
www.aging-us.com 5240 AGING 

www.aging-us.com AGING 2023, Vol. 15, No. 12 

Research Paper 

Age prediction from human blood plasma using proteomic and 
small RNA data: a comparative analysis 
 

Jérôme Salignon1,2,*, Omid R. Faridani1,3,4,*, Tasso Miliotis5, Georges E. Janssens1, Ping Chen1, 
Bader Zarrouki6, Rickard Sandberg1,7, Pia Davidsson5, Christian G. Riedel1,2 
 
1Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Huddinge 14157, 
Sweden 
2Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden 
3Lowy Cancer Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia 
4Garvan Institute of Medical Research, Sydney, Australia 
5Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and 
Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden 
6Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, 
BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden 
7Department of Cellular and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Solna 
17165, Sweden 
*Equal contribution 
 
Correspondence to: Christian G. Riedel; email: christian.riedel@ki.se 
Keywords: human blood plasma, small RNAs, proteomics, aging, age prediction 
Received: August 30, 2022    Accepted: May 26, 2023 Published: June 20, 2023 

 
Copyright: © 2023 Salignon et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 

 

ABSTRACT 
 

Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, 
and ecological research. However, few studies have compared the suitability of different molecular data types 
to predict age in the same cohort and whether combining them would improve predictions. Here, we explored 
this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass 
spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance 
with age. Notably, proteins increasing with age were enriched for components of the complement system. 
Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance 
with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes 
related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. 
Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed 
by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and 
miRNA data together improved predictions (R2 = 0.70 ± 0.01). Future work using larger sample sizes and a 
validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining 
proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related 
physiological changes. It will be interesting to determine if combining different molecular data types works as a 
general strategy to improve future aging clocks. 
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INTRODUCTION 
 

Over the last 50 years, there has been a steady increase 

in life expectancy and a decline in birth rates around the 

world [1, 2]. Consequently, medical research has 

increasingly turned its attention to investigating the 

determinants of health and mortality in the elderly, most 

importantly aging and non-communicable age-related 

diseases. Aging is viewed as the functional decline of 

the human body over time, caused by damage 

accumulation and increasing loss of cellular and tissue 

homeostasis [3]. Interestingly, it is a plastic process 

whose rate can differ between individuals [4], with 

some experiencing a slower or faster functional decline 

than others. This translates into different expectations 

for their lifespan, health, and quality of life. This has led 

to growing interest in methods that allow for the 

prediction of human age from physiological markers, 

with the idea that such predictions provide a measure of 

“biological age”. Any difference between predicted and 

true chronological age, assuming the age model is 

accurate, would indicate whether a person has aged 

faster or slower than expected and thus has an altered 

risk of experiencing age-related complications. Such 

information could then be used in population studies to 

determine factors that influence human aging, or in 

personalized medicine to propose aging-preventive 

interventions (such as changes in nutrition or lifestyle) 

[5] or usage of aging-preventive pharmaceuticals (e.g., 

senolytics [6] or caloric restriction mimetics) to 

individuals with substantially higher than expected 

biological ages. Similarly, biological age prediction 

could be used to monitor therapeutic success in patients 

subjected to such aging-preventive interventions. And 

finally, accurate prediction of chronological age has 

applications beyond biological age estimation, such as 

in forensic science [7, 8], in the resolution of legal 

disputes [9], or in anthropological and ecological 

studies when the chronological age of individuals is 

unknown [10]. 
 

Over the last decade, several such age-predictive 

methods, commonly referred to as “aging clocks”, have 

been developed. These methods are widely based on 

machine-learning approaches and were derived from 

high-dimensional datasets of various types. The best-

performing aging clocks reach coefficients of 

determination (R²) of around 0.9. These include clocks 

built from DNA methylation data [11–13], imaging data 

(facial [14, 15], structural MRI [16], cornea of the eye 

[17]), and protein data [18, 19]. Other less accurate 

aging clocks (R² between 0.4 and 0.7) have been built 

from blood tests [20], mRNA expression data [21–23], 

miRNA data [24], gut microbiome composition [25], as 

well as social and behavioral data [26]. Among these, 

the most appealing clocks are based on molecular omics 

data, where thousands of predictive features (i.e., 

molecules) are available, even across different tissues or 

species [27], lending them the greatest spectrum of 

possible applications. 

