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INTRODUCTION 
 

Infertility is a common global health problem; its 

prevalence was 15%, of which males accounted for 

50% [1]. With the changing of lifestyles and the 

increasing of work pressures, the prevalence of male 

infertility increased by about 0.291% per year [2]. 

Abnormal sperm quality was the main manifestation of 

male infertility, primarily including teratozoospermia, 

oligozoospermia, and azoospermia, which could exist 

alone or at the same time. One of the most serious was 

azoospermia. In addition, depending on whether the 

ejaculatory duct is obstructed or not, diseases were 

divided into Obstructive Azoospermia (OA) and Non-

Obstructive Azoospermia (NOA). NOA accounted for 

about 60% of azoospermia and was considered to be 

one of the most serious types of male infertility [3]. 

However, for clinical diagnosis of NOA, it can be 

diagnosed only after the obstruction factors are excluded 

by physical examination, imaging examination, surgical 

invasive examination (such as seminal vesicle 

exploration, testicular biopsy, etc.) NOA could be 

diagnosed after excluding male reproductive system 

obstruction. Genetic and chromosome examinations 

could be improved if necessary to rule out azoospermia 

caused by genetic factors. At present, the biomarkers 

with high specificity and sensitivity of NOA were not 

clear, and there was no clear molecular detection target 
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ABSTRACT 
 

Non-obstructive azoospermia (NOA) is a common cause of male infertility, and no specific diagnostic indicators 
exist. In this study, we used human testis datasets GSE45885, GSE45887, and GSE108886 from GEO database as 
training datasets, and screened 6 signature genes (all lowly expressed in the NOA group) using Boruta algorithm 
and Lasso regression: C12orf54, TSSK6, OR2H1, FER1L5, C9orf153, XKR3. The diagnostic efficacy of the above 
genes was examined by constructing models with LightGBM algorithm: the AUC (Area Under Curve) of both 
ROC and Precision-Recall curves for internal validation was 1.0 (p < 0.05). For the external validation dataset 
GSE145467 (human testis), the AUC of its ROC curve was 0.9 and that of its Precision-Recall curve was 0.833  
(p < 0.05). Next, we confirmed the cellular localization of the above genes using human testis single-cell RNA 
sequencing dataset GSE149512, which were all located in spermatid. Besides, the downstream regulatory 
mechanisms of the above genes in spermatid were inferred by GSEA algorithm: C12orf54 may be involved in 
the repression of E2F-related and MYC-related pathways, TSSK6 and C9orf153 may be involved in the 
repression of MYC-related pathways, while FER1L5 may be involved in the repression of spermatogenesis 
pathway. Finally, we constructed a NOA model in mice using X-ray irradiation, and quantitative Real-time PCR 
results showed that C12orf54, TSSK6, OR2H1, FER1L5, and C9orf153 were all lowly expressed in NOA group. In 
summary, we have identified novel signature genes of NOA using machine learning methods and complete 
experimental validation, which will be helpful for its early diagnosis. 
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for NOA, which was disadvantageous to the early 

diagnosis of NOA. Therefore, finding non-invasive 

biomarkers, which can reliably predict NOA, can not 

only eliminate surgical risks, but also reduce the cost of 

diagnosis and treatment of NOA, resulting in greater 

benefits for patients. 

 

The machine learning method was to make a 

preliminary discussion on the possible molecular signal 

pathway by using bioinformatics technology to 

comprehensively evaluate multiple databases for 

modeling [4]. In the era of big data, machine learning 

methods were widely used in the medical system to 

provide help for the diagnosis and prognosis of diseases 

[5]. Especially in the field of imaging and oncology, 

machine learning has achieved phased results in disease 

diagnosis, prognosis, and basic research [6, 7]. 

However, machine learning was rarely used in the early 

diagnosis of NOA [8]. 

 

Therefore, we used machine learning methods to 

identify new signature genes of NOA and constructed a 

radiation sterile mouse model [9] to verify the results at 

the level of pathology and molecular biology. Our 

results showed that C12orf54, TSSK6, OR2H1, 

FER1L5 and C9orf153 could be used as indicators for 

early diagnosis of NOA. 

 

METHODS 
 

Data collection  

 

Figure 1 depicts the study flowchart. Three training 

datasets (GSE45885, GSE45887, and GSE108886) and 

one validation dataset (GSE145467) including testis 

gene expression data for controls and NOA patients, 

single-cell sequencing dataset (GSE149512) including 

gene expression data of testis single cell for controls 

and NOA patients, all were downloaded from the GEO 

(https://www.ncbi.nlm.nih.gov/geo/) database [10]. 

Regarding this part, we partially followed the methods 

of Dr. Zhou et al. (2022) [11].  

 

Data processing and differentially expressed genes 

(DEGs) screening 

 

This study was performed in R (version 4.1, 

https://www.r-project.org/). First, the datasets and 

clinical information were downloaded using the 

“GEOquery” package [12]; Second, background 

calibration, normalization, and log2 transformation on 

the three training datasets were performed using the 

“SVA” package in R. When multiple probes of the 

platform identified one same gene, the average value 

was calculated to determine its expression. Next, merge 

the three datasets and eliminate batch effects by using 

the “SVA” package [13]. Finally, |log2 fold change 

(logFC)| > 1 and p-value < 0.05 were set as the criteria 

for identifying DEGs using the “Limma” package [14]. 

 

KEGG functional enrichment analysis and gene set 

enrichment analysis (GSEA) 

 

The Kyoto Encyclopedia of Genes and Genomes 

(KEGG) is a widely used database for the systematic 

pathway investigation of DEGs [15]. Gene set 

enrichment analysis (GSEA) analysis independent of 

DEGs, including all genes in the analysis to assess 

relevant pathways and molecular mechanisms [16]. 

KEGG functional enrichment analysis and GSEA 

conducted based on the “ClusterProfiler” package 

[17], |log2 fold change (logFC)| > 1 and p-value < 0.05 

were set as the criteria for identifying meaningful 

results.  

 

Boruta feature selection and lasso regression 

 

After we obtained DEGs, we then performed a 

preliminary feature screening by the Boruta Feature 

Selection method [18], a random forest (RF)-based 

feature filtering machine learning method that helps us 

select signature genes associated with specific diseases, 

which was performed using “Boruta” package in R 

(Arguments: doTrace = 2, maxRuns = 1000, ntree = 

500). We then used the least absolute shrinkage and 

selection operator (LASSO) logistic regression to 

further filter out most of the genes and included the 

final results in building the test model [19], which was 

performed using “glmnet” package in R (Arguments: 

alpha = 1, family = “binomial”). 

 

LightGBM model and model performance 

 

LightGBM is a state-of-the-art gradient-boosting 

framework that uses tree-based learning algorithms 

[20]. Based on the signature genes obtained by Lasso, 

we construct LightGBM model on the training datasets 

using “lightgbm” package in R (the “grid_search” 

function was used to determine best arguments), and 

then perform model performance evaluation. Followed 

by the construction of LightGBM model on the external 

validation dataset (GSE145467) based on above 

signature genes and the model performance evaluation. 

The results are presented as receiver operating curve 

(ROC) and Precision-Recall Curve. 

 

Single-cell sequencing dataset analysis 

 

Single-cell sequencing dataset (GSE149512) were 
downloaded using the “GEOquery” package. We used 

three control and one NOA patient testis samples to 

perform analysis. The gene expression matrices were 

https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
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analyzed using the package Seurat (version 4.1.0) [21]. 

The filtering criteria were set as follows: 

nFeature_RNA > 200 and nFeature_RNA < 2500 and 

percent.mt < 20, which means that the cells with 

detected gene numbers ≤ 200 or gene numbers ≥ 2500 

and the proportion of mitochondria ≥ 20% were 

excluded from the present study. The Top 10 genes 

exhibiting the most variable among the cells were 

identified using the “FindVariableFeatures” function. 

After a series of data integration, filtering, and cleaning, 

nonlinear dimensionality reduction visualization was 

performed using the Uniform Manifold Approximation 

and Projection (UMP) method [22]. Cell clusters were 

labeled by referring to the original authors' cell markers, 

to determine the cellular distribution of signature genes 

[23]. Finally, cells with high signature genes expression 

abundance were selected using the “subset” function 

and Spearman’s rank correlation analysis was 

performed in selected subsets using the “cor.test” 

function (Argument: type = “spearman”), genes related 

to signature genes were screened for GSEA pathway 

analysis to predict possible downstream regulatory 

mechanisms of signature genes. 

 

Animal model construction for NOA 

 

Male BALB/c mice aged 6–8 weeks and weighing  

20–25 g were purchased from Shanghai Slack 

laboratory animal Co. Ltd. Animals were kept in 

Soochow University Animal Center under SPF 

(Specific Pathogen Free) conditions. Mice handling 

procedures were reviewed and approved by the Animal 

Care/User Ethics Committee of Soochow University, 

Suzhou City, P.R. China. The experimental procedures 

for all mice were performed in accordance with the 

Regulations for the Administration of Affairs 

Concerning Experimental Animals approved by the 

State Council of the People’s Republic of China. 

 

 
 

Figure 1. Flowchart of this study. Abbreviations: GSE: gene expression omnibus series; LIMMA: linear models for microarray data; 

DEGs: differentially expressed genes; PCA: principal component analysis. 
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Table 1. Primer sequences in this study. 

Gene Nucleotide Sequence (5′–3′) 

SYCP2-F GACACTGAAACCGAATGTGGA 

SYCP2-R TGTGGGTCTTGGTTGTCCTTT 

SPO11-F CCCAAGCAGACACACTCCTG 

SPO11-R CTTTTCTGAATGTCCTCTGGCG 

PRM3-F TGGCCTGTGTGAGTCAAGAC 

PRM3-R CTTGCCCTTCACCGGGATTT 

TNP1-F GTCTTCAAACAACACGGGGC 

TNP1-R CGAATTTCGTCACGACTGGC 

C12orf54-F AGCAGCAGAGAAGCACATCC 

C12orf54-R CATTAGCACCTGCTCCCACA 

TSSK6-F TACGTCATGGTCACCGGGTG 

TSSK6-R AACTGTAGCAGCTCGGCGAT 

OR2H1-F TTCGTTGTTGTCTTGTGCTCCTACC 

OR2H1-R CAGGTTGTGGTGAAGCAGAGGTC 

FER1L5-F AAGCTGCCAACTCTGTCTGTGAAG 

FER1L5-R GCTCCACCAGTCCACCTCCTC 

C9orf153-F GCTCTGAGACTGTGAGTGGCAATG 

C9orf153-R TCTGACATGGACGGTGACCTCTG 

GAPDH-F AATGGTGAAGGTCGGTGTGA 

GAPDH-R TGAGTGGAGTCATACTGGAACA 

 

We used radiation to construct NOA animal models [9], 

8 BALB/c male mice were randomly divided into control 

and irradiated (NOA) groups, and both two groups were 

sampled on the 21st day after irradiation. The NOA 

group was irradiated with whole-body 6-MV X-rays at a 

total dose of 0.5 Gy and a dose rate of 100 cGy/min using 

a Philips SL18 linear accelerator. The radiation procedure 

was performed daily with a total of 5 times. After the 

mice were euthanized, the abdominal cavity was cut open 

under a stereomicroscope (Olympus, Japan), and the 

testis and epididymis were carefully separated and 

photographed. In addition, the testis was weighed using 

an electronic balance (sartorius, Germany). 

 

Sperm parameter analysis 

 

The cauda epididymis on one side of the mouse was 

carefully removed, incised, and incubated in 1 ml 

Phosphate Buffered Saline (PBS) at 37°C water bath for 

5 minutes to allow sperm to release. Gently blow and 

mix, take 3 µl of the sperm suspension and flush it into 

the sperm counting plate accompanying the sperm 

automatic analysis system, put it on the sperm 

automatic analyzer (BeijingWeili New Century Science 

and Tech. Co. Ltd., China) for automatic detection, and 

analyze the sperm concentration and vitality using the 

WIJY-9000 Sperm Analysis System. 

 

Sample fixed and HE staining 

 

Testis samples were fixed in modified Davidson’s 

fluid [24], trimmed, dehydrated, embedded in 

paraffin, and cut into slices. The slices were dried at 

70°C in an oven for 30 min, dewaxed three times in 

xylene for 5 min each, hydrated in graded 

concentrations of ethanol at 100%, 95%, 90%, and 

85% for 1 min each, stained with hematoxylin for 

3 min, treated by ethanol (100%) for 1 min, stained 

with eosin for 20 s, dehydrated by graded 

concentrations of ethanol (75%, 80%, 85%, 90%, 

95% and 100%) for 1 min each and mounted to 

slides, followed by fixation with neutral resin. Lastly, 

the slices were observed under microscopy. 

 

RNA extraction and quantitative real-time PCR 

 

Total RNA was extracted from testicular tissue using a 

total RNA extraction kit (Vazyme Biotech Co. Ltd., 

China), and the reverse transcription process was 

completed by using the cDNA synthesis kit (Vazyme 

Biotech Co., China). The cDNA was synthesized by 

configuring 1 μg of total RNA system according to the 

manufacturer’s instructions. cDNA was synthesized 

using the Quantitative Real-time PCR instrument Viia 7 

Real-time Polymerase Chain Reaction Detection 

System from Life Technologies (USA), using SYBR 

qPCR Master Mix (Vazyme Biotech Co., China) for 

quantitative polymerase chain reaction. The program 

was set as follows: after denaturation at 95°C for 2 min, 

40 amplification cycles were performed at 95°C for 15 s 

and 60°C for 32 s. Finally, we normalized the cycle 

number of target genes and calculated the mRNA 

expression results. The primer sequences are shown in 

Table 1. 
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Statistical analysis 

 

Experiment data were presented as means ± standard 

deviation (�̅� ± SD). GraphPad Prism 8 software was 

used for statistical analysis, and t-test was used for 

statistical treatment. Data with P < 0.05 were 

considered to be significant. 

 

Data availability 

 

The data used to support the findings of this study are 

available from the corresponding author upon request. 

 

RESULTS 
 

Identification of differentially expressed genes 

 

As shown in PCA, three sample sources from the 

training sets were able to cluster well together (Figure 

2A). Among the differentially expressed genes in 

NOA patients compared to control, a total of 942 

DEGs were identified in the training combined 

datasets using the Limma method, of which 143 were 

upregulated and 799 were downregulated, the volcano 

and heatmap plot of DEGs are shown in Figure 

2B, 2C.  

 

KEGG functional enrichment analysis and GSEA 
 

KEGG results showed that compared with the control 

group, DEGs up-regulated in NOA patients were 

enriched in pathways related to injury factors, such as: 

“Apoptosis”, “Lysosome”, “Inflammatory regulation of 

TRP metabolism” and “NOD-like receptor signaling 

pathway”; while down-regulated DEGs were enriched 

in pathways related to energy metabolism: “Glycolysis/ 

Gluconemetabolism”, “Glycerophospholipid mediator”, 

“Pyruvate mediator” (Figure 2D, 2E).  

 

GSEA results showed that compared with the control 

group, pathways up-regulated in NOA patients were: 

“Androgen response”, “Apoptosis”, and “Inflammatory 

response”; down-regulated pathways were: “spermato-

genesis”, “G2M checkpoint”, “E2F targets” (Figure 2F, 

2G). 

 

Boruta feature selection and lasso regression 
 

After Boruta feature selection screening, 248 signature 

genes were obtained, and the heatmap plot of signature 

genes was shown in Figure 3A. After screening by 

Lasso regression, 6 signature genes were finally left, 

which were C12orf54, TSSK6, OR2H1, FER1L5, 
C9orf153, and XKR3 (Figure 3B). PCA results showed 

that NOA was well separated from controls by these six 

signature genes alone (Figure 3C). In terms of gene 

expression, these six signature genes were all 

underexpressed in NOA patients (Figure 3D). 

 

LightGBM model and model performance 

 

We used the above 6 signature genes to construct the 

LightGBM Model in the training dataset, and the results 

showed that the AUC (Area Under Curve) of both the 

ROC and Precision-Recall curves for internal validation 

was 1.0 (p < 0.05) (Figure 4A, 4B). We then used these 

6 genes to construct the LightGBM Model on the 

external validation dataset, and the results showed that 

the AUC of its ROC curve was 0.9 and that of its 

Precision-Recall curve was 0.833 (p < 0.05) (Figure 4C, 

4D). Both internal and external validation illustrated 

that these 6 genes perform well in diagnostic NOA. 

 

Single-cell maps determine the cellular location of 

signature genes 

 

To determine the cellular localization of these 

6 signature genes, we used the Single-cell sequencing 

dataset GSE149512 for further analysis, the total 

UMAP and the UMP distinguishing the origin are 

shown in Figure 5A, 5B. The analysis showed that all 

6 genes were expressed in spermatid (Figure 5C, 5D), 

and they were also lowly expressed in NOA patients 

(Figure 5C, 5E). 

 

Downstream regulatory mechanism analysis 

 

Having determined that all 6 signature genes were 

expressed in spermatid, we drew spermatid subsets from 

the single-cell dataset for their respective downstream 

regulatory mechanism analysis. Results from GSEA 

showed that C12orf54 may be involved in the 

repression of E2F-related, MYC-related pathways and 

Oxidative phosphorylation-related pathways (Figure 

6A); TSSK6 may be involved in the repression of 

MYC-related pathways (Figure 6B); FER1L5 may be 

involved in the repression of spermatogenesis pathway 

(Figure 6C); while C9orf153 may be involved in the 

repression of MYC-related and spermatogenesis 

pathway (Figure 6D). 

 

Animal NOA model construction and experiment 

validation in testis 

 

To confirm the results of our analysis, we constructed 

the NOA model in mice using X-ray irradiation. The 

results showed that compared with the control group, 

the NOA group had severely reduced testicular volume 

(Figure 7A), severely reduced testicular weight (p < 
0.05) (Figure 7B), significantly decreased progressive 

sperm motility and total motility (p < 0.05) (Figure 7C, 

7D), and significantly decreased mRNA levels of the 
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marker associated with meiosis (p < 0.05) (Figure 7E); 

the testicular HE staining results showed that the 

spermatogenic function of the testis in irradiated mice 

was severely damaged (Figure 7F), showed that animal 

models of NOA were successfully constructed. 

Subsequently, in order to detect the differential 

expression of signature genes in the testis of the two 

groups, we designed primers to perform quantitative 

Real-time PCR experiments on the above 5 of 6 

signature genes, and the results showed that: C12orf54,

 

 

 
Figure 2. Differentially expressed genes in NOA versus control. (A) PCA plot of training datasets. (B) Volcano plot for the DEGs. (C) 

Heatmap for the DEGs. (D) KEGG analysis of upregulated pathways. (E) KEGG analysis of downregulated pathways. (F) GSEA analysis of 
upregulated pathways. (G) GSEA analysis of downregulated pathways. (P < 0.05, Abbreviations: NOA: non-obstructive azoospermia; CON: 
control group). 
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Figure 3. Boruta feature selection and lasso regression. (A) Heatmap of Boruta screened genes. (B) Lasso regression. (C) PCA plot of 

signature genes. (D) Expression of signature genes (C12orf54, TSSK6, OR2H1, FER1L5, C9orf153 and XKR3) in training datasets. (P < 0.05, 
Abbreviations: NOA: non-obstructive azoospermia; CON: control group). 

 

 
 

Figure 4. LightGBM model and model performance. (A) Receiver operating curves (ROC) for signature genes in the training dataset. 

(B) Precision-Recall curves for signature genes in the training dataset. (C) Receiver operating curves (ROC) for signature genes in the 
external validation dataset. (D) Precision-Recall curves for signature genes in the external validation dataset. (P < 0.05). 
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Figure 5. Single-cell maps define the cellular location of signature genes. (A) Overall UMAP of NOA versus control. (B) UMP 

distinguishing the origin. (C) UMAP of cellular localization of signature genes. (D) Violin plot of cellular localization of signature genes. (E) Violin 
plot of signature genes expression in NOA versus control. (P < 0.05, Abbreviations: NOA: non-obstructive azoospermia; CON: control group). 
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Figure 6. Downstream regulatory mechanism analysis (GSEA). (A) Downstream regulatory mechanism of C12orf54 in spermatid. (B) 

Downstream regulatory mechanism of TSSK6 in spermatid. (C) Downstream regulatory mechanism of FER1L5 in spermatid. (D) Downstream 
regulatory mechanism of C9orf153 in spermatid. (P < 0.05). 

 

 
 

Figure 7. Animal NOA model construction and experiment validation in testis (NOA: irradiation-induced non-obstructive 
azoospermia mice, Control: control group). (A) Photographs of testis and epididymis. (B) Testis weight (g). (C) Sperm progressive 
motility results (PR). (D) Total sperm motility results (Total). (E) Relative mRNA expression of SPO11, SYCP2, PRM3, TNP1. (F) Testicular HE 
staining results (4×, 10×, 40×field). (G) Relative mRNA expression of signature genes (C12orf54, TSSK6, OR2H1, FER1L5, C9orf153) in testis. 
(**indicates P < 0.01, ***indicates P < 0.001, ****indicates P < 0.0001). 
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TSSK6, OR2H1, FER1L5, and C9orf153 were all lowly 

expressed in NOA group (Figure 7G). 

 

Animal experiment validation in epididymis 

 

To detect the differential expression of signature genes 

in the epididymis of the two groups, we performed 

quantitative Real-time PCR experiments on the above 5 

of 6 signature genes using epididymis tissue. Similarly, 

the signature genes (C12orf54, TSSK6, OR2H1, 

FER1L5, and C9orf153) were all lowly expressed in 

NOA group, which showed that the above genes do 

have potential value in the diagnosis of NOA (Figure 8). 

 

DISCUSSION 
 

Since Nelson [25] first questioned the changes in male 

sperm quality, more and more studies have shown that 

the sperm quality of adult men tends to decline over 

time [26–29]. In recent years, with the improvement of 

people's living standards, the problem of male fertility 

has aroused widespread concern, of which the most 

complex is azoospermia [30]. This disease affects 1% of 

men and its causes may include hypothalamic-pituitary 

dysfunction, primary quantitative spermatogenic 

disturbances, and urogenital duct obstruction [31]. NOA 

is a severe idiopathic male factor infertility, which is 

caused by unexplained disturbance of spermatogenesis, 

and its mechanism remains to be elucidated [32]. 

 

For NOA patients who want to achieve fertility, the 

only feasible treatment is to obtain sperm by testicular 

sperm extraction (TESE) and then intracytoplasmic 

sperm injection (ICSI). Among them, the success rate of 

sperm extraction in patients with NOA is the focus of 

attention in the industry. In recent years, several studies 

have constructed different prediction models to 

comprehensively evaluate the success rate of TESE in 

patients with NOA based on the characteristics of 

genome, transcriptome, proteome, and metabolomics, 

and screen key molecules to avoid unnecessary TESE 

surgery [33–35]. However, at present, the related 

prediction models of NOA are mainly focused on the 

success rate of sperm extraction and prognosis, while

 

 
 

Figure 8. Animal experiment validation in epididymis (NOA: irradiation-induced non-obstructive azoospermia mice, 
Control: control group): Relative mRNA expression of signature genes (C12orf54, TSSK6, OR2H1, FER1L5, C9orf153) in 
epididymis. (*indicates P < 0.05, **indicates P < 0.01, ***indicates P < 0.001). 



www.aging-us.com 4475 AGING 

the prediction models for early diagnosis of NOA still 

lack reliable indicators. In addition, although previous 

studies have found a number of genes associated with 

human NOA, the genetic basis of this idiopathic disease 

is still largely unclear. 

 

Machine learning is a scientific subject that focuses on 

how computers learn from data, which originates from 

the intersection of statistics and computer science [4]. In 

the field of medicine, machine learning is mainly active 

in collecting and analyzing large datasets related to 

medical treatment and results, and is expected to 

transform medicine into a data-driven, results-oriented 

discipline, which has a far-reaching impact on disease 

detection, diagnosis, and treatment [5]. There were 

many methods of machine learning, and our study used 

the Boruta random forest method, which was a feature 

selection machine learning method based on random 

forest (RF), which helped us to select signature genes 

associated with specific diseases [18]. Because of its 

excellent feature screening mode, Boruta algorithm has 

been applied in many fields of medicine, mainly for the 

screening of signature genes [36–38]. After obtaining 

the signature gene, we used LightGBM model to 

construct the prediction model, which is a new gradient-

enhanced decision tree algorithm, which has faster 

training speed, lower memory consumption, better 

accuracy, and the ability to process large-scale data in 

order to obtain ideal results [20]. 

 

Previous studies have shown that 99.5% of men who 

receive 12Gy whole-body irradiation have permanent 

infertility [39], and irradiation dose as low as 5-6Gy can 

reduce spermatogenesis in convoluted seminiferous 

tubules in mice [40, 41]. Ionizing radiation can lead to 

testicular damage leading to prolonged azoospermia and 

even very low doses of radiation can significantly 

damage testicular function. Kenta Nagahori and his 

team have found that ionizing radiation could 

significantly reduce the weight of the testis, destroy the 

structure of the testis and affect spermatogenesis by 

studying the changes of mRNA in mice after single and 

multiple irradiations, and further results suggested that 

Sertoli cells played a key role in the immunology of 

testis induced by radiation [9]. According to previously 

published results, we successfully constructed the NOA 

mouse model by fractionated low-dose irradiation [42]. 

During the 21 days from the end of irradiation to 

sampling, no obvious abnormality was found in the 

whole process of the experimental mice, and their body 

hair, daily behavior, and eating were not affected. Our 

study not only reduced the effect of high-dose 

irradiation on the function of organs outside the 
reproductive system of mice, controlled the con-

founding factors, and the results were more reliable, but 

also a kind of animal welfare for the experimental 

subjects to reduce the unnecessary damage to other 

important organs caused by radiation. 

 

In this study, we used three datasets of GSE45885, 

GSE45887, and GSE108886 as training datasets to 

complete the subject analysis, using testis samples from 

normal adults and obstructive azoospermia patients with 

normal spermatogenesis as the control group and NOA 

patients as the disease group to compare the differences 

between the two groups. From the PCA results of 

Figure 2A, it can be seen that the integration of samples 

from the three datasets was good, and the heatmap of 

Figure 2C showed that the discrimination of DEGs 

between the NOA group and the control group of the 

three datasets was clear, which indicated that this study 

had high reliability. 

 

Both the volcano plot and heatmap showed us 942 

differentially expressed genes in the NOA group 

compared with the control group (Figure 2B, 2C). 

Obviously, most of the genes in the NOA group were 

down-regulated, the most significant of which was the 

markers of spermatid: PRM1, PRM2, and TNP1(Figure 

2B), indicating that their spermatogenic function was 

seriously affected, which was consistent with our 

understanding of NOA disease. 

 

In the results of pathway enrichment analysis, KEGG 

pathway analysis showed that there were pathways 

related to damage factors such as “Apoptosis”, 

“Lysosome”, and “Inflammatory regulation of TRP 

metabolism” in the up-regulated pathways of NOA 

patients, the down-regulated pathways were mainly 

related to energy metabolism: “Glycolysis/ 

Gluconemetabolism”, “Glycerophospholipid mediator”, 

“Pyruvate mediator”, “Cell cycle” and “Biosynthesis of 

amino acids”. These results suggested that the 

mechanism of lack of sperm in NOA patients may be 

related to the inhibition of energy metabolism (Figure 

2D, 2E). At the same time, the results of GSEA 

suggested that the up-regulated pathways also had 

similar pathways such as “Apoptosis” and “Inflamma-

toryresponse”, and the down-regulated pathways were 

“spermatogenesis”, “G2M checkpoint” and “E2F 

targets”, which indicated that spermatogenesis and cell 

cycle were inhibited in NOA patients, and may  

be related to apoptosis and inflammation (Figure 2F, 

2G). 

 

After that, we incorporated the obtained DEGs into 

Boruta feature selection, which was a machine learning 

method based on random forest. As shown in the 

heatmap of Figure 3A, after 1000 repeats, we finally 
selected 248 signature genes that had good discrimination 

in distinguishing NOA from the control group. 

Subsequently, we performed Lasso regression on the 
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results of Boruta and finally obtained six signature genes, 

which were C12orf54, TSSK6, OR2H1, FER1L5, 

C9orf153, and XKR3 (Figure 3B). From the results of 

PCA, NOA was well distinguished from the control 

group by these six genes alone, indicating that they have 

good potential diagnostic value (Figure 3C). In addition, 

from the gene expression, these six signature genes were 

all low expressed in the NOA group, and decreased by a 

large extent, which was consistent with the results of our 

heatmap, suggesting that they may be involved in the 

inhibition of certain pathways. 

 

To further test the diagnostic value of these six 

signature genes, we built LightGBM Model in the 

training dataset. After parameter adjustment and 

correction, the result plots of test efficiency were 

obtained. As shown in Figure 4A and 4B, the AUC 

(area under the curve) of the receiver operating curve 

(ROC) and Precision-Recall Curve in the training 

dataset were both 1.0 (P < 0.05), which indicated that 

the six signature genes had excellent diagnostic 

efficiency in the training dataset. To test the results of 

our analysis, we used GSE145467 as the external 

validation dataset, and also used these six signature 

genes to build LightGBM Model. As shown in figures 

4C and 4D, in the validation dataset, the AUC of the 

ROC was 0.9 and the AUC of the recall curve was 

0.833 (p < 0.05). The results of both internal and 

external validation dataset confirmed that the six genes 

have good potential diagnostic value for NOA. 

 

To determine the cellular localization of these six 

signature genes, we used testis samples from 3 normal 

adults and 1 NOA patient from single-cell sequencing 

dataset GSE149512 for subsequent analysis, and cell 

clustering was completed with reference to the original 

author's marker. As shown by the global UMAP, 

samples from both NOA and the control group could be 

clearly divided into 11 subpopulations: spermatogonia, 

spermatocyte, spermatid, peritubular myoid cell, Leydig 

cell, Sertoli cell, macrophage, T cell, mast cell, vascular 

smooth muscle cell and endotheliocyte (Figure 5A). 

From the UMP map of distinguishing sources, we found 

that all 11 cell groups could be observed in the control 

group, and mainly spermatogenic cells; while the NOA 

group lacked spermatogenic cell subpopulations, which 

also intuitively showed the reason for the lack of sperm 

in this NOA patient (Figure 5B). Then we observed the 

cellular distribution of the six signature genes, and the 

results of the UMP and violin plot showed that they 

were mainly expressed in spermatids (Figure 5C, 5D). 

Moreover, all the six signature genes were expressed 

only in the control group and almost none in the NOA 
group (Figure 5E). This fully confirmed that these six 

signature genes were indeed of high potential diagnostic 

value in NOA. 

To explore the possible downstream regulation 

mechanism of these six signature genes, we extracted 

data from spermatid subsets according to the results of 

the previous step, and then completed Spearman 

correlation analysis between signature genes and other 

genes to screen genes with correlation p < 0.05 and 

perform GSEA pathway analysis. The results showed 

that in spermatid, C12orf54 may be involved in the 

inhibition of the E2F-related pathway, MYC-related 

pathway, and Oxidative phosphorylation-related 

pathway (Figure 6A); TSSK6 may be involved in the 

inhibition of MYC-related pathway (Figure 6B); 

FER1L5 may be involved in the inhibition of 

spermatogenesis pathway (Figure 6C); and C9orf153 

may be involved in the inhibition of MYC-related 

pathway and spermatogenesis pathway (Figure 6D). 

However, OR2H1 and XKR3 were not enriched to a 

significant pathway, which may be related to their low 

expression. Among all of possible downstream 

regulation pathways (all of which showed inhibition), 

and the most frequent were MYC-related pathways and 

spermatogenesis pathways. The latter is easily 

understood because it represents mainly the essential 

process for sperm production, and the same results 

emerged in pathway enrichment of Figure 2G. MYC-

related pathway, on the other hand, suggests that the 

pathogenesis of NOA may be related to the inhibition of 

cell cycle or proliferation. E2F-related pathway may 

also be a downstream pathway of C12orf54, as well as 

the G2M checkpoint” and “E2F targets” pathways that 

also appear in the pathway enrichment of Figure 2G. 

We suggest that the pathogenesis of NOA may stem 

from the inhibition of cell proliferation in the testis, 

which hinders the spermatogenesis process. 

 

Next, in order to confirm the diagnostic efficacy of our 

six signature genes, we constructed a mouse model of 

NOA induced by X-ray irradiation [9]. Mice were 

irradiated with low dose X-ray of 0.5Gy for 5 

consecutive days, and sampled on day 21 after the end 

of irradiation. The results showed that irradiation 

reduced the testicular volume (Figure 7A), weight 

(Figure 7B), and sperm motility (Figure 7C, 7D) of 

mice. Quantitative Real-time PCR of testis tissue and 

testicular HE pathology results showed that the 

spermatogenic function of the testis was severely 

damaged, especially the number of cells in the middle 

and late stage of meiosis such as pachytene 

spermatocytes and spermatids decreased significantly 

(Figure 7D, 7E), which was also consistent with the 

results of the above single-cell dataset and the training 

dataset, indicating that we had successfully constructed 

the mouse model of NOA. Based on this model, we 

designed primers for the mouse homologous sequences 

of the above six signature genes, and only five primers 

were obtained, that were: C12orf54, TSSK6, OR2H1, 
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FER1L5, and C9orf153. Unfortunately, we did not find 

the mouse homologous sequence of XKR3 and 

therefore could not design primers for experimental 

validation. The results of Quantitative Real-time PCR of 

testis tissue showed that the relative mRNA level of 

C12orf54, TSSK6, OR2H1, FER1L5, and C9orf153 in 

the NOA group was lower than those in the Control 

group, which validated our analysis results in testis. 

 

Finally, in order to better confirm the value of the above 

signature genes as diagnostic tools for NOA, we 

performed Quantitative Real-time PCR experiments 

using epididymis tissue from the control and NOA 

groups. It is well-established that spermatid produced 

within the testis are immature and that motility and 

fertilization ability can only be acquired in the 

epididymis [43]. At the same time, the cauda 

epididymis is the storage location of functionally 

mature spermatids prior to ejaculation, and it stores far 

more sperm concentration than testis [44]. Therefore, 

detection of epididymis tissue is also an essential link  

to evaluate spermatogenic function and can more 

accurately evaluate the maturation of sperm. Our results 

showed that in epididymis tissue, the relative mRNA 

level of C12orf54, TSSK6, OR2H1, FER1L5, and 

C9orf153 in the NOA group was lower than those in the 

Control group. The above results in epididymis are 

consistent with those in testis, which suggests that the 

above signature genes do have potential value in the 

diagnosis of NOA. 

 

Further discussion on the translational value of 

signature genes: (1) At present, the examination of male 

fertility is mainly based on WHO reference guidelines 

for semen analysis. That is, computer-aided sperm 

analysis (CASA) system, which can report the motile 

percentage and kinematic parameters [45]. However, 

CASA lacks specificity and efficiency for the diagnosis 

of NOA. Current diagnostic methods for NOA are more 

likely to exclusion diagnosis, lack of biomarkers with 

high specificity and sensitivity. Therefore, we use the 

Boruta feature selection method to screen diagnostic 

signature genes based on existing datasets, and the 

results of analysis show that these genes have high 

accuracy and can be used as diagnostic markers alone or 

in combination to construct diagnostic models. The 

majority of sperm in the epididymis are mature sperm, 

in which the sperm concentration is also high, so 

Quantitative Real-time PCR experiment using 

epididymal tissue can reflect the results of semen 

sample. In testis and epididymis, the relative mRNA 

levels of C12orf54, TSSK6, OR2H1, FER1L5, and 

C9orf153 were significantly lower in the NOA group 

compared with the control group. Based on the above 

results, there is rational reason to believe that the 

signature genes screened in this study have potential 

value in the diagnosis of NOA and can be developed to 

clinical application. (2) Diagnostic models based on 

biomarkers can more economically and efficiently 

complete the diagnosis of NOA and simplify the 

standardization of the process by eliminating human 

bias and reducing workforce to achieve the purpose of 

rapid diagnosis. The above signature genes can be 

further used to construct diagnostic models for NOA, 

which can greatly improve the efficiency of initial 

diagnosis of NOA, and can even be used as a screening 

for healthy population. (3) In addition, the construction 

of diagnostic models may allow stratification of men 

who are more likely to have successful sperm retrieval 

prior to the TESE procedure (Despite advances in sperm 

retrieval techniques, success rates are only 50% [46], 

and we cannot reliably predict, and therefore cannot 

predict who may benefit from surgery). The above 

signature genes can be developed as a stratified 

indicator in the future for the evaluation of NOA 

patients prior to TESE to preliminarily distinguish 

patients who are necessary for surgery and predict the 

success rate of surgery, which has great clinical 

significance. 

 

CONCLUSION 
 

In summary, we have identified novel signature genes 

of NOA using machine learning methods and complete 

experimental validation, which will be helpful for its 

early diagnosis. 
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