and their 
distribution in the low and high FA score groups. (F) Differentially mutated genes between high and low FA score groups are displayed as a 
forest plot. (G) Interaction effect of genes mutating differentially in patients in the low and the high FA score groups. (H) Distribution of TMB 
in the low and the high FA score groups. (I) Kaplan–Meier curves for the OS of the high‐TMB and low‐TMB groups. (J) Kaplan–Meier curves 
for patients stratified by both TMB and FA score. (K) Gene fragments profiles with amplification (red) and deletion (green) among the two 
groups. (L) Comparison of the fraction of the genome altered, lost, and gained between the two groups. ns, not significant, *P < 0.05,  
**P < 0.01, ***P < 0.001, ****P < 0.0001. 
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high and low FA score groups (Figure 8A and 

Supplementary Table 15). Moreover, the association 

between FA score and immune cell abundance was 

evaluated using ssGSEA algorithm. The scatter diagram 

illustrates the majority of immune cells were vastly 

infiltrated in the low FA score group (Figure 8B). A low 

FA score was closely related to a high immune score, 

stromal score and ESTIMATE score, while a high FA 

score was related to high tumor purity (Figure 8C and 

Supplementary Table 16). Additionally, TME score 

exhibits a negative correlation with TMB (Figure 8D). 

The FA score was found to be positively correlated with 

the expression of many immunological checkpoints as 

well as the enrichment score of gene features relevant  

to immunotherapy response (Figure 8E and 

Supplementary Tables 17, 18). GSVA was conducted in 

the high FA score and low FA score groups to 

investigate the cancer marker pathways related to FA 

score. Compared with the low FA score group, the 17 

landmark pathways in the high FA score group were 

substantially increased (Figure 8F and Supplementary 

Table 19). Moreover, GSEA corroborated that 11 

oncogenic pathways were upregulated in the high FA 

score group, the majority of which were linked to the 

well-established carcinogenic pathways (Figure 8G–8J 

and Supplementary Table 20). 

 

Application of FA score in predicting chemotherapy 

and immunotherapy 

 

IPS files downloaded from TCIA were utilized to 

determine whether FA score can predict the response of 

LUAD patients to immunotherapy. An elevated IPS 

value was discerned in the low FA score cohort, 

signifying an enhanced immunotherapeutic response 

among the patients (Figure 9A and Supplementary Table 

21). The TIDE algorithm was also used to predict the 

immunotherapeutic effect of ICB which suggested  

that the TIDE score of the high FA score group was 

higher, implying that patients with high FA score may 

display a poor immunotherapy response (Figure 9B and 

Supplementary Table 22). An immunotherapy cohort 

(IMvigor210) was introduced to further investigate if an 

FA score can predict response to immunotherapy. A 

better survival rate was observed in patients with low FA 

scores, and they showed a higher objective remission 

rate than those with high FA score (Figure 9C–9E). 

While immunotherapy remains a preeminent modality 

for cancer management, chemotherapy has historically 

served as a crucial postoperative intervention. Therefore, 

it is necessary to forecast potential LUAD therapeutic 

alternatives with the CTRP and PRISM repositories. 

According to the results, drugs such as leptomycin B and 
paclitaxel were predicted to be better options for patients 

with high FA scores. Moreover, it was observed that out 

of the seven chemotherapy drugs, the value of AUC of 

gemcitabine was the lowest, which means that LUAD 

patients may have good therapeutic sensitivity to 

gemcitabine (Supplementary Figure 7).  

 

The expression level of genes in FA score in LUAD 

cell lines and tissues 

 

UBE2S, HMMR, TMPRSS11E and KRT6A were found 

to be up-regulated in tumor tissues relative to 

surrounding non-cancerous and normal tissues in the 

screening cohort (Supplementary Figure 8). The RT-

qPCR and WB for LUAD cell lines and patient tissues 

were used to validate the expression levels of 4 genes in 

LUAD. The expression of UBE2S, HMMR and KRT6A 

expression in tumor tissues was substantially higher  

than that in adjacent non-cancerous tissues (Figure 10A). 

For cell lines, the expression of UBE2S, HMMR, 

TMPRSS11E and CHIT1 was upregulated, whereas 

KRT6A was downregulated in LUAD cell lines 

compared with cell line BEAS-2B (Figure 10B). 

 

Knockdown of KRT6A inhibits LUAD cell 

proliferation, migration and invasion 

 

Considering the important role of FA score in LUAD, 

the independent prognostic genes may have a greater 

impact on the biological function of LUAD cells. We 

chose KRT6A, exhibiting the most robust prognostic 

association, to further substantiate our conjecture. To 

explore the role of KRT6A in LUAD in vitro, siRNAs 

were introduced into A549 and HCC827 cells to 

suppress KRT6A expression, as evidenced by RT-

qPCR (Figure 11A). The CCK-8 assay revealed that 

suppression of KRT6A led to a reduction in the  

total cell viability of both A549 and HCC827 cells 

(Figure 11B). The results of the clone formation  

and EDU assays corroborated the results of CCK8 

(Figure 11C, 11D). In addition, a significant decrease 

in the LUAD cell invasion was also shown by the 

transwell assay (Figure 11E).  

 

DISCUSSION 
 

Lipid metabolism disorder is an important metabolic 

change in cancer. Cancer cells can exploit a range of 

matrices and matrix sources to fulfill their catabolic and 

anabolic demands, including endogenous and 

exogenous FA, to maintain a high proliferation rate 

[34]. Dysregulation of fatty acid metabolism can 

promote proliferation, apoptosis, migration, and 

invasive capabilities of transformed cells, ultimately 

leading to tumorigenesis [35, 36]. Nonetheless, most 

preceding studies have predominantly concentrated on 

singular FARGs, while the comprehensive function of 

multiple FARGs in modulating one another remains 

insufficiently elucidated. Identifying the distinct fatty 
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Figure 8. The relationship between immune characters of TME and FA score in the whole cohort. (A) Differences in activities of 

the cancer immunity cycles between high and low FA score groups. (B) Different expressions of immune infiltration cells in each FA score 
group. (C) Violin plots for the immune score, stromal score, ESTIMATE score, and tumor purity in the low and high FA score groups. (D) 
Spearman correlation analysis between TMB and immune score, stromal score, and ESTIMATE score. (E) The correlations between FA score, 
immunotherapy-predicted pathways and immune checkpoints. (F) The difference in the hallmark gene sets between FA score groups. (G–J) 
The GSEA results for the 11 overlapping upregulated hallmark pathways in terms of the high FA score groups. ns, not significant, *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001. 
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acid metabolic pattern in LUAD will contribute to 

comprehending tumorigenesis and cancer progression 

while offering valuable insights for the development  

of innovative LUAD therapeutics and prognostic 

approaches. The contemporary advancement of 

bioinformatics techniques facilitates potent, large-scale 

approaches for examining molecular markers and 

prognostic indicators across an array of malignancies 

and assorted maladies. In recent years, numerous multi-

gene signatures have been successfully developed, 

allowing for precise prognostication of patient outcomes 

and therapeutic efficacy [37–39]. 

 

In this study, a comprehensive evaluation of the somatic 

mutations and mRNA expression of 38 FARGs in 

patients with TCGA-LUAD was performed, and 171 of 

616 patients were observed to have mutations, while 28 

FARGs were differentially expressed in cancer and 

adjacent tissues. Based on 38 FARGs, two different 

molecular subtypes (A and B) were identified. Subtype 

A patients had more advanced TNM stage and worse 

OS as compared to subtype B. The immune cell 

infiltration and enrichment pathways between both 

subtypes were analyzed and the results revealed that as 

compared to subtype B, the infiltration of most immune 

cells in subtype A was relatively low. Not surprisingly, 

patients with subtype A had a low OS rate due to 

suppression of the immune system. Astonishingly, the 

infiltration analysis of TME cells indicated that some 

patients with subtype A had relatively rich adaptive and 

 

 
 

Figure 9. Application of the FA score for immunotherapy prediction in the high and low FA score groups in the TCGA-LUAD 
cohort. (A) IPS is used to predict the responsiveness to CTLA-4 and PD-1. (B) Distribution of TIDE scores in the whole cohort. (C) Kaplan–

Meier curves for patients with high and low FA score in the IMvigor210 cohort. (D) The rate of response to immunotherapy for patients with 
high and low FA score in the IMvigor210 cohort. (E) The distribution of FA score in different patient statuses in the IMvigor210 cohort. ns, not 
significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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innate immune cell infiltration, including NK cells, 

Treg cells and Th2 cells. Additionally, GSEA analysis 

revealed that the two FA subtypes were characterized 

by markedly distinct pathways. Subtype A was mainly 

concentrated in homologous recombination and DNA 

replication, while subtype B was concentrated in 

histidine metabolism and tyrosine metabolism. 

 

Furthermore, 222 differentially expressed mRNAs were 

identified in different FA clusters in our study. The 

differentially expressed mRNA may possess regulatory 

associations with FARGs and contribute to 

tumorigenesis and progression, with 197 genes being 

correlated to the overall survival status of LUAD 

patients. Similar to the clustering results of FARGs 

typing, patients were divided into three gene clusters: A, 

B and C, according to the prognosis DEGs. The OS, 

FARGs expression and immune infiltration among gene 

clusters were different. Given the potential of FARGs to 

assess clinical outcomes and treatment responses, a 

scoring system named the FA score was developed.  

The FA score is based on five FARGs and has been 

validated across multiple cohorts for its predictive 

capability. These FARGs have been associated with 

tumorigenesis and some have been implicated in studies 

of LC. For example, overexpression of UBE2S was 

identified in human LC tissues and cell lines, and 

UBE2S knockout resulted in significant inhibition of 

the proliferation of lung cells and induced their 

apoptosis [40]. What is more, the UBE2S expression 

exhibited a negative correlation with the survival rate of 

patients with LUAD. The mechanism underlying the 

action of UBE2S involves its direct interaction with 

IκBα in LUAD to stimulate the NFκB pathway, which 

in turn activates the EMT signal to promote adeno-

carcinoma metastasis [41]. The overexpression of 

HMMR in LUAD predicts the poor prognosis of 

patients and is related to a variety of clinical indicators 

such as patient stage and smoking. The proliferation and 

migration of LUAD cells are promoted by the up-

regulation of HMMR, which may be regulated by the 

TMPO-AS1/let-7b-5p axis [42]. Relevant studies have 

 

 
 

Figure 10. The expression validation of the genes in the FA score by RT-qPCR and WB. (A) Expression levels of 5 genes in LUAD and 
matched paracancerous tissues. (B) Expression levels of 5 genes in the normal lung epithelial cell line BEAS-2B and two LUAD cell lines 
(HCC827, A549). ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. T, tumor tissues; P, paracancerous tissues. 
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Figure 11. KRT6A silencing inhibits LUAD cell proliferation, migration and invasion (A549 and HCC827). (A) RT-qPCR was used to 

verify the efficiency of KRT6A knockdown in LUAD cell lines. (B) CCK-8, (C) clone formation and (D) EDU assays were used to test the 
proliferation of LUAD cell lines. (E) Transwell assay was applied to measure cell migration and invasion of LUAD cell lines. ns, not significant, 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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reported high expression of KRT6A in LC tissues, and 

the increased expression of KRT6A can be utilized to 

predict the prognosis of LUAD patients [43]. Here, we 

focused on the KRT6A, which shows the strongest 

prognostic correlation to the prognosis of LUAD 

patients. Functional experiments found that siRNA-

induced knockdown of KRT6A inhibited LUAD cell 

proliferation, migration and invasion, suggesting that 

the oncogenic property of KRT6A in LUAD tumori-

genesis and progression. However, this process needs 

further study to elucidate its detailed mechanisms. 

Survival analysis revealed that in comparison to the OS 

of the high FA score group, the OS of the low FA score 

group was prolonged, and similar results were obtained 

in most clinical subtypes. More importantly, we have 

proved that the FA score has a strong correlation with 

patients’ clinical symptoms and can be employed as an 

independent prognostic factor. Furthermore, 

nomograms were constructed utilizing the demographic 

features of age, sex, TNM staging, and FA score, 

thereby enabling clinicians to easily prognosticate 

patient outcomes. These results show that the FA score 

not only has a strong and reliable ability to predict the 

prognosis of patients but also consists of only a small 

number of genes, which is conducive to clinical 

translation.  

 

TME is a complex network composed of immune cells, 

cytokines and fibroblasts, which plays a crucial role in 

cancer treatment and prognosis [44, 45]. Considering 

that TME and immune cell infiltration are related to 

cancer prognosis, it is necessary to explore the tumor 

immune microenvironment of LUAD. Our data 

revealed that people with high FA scores exhibit 

reduced immune and stromal cell infiltration and 

increased tumor purity. Furthermore, the augmentation 

index of the antineoplastic immunological cycle and 

the percentage of infiltrating immune cells in the group 

with diminished FA scores surpass those within the 

elevated FA score cohort, signifying a more robust 

inherent antineoplastic immunity within the tumor 

microenvironment of patients belonging to the group 

with reduced FA scores [46]. ICI has significantly 

improved the therapeutic prospects for patients with 

advanced NSCLC [47], and the response to ICI 

treatment can be predicted by the expression of an 

important biomarker, PD1/PD-L1 [48, 49]. However, 

PD1/PD-L1 seems not a perfect predictor and more 

research is being conducted to identify better predictors 

[50, 51]. Studies have shown that CTLA4, CD200 and 

CD80 are important immune checkpoints of LUAD. In 

this study, the FA score is associated with many 

immune checkpoints, including these three, which may 
be potential targets for the ICI treatment of LUAD 

patients. Methodically investigating the marker gene 

set between high and low FA score groups provides 

more information for us to deeply understand the 

transcriptome regulation mechanism of FA score in 

LUAD. It was found that the marker pathways with 

elevated levels in the high FA score group were related 

to recognized carcinogenic signaling pathways, 

including the MTORC1 pathway, Myc pathway, and 

cell cycle pathway [52]. The preliminary data strongly 

imply the internal relationship between immune-

derived signals and carcinogenic pathways and this 

might help to develop new strategies for the discovery 

of candidate drugs in future research. The TIDE 

algorithm and IPS score, both have illustrated that the 

low FA score group responded better to immuno-

therapy. Moreover, after evaluating patients who 

received immunotherapy from IMvigor210 cohort, we 

observed that patients in the low FA score group 

displayed a higher proportion of response to 

immunotherapy, which once again verified the 

predictive value of the FA score. We also found a 

positive correlation between FA scores and various 

immunotherapy pathways which indicates that the FA 

score has the potential for immunotherapy guidance. 

TMB was identified as a biomarker of immunotherapy 

response, where the higher the TMB, the greater the 

benefits of immunotherapy [53, 54]. The patients with 

high FA scores were observed to have higher TMB, 

however, as mentioned above, patients in the high FA 

score group exhibited reduced immune activity, 

implying that a high value of TMB does not essentially 

indicate high immunogenicity. Detailed analysis 

revealed that due to mutations in 37 genes, high TMB 

score was observed in the high FA score group. 

Interestingly, the co-mutation frequency of these genes 

is very high, which indicates that the co-mutation of 

these genes may lead to unknown changes in TME 

regulation. Nonetheless, the effect of these co-

mutations on patients’ response to immunotherapy 

requires further study. CNV is also an important factor 

affecting tumor immunity. In different cancers, a high 

level of CNV with TME has greater tumor-promoting 

and immunosuppressive characteristics [55]. Various 

studies have shown that high levels of CNV in LUAD 

cells result in the exponential proliferation of tumors 

and a decrease in immune infiltration. Specifically, 

focal CNV is primarily associated with increased tumor 

proliferation, while elevated levels of arm and whole 

chromosomal CNV predominantly correspond to 

decreased immune infiltration [56], which is consistent 

with the negative correlation between TMB and TME 

score in our results. Cells that evade anti-tumor 

monitoring may have high levels of CNV, caused by 

chromosomal instability. The results from our study 

showed that CNV and FGA increased simultaneously 
in the high FA score group, which was consistent with 

the observation that increased CNV results in an 

increased death rate [57]. 
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When combined with radiotherapy, chemoradiotherapy 

and targeted drugs, immunotherapy has obvious 

synergistic effects [58]. In order to identify drugs that 

cooperate with patients’ immunotherapy and promote 

personalized treatment decisions, seven potential drugs 

were identified through the interaction analysis between 

FA score and drug response. Among the seven 

candidate drugs, leptomycin B is the first generation of 

chromosome region maintenance (CRM) inhibitor. The 

anti-cancer effect of leptomycin B has been detected in 

a variety of cancer cell lines, such as LC [59] and head 

and neck cancer [60]. In addition, leptomycin B 

combined with other drugs can enhance the sensitivity 

of cancer cells to chemotherapy drugs [61, 62]. 

Paclitaxel can bind and promote tubulin to assemble 

successfully dysfunctional microtubules. Microtubule 

dysfunction results in the inhibition of mitosis and cell 

proliferation, ultimately culminating in the death of 

rapidly dividing tumor cells. Combined with nano 

albumin and carboplatin, it can be used as the first-line 

treatment for patients with advanced NSCLC [63, 64]. 

Gemcitabine is a nucleoside antimetabolite that inhibits 

DNA synthesis [65] and this drug has shown promising 

results in phase I and early phase II studies of NSCLC 

[66]. Vincristine is an anti-mitotic cancer drug that 

blocks cancer cells in the metaphase and triggers their 

apoptosis [67]. Vincristine is rarely used alone for LC 

treatment; it is often combined with cyclophosphamide 

and doxorubicin as a second-line treatment for small 

cell lung cancer (SCLC) [68]. These studies also verify 

the reliability of chemotherapeutic drugs from our 

results.  
 

Our study aims to classify LUAD patients into 

subtypes, identify DEGs and develop a prognosis 

model, and associate FARGs with patient prognosis. 

However, this study still has some limitations that need 

to be considered. The results of this study mainly come 

from bioinformatics analysis, although the results were 

verified in several independent public cohorts, 

prospective clinical studies are needed to confirm the 

clinical value of our FA score. Furthermore, due to the 

lack of mutation, CNV and other data in the GEO 

cohort, and multi-omics analysis can only be carried out 

in the TCGA cohort. Finally, our studies only 

preliminarily explored the functions of KRT6A in 

LUAD cells. To elucidate the molecular mechanisms 

underpinning the FA score’s effect on LUAD, more 

genetic modifications need to be undertaken to further 

confirm the role of the FA score on LUAD. 

 

CONCLUSIONS 
 

In conclusion, this study first comprehensively describes 

the typing and prognostic value of FARGs in LUAD and 

constructs a FA score, which can be used to predict 

immune infiltration, ICIs response, drug vulnerability and 

prognosis in LUAD patients. Our findings suggest a 

novel target and prediction model for LUAD from the 

perspective of FA metabolism, as well as a possible 

association between chemotherapeutic sensitivity, 

metabolic reprogramming, and immune response activity. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Consensus matrixes of all LUAD patients based on FARGs. (A–D) Consensus matrixes of all LUAD patients 
for each k (k = 2–5). (E) Cumulative distribution function curves for unsupervised clustering of LUAD based on FARGs, k = 2-9. (F) Relative 
change in area under the CDF curve for unsupervised clustering of LUAD, k =2-9. 
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Supplementary Figure 2. Consensus matrixes of all LUAD patients based on prognostic DEGs. (A–D) Consensus matrixes of all 

LUAD patients for each k (k = 2–5). (E) Cumulative distribution function curves for unsupervised clustering of LUAD based on prognostic DEGs, 
k = 2-9. (F) Relative change in area under the CDF curve for unsupervised clustering of LUAD, k =2-9. 
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Supplementary Figure 3. Coefficient distribution of the genes in FA score. 
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Supplementary Figure 4. Prognostic value of FA score in GEO cohorts. (A–C) Kaplan–Meier curves for patients with high and low FA 

score in the GSE31210, GSE68465 and GSE72094 cohorts. (D–F) Time-dependent receiver operating characteristic curve of FA score for 
predicting the prognosis of the LUAD patients in the GSE31210, GSE68465 and GSE72094 cohorts. 
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Supplementary Figure 5. The survival curves of the FA score stratified by age, gender, T, N, M and stage. (A) ≥60 years,  

(B) female, (C) T1-2, (D) <60 years, (E) male, (F) T3-4, (G) N0, (H) M0, (I) stage1-2, (J) N1-2, (K) M1, (L) stage3-4. 
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Supplementary Figure 6. Validation of a nomogram in the GSE68465 cohort. (A) Nomogram for predicting the 1-, 3-, 5-years OS.  
(B) Calibration curve of the nomogram for predicting the 1-, 3-, and 5-years OS. (C) ROC curve for predicting the different years’ OS. (D–F) 
Decision curves showing the comparison of net benefits of the nomogram, N, T and FA score for 1-, 3-, and 5-years OS. ns, not significant, *P 
< 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Supplementary Figure 7. Prediction of the sensitivity to chemotherapy drugs targeting the FA score. (A) Three CTRP-related 

compounds were identified by Spearman correlation analysis between the FA score and AUC value. (B) Four PRISM-related compounds were 
identified by Spearman correlation analysis between the FA score and AUC value. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. 
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Supplementary Figure 8. The expression exploration of the genes in the FA score based on the TCGA cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 5–22. 

 

Supplementary Table 1. Clinical information of LUAD patients. 

Supplementary Table 2. The name list of fatty acid genes. 

CPT1A 

ACADS 

ALDH1B1 

ACADSB 

ACADL 

ALDH2 

ACADM 

CYP4A11 

ACAT2 

ACADVL 

ACAT1 

ACAA2 

HADH 

HADHB 

HADHA 

ADH7 

ADH6 

ACSL6 

ADH1B 

ADH1C 

ECHS1 

ADH5 

ALDH9A1 

ALDH3A2 

ACSL5 

ADH1A 

EHHADH 

GCDH 

ALDH7A1 

ACOX3 

ACSL1 

ACAA1 

CPT2 

ACOX1 

ECI2 

ECI1 

ACSL3 

ACSL4 
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Supplementary Table 3. The primer sequences of the genes. 

Primers Primers sequence (5′-3′) 

Gene names Forward primer Reverse primer 

KRT6A GCGTTGGAGGTGGCTTCAGTTC AGGAGGTGGTGGTGTACTTGATGG 

CHIT1 CCTCAACGTGGATGCTGCTGTG TGTGAAGGAGCGTCCGTAGGTAG 

TMPRSS11E ACCTCGACCTTCACAGGACTCTTC 
 

CACTGCCAGGACAATCAGGGATATG 

UBE2S TGCCTGCTGATCCACCCTAACC AGCCGCATACTCCTCGTAGTTCTC 

HMMR AACAAGTGGCGTCTCCTCTATGAAG TGTTCCTGAGCTGCACCATGTTC 

GAPDH CCAGCAAGAGCACAAGAGGAAGAG 
 

GGTCTACATGGCAACTGTGAGGAG 

 

Supplementary Table 4. The sequences of the siRNA. 

 siRNA sequence   

Names Forward sequence Reverse sequence 

siRNA NC UUCUCCGAACGUGUCACGU TT ACGUGACACGUUCGGAGAA TT 

siRNA 1 CCUACAUGAACAAGGUUGA TT UCAACCUUGUUCAUGUAGG TT 

siRNA 2 GCGUUGGACAAGUCAACAU TT AUGUUGACUUGUCCAACGC TT 

 

Supplementary Table 5. Distribution of FARGs clusters for LUAD patients. 

Supplementary Table 6. The GSVA results of different FARGs clusters. 

Supplementary Table 7. The tumor-infiltrating immune cells of LUAD patients by ssGSEA. 

Supplementary Table 8. DEGs results between different FARGs clusters. 

Supplementary Table 9. GO and KEGG functional enrichment analysis of DEGs. 

Supplementary Table 10. Unicox analysis results for DEGs. 

Supplementary Table 11. Distribution of gene clusters for all LUAD patients. 

Supplementary Table 12. Construction of signature in the TCGA and GEO cohorts. 

Supplementary Table 13. TMB for TCGA cohort. 

Supplementary Table 14. CNVs analysis for TCGA cohort. 

Supplementary Table 15. The anti-cancer score between different FA score groups. 

Supplementary Table 16. Tumor immune microenvironment score for all LUAD patients. 

Supplementary Table 17. The expression of immune checkpoint for all LUAD patients. 

Supplementary Table 18. The enrichment score of immunotherapy-predicted pathways for all LUAD patients. 

Supplementary Table 19. GSVA HALLMARK PATHWAYS results for different FA score groups. 

Supplementary Table 20. GSEA HALLMARK PATHWAYS results for different FA score groups. 

Supplementary Table 21. IPS of TCGA cohort. 

Supplementary Table 22. TIDE score for all LUAD patients. 