 

Given the abundance of age-predictive studies that have 

used molecular omics data, it is remarkable that two 

critical points have rarely been addressed. First, 

previous work has suggested that many types of 

molecular omics data are suitable for age prediction, but 

some perform better than others. So far, this has only 

seldom been confirmed by studies within the same 

cohort [28–30]. This is a concern because differences in 

population size, population composition (e.g., gender, 

age, or ethnicity), and chosen data analysis strategy 

(i.e., modeling approach, validation scheme, etc.) can 

greatly influence predictions and estimations of models’ 

performances [31]. Existing studies comparing different 

measures of biological age in the same cohort have 

mostly focused on models derived from physical 

examination, self-reported questionnaires, or basic 

blood tests, since these measurements are often readily 

available in larger cohorts [32–34]. However, studies 

directly comparing aging clocks generated from high-

throughput omics measurements are missing. 

 

Second, it has rarely been addressed whether combining 

different types of high-throughput molecular omics 

measurements helps to build more accurate predictive 

models. To our knowledge, only a single study has 

investigated this matter [24]. The authors measured 

miRNA abundance in plasma samples from the FHS 

Offspring cohort, built an age predictor from this data, 

and compared it to previously published predictors built 

from either DNA methylation [35] or mRNA [21] data 

from the same cohort. The study showed that DNA 

methylation data (R² = 0.53) outperformed mRNA data 

(R² = 0.31) and miRNA data (R² = 0.25) for age 

predictions. When combining predictions from DNA 

methylation and mRNA data, the authors observed an 

improvement in prediction accuracy (R² = 0.57), and a 

combination of all three omics datasets improved the 

predictions even further (R² = 0.63). Although this 

study was the first to quantitatively compare different 

molecular omics-based aging clocks built from the same 

cohort and to show that combining different molecular 

omics data may improve age-prediction accuracy, it still 

had caveats, such as a limited age range of 50–80 years 

and relatively low R² values. Additionally, it did not try 

to address the potential reasons for the improved 

performance of the combined datasets. 

 

Here we expand the limited portfolio of comparisons 
between aging clocks built from different types of 

molecular data from the same cohort. We measure the 

abundances of proteins and a broad spectrum of small 
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Table 1. Overview of the cohort. 

Variable (unit) Mean S.D. 

Age (years) 55.30 17.50 

Height (m) 1.76 0.10 

Weight (kg) 83.40 15.50 

BMI 26.80 4.85 

Mini-Mental State Examination (MMSE) 29.40 0.93 

Systolic blood pressure (mmHg) 125.00 13.50 

Diastolic blood pressure (mmHg) 79.40 9.03 

Pulse (bpm) 68.00 9.62 

Body temperature (°C) 35.80 0.81 

 

RNAs in the plasma of an age-stratified cohort of 

human individuals, determine age-associated molecules, 

build age-predictive models from various sets of omics 

measurements, and compare their performances. A 

schematic outline of our study can be found in Figure 1. 

 

RESULTS 
 

The study cohort 

 

To investigate age-related molecular changes in 

humans, we used blood plasma from a cohort of 103 

North American individuals aged between 20 and 83, 

with a mean age of 55 years (see Table 1). All 

individuals had no known diseases and were generally 

healthy when the samples were taken (the mean Mini-

Mental State Examination (MMSE) score was 29, the 

mean Body Mass Index (BMI) was 27, and the mean 

blood pressure was 125/79; see Table 1). Blood samples 

were collected, and plasma was immediately prepared, 

frozen, and stored for later use. 

 

Identification of age-associated changes in plasma 

proteins by untargeted proteomics 

 

First, we explored age-associated changes in the 

proteome of our blood plasma samples. Human blood 

plasma contains several thousand proteins [36], and 

 

 
 

Figure 1. Schematic overview of our study. Blue indicates proteomics-based work and orange indicates small RNA-based work. 
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subsets of them have already been used to predict age in 

humans [18, 19, 37]. However, the optimal choice of 

plasma proteins for age predictions remains a topic of 

debate. Therefore, we began by comprehensively 

defining the proteins that change in abundance with age 

in our cohort using Hyper Reaction Monitoring mass 

spectrometry (HRM-MS) [38]. HRM-MS is a state-of-

the-art Data Independent Acquisition (DIA) untargeted 

proteomics method that overcomes the limitations of 

shotgun proteomics, such as missing annotations or low 

reproducibility and precision. We conducted these 

measurements in only a subset of our cohort, which 

comprised 19 young individuals (aged 20 to 30 years) 

and 25 old individuals (aged 65 to 76 years). Overall, 

we quantified 612 proteins, of which 145 showed 

differential abundance between the young and old age 

groups (60 and 85 were up- and down-regulated, 

respectively, with a False Discovery Rate (FDR) < 0.2; 

see Figure 2A, Supplementary Figure 1, and 

Supplementary Table 1). Next, we examined how many 

of our age-correlated proteins had been previously 

reported. When comparing them to the three most 

comprehensive studies of age-correlated plasma 

proteins available [18, 19, 39], we found that 31 of our 

age-associated proteins had been identified by at least 

one of these other studies (see Supplementary Table 1), 

leaving us with 114 potentially new age-associated 

proteins. These latter proteins include, for instance, 

complement components 3, 5 and 7 (C3, C5, C7), 

Fibrinogen Alpha and Beta chains (FGA, FGB), and 

Apolipoproteins A-II and C-I (APOA2, APOC1) (see 

Supplementary Table 1). Finally, we conducted a 

functional annotation enrichment analysis. No 

significant enrichments were observed among down-

regulated proteins. However, proteins that were 

upregulated with age were significantly enriched in 

components of the complement system (p < 0.05, Figure 

2D, upper panel). Even though it did not pass our 

significance threshold, the Coronavirus disease 2019 

(COVID-19)-related proteins term (Kyoto Encyclopedia 

of Genes and Genomes (KEGG) id: ko05171) was also 

enriched (with a corrected p-value of 0.143). This 

finding is intriguing given that COVID-19 leads to more 

severe symptoms in older individuals. 

 

Quantification of age-associated changes in plasma 

proteins by targeted proteomics across the entire 

cohort 

 

Having identified 145 age-associated proteins, we then 

selected a representative subset of 31 proteins to be 

measured in our entire cohort of 103 individuals 

(Supplementary Table 2) using targeted Multiple 
Reaction Monitoring mass spectrometry (MRM-MS). 

As expected from our HRM-MS analysis, most of these 

proteins were also significantly associated with age (21 

out of 31; FDR < 0.2) when measured using this 

different methodology and in the full cohort (Figure 2B, 

2E, Supplementary Figure 3, Supplementary Table 2). 

The consistency between the untargeted and targeted 

mass spectrometry methods was further confirmed  

by observing a high correlation of all common 

measurements (r = 0.83, Supplementary Figure 2A) and 

of the proteins’ Pearson correlation with age (r = 0.89, 

Figure 2C). As external validation, we compared the 

beta coefficients from our study with those of another 

study that quantified age-dependent changes in plasma 

proteins [18] and found a Pearson correlation 

coefficient of 0.85 (see Supplementary Figure 2B). The 

15 significantly upregulated proteins in this assay 

showed similar pathway enrichment as in HRM-MS, 

with the complement system being significantly 

enriched (Figure 2D, lower panel). Only six proteins 

were downregulated, and no functional enrichment term 

reached significance (data not shown). However, three 

of these six proteins were apolipoproteins (APOC1, 

APOA1 and APOL1), suggesting a down-regulation of 

this type of protein with age. Taken together, we 

established a set of 21 proteins that show age-dependent 

abundance changes by two independent MS methods, 

and we quantified these proteins by MRM-MS across 

the entire cohort. 

 

Quantification of age-associated changes in plasma 

small RNAs 

 

To complement the age-associated protein 

measurements, we decided to quantify total small RNAs 

in the same cohort. Although age predictions had been 

conducted using only miRNAs [24], no comprehensive 

small RNA transcriptomic dataset had been used to 

predict chronological age before. We acquired such data 

through the “Small-seq” method [40, 41], which 

enabled us to quantify 608 small RNAs in our plasma 

samples (Figure 3A). The most detected small RNAs 

were miRNAs (288 miRNAs) and transfer RNAs (229 

tRNAs) (Figure 3A, see Methods). Out of all detected 

small RNAs, 70 and 245 significantly increased and 

decreased with age, respectively (FDR < 0.2; Figure 

3A, 3B, Supplementary Figure 4, Supplementary Table 

3). Strikingly, the 60 most significantly age-associated 

small RNAs (with an adjusted p-value below 4.5 × 10−5) 

were all age-decreasing miRNAs, and 74.2% of all 

measured miRNAs were significantly decreasing with 

age. Therefore, the decrease of miRNA with age 

appears to be a key feature of aging. Age-increasing 

small RNAs were more diverse, with the top 10 being 

comprised of miRNAs, tRNAs, and fragments of 

tRNAs (tRFs). To validate these results, we compared 
our set of age-associated miRNAs with those identified 

by a similar study [42]. We observed a significant 

overlap (p = 0.004, Supplementary Figure 5), 
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Figure 2. Age-associated proteins in blood plasma. (A) Age-dependent changes for 612 proteins as measured by HRM-MS 

(untargeted proteomics) in 19 young and 25 old individuals. The volcano plot shows the log2 fold change in protein abundance on the x-axis 
and the Benjamini-Hochberg (BH) FDR-corrected Mann-Whitney test on the y-axis. Red and blue colors highlight significantly up- and down-
regulated proteins, respectively (FDR < 0.2). (B) Age-dependent changes for 31 proteins measured by MRM-MS (targeted proteomics) in 
103 individuals. A linear model was fitted for each protein, with age as the dependent variable and the log of protein abundance as the 
independent variable. The volcano plot shows the estimated coefficients on the x-axis and the BH FDR on the y-axis. Red and blue colors 
highlight significantly up- and down-regulated proteins, respectively (FDR < 0.2). (C) Scatter plot of the correlation with age of MRM-MS 
measurements (x-axis) and HRM-MS (y-axis). Blue line and shadow: linear regression and 95% confidence interval, respectively. (D) KEGG 
pathway enrichment analysis for significantly up-regulated proteins from the MRM-MS and HRM-MS experiments. For both experiments, 
the set of all measured 612 proteins was used as a background to compute the significance of age-association. Colors indicate the number 
of age-associated proteins that are attributed to these pathways. (E) Examples of scatter plots for two proteins detected as age-associated 
in the two MS experiments. 
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illustrating the consistency of our measurements with 

previous work. 

 

Circulating miRNAs can sometimes act like hormones 

by being secreted and eventually taken up by target 

cells, where they regulate gene expression [43]. 

Therefore, we hypothesize that circulating small RNAs 

that change in abundance with age could act as 

messengers of age-related physiological changes. To 

investigate this, we focused on the 110 most  

 

 
 

Figure 3. Age-associated small RNAs in blood plasma. (A) Age-dependent changes for 608 small RNAs as measured by Small-seq in 

103 individuals. A negative binomial model was fitted for each RNA using DESeq2 [79]. The volcano plot shows log2 fold changes in 
expression between young and old individuals on the x-axis and log10 p-values of BH FDR-corrected Wald tests on the y-axis. The former 
was obtained by multiplying the log2 fold change in small RNA expression for 1 year (i.e., the estimate of the model) with the mean age 
difference between individuals from the young and old age groups of the untargeted proteomics experiments (i.e., 44.8 years). (B) 
Examples of scatter plots for four small RNAs detected as age-associated. (C, D) KEGG pathway enrichment analysis for predicted targets of 
significantly up- (C) and down- (D) regulated miRNAs. A robust analytic approach (see Methods) allowed us to select 22 and 2,159 miRNA 
targets that were up- and down-regulated with age, respectively. The set of all 26,194 human transcripts present in the multiMIR database 
was used as a background to compute the significance of age-association. The gprofiler2 R package was used to compute enrichment, and 
p-values were corrected using the gSCS correction method [85]. Colors show the number of targets of our age-associated miRNAs that are 
attributed to these pathways. 
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significantly downregulated miRNAs (FDR < 0.001) 

and the 7 most significantly upregulated miRNAs 

(FDR < 0.2), and first determined their predicted targets 

using the tool multiMiR [44]. We obtained 2,159 and 22 

predicted targets for the down- and up-regulated 

miRNAs, respectively (see Methods). Then, we 

conducted functional annotation enrichment analyses on 

these targets. Remarkably, gene targets of age-elevated 

miRNAs were prominently enriched for the term insulin 

resistance, but also for nutrient-dependent signaling, 

longevity, and autophagy, all of which have a 

substantial impact on or relate to aging [45] (Figure 

3C). Gene targets of age-depleted miRNAs were 

enriched for functions related to growth (Figure 3D), in 

particular cancer, an age-related morbidity, and 

senescence, a hallmark of aging [3]. 

 

Construction of age-predictive models 

 

To study the impact of different types of molecules on 

age prediction, we determined the ability of proteins or 

small RNAs to predict chronological age. We built age-

predictive L1-penalized generalized linear models with 

repeated cross-validation (see Methods). When we 

compared the resulting models, we found that both 

protein and small RNA data could be used to predict 

chronological age with reasonable accuracy, even 

though proteins performed better (R² = 0.59 ± 0.02 for 

proteins vs. R² = 0.42 ± 0.03 for small RNAs; 

Supplementary Table 4, Figure 4A, 4D, 4E). Given that 

our Small-seq covered many classes of small RNAs that 

may behave differently in the context of aging, we next 

evaluated these classes separately. Interestingly, 

different small RNA classes showed very distinct age-

predictive capabilities. Ribosomal RNAs (rRNAs), 

small nuclear RNAs (snRNAs), and small nucleolar 

RNAs (snoRNAs) had little to no association with age 

(R² < 0.10, Supplementary Table 4, Figure 4B). It 

should be noted, though, that these are the three RNA 

classes with the fewest members that we tested, leaving 

the possibility that some predictive small RNAs in these 

classes exist but that we were unable to detect or 

annotate them. tRNAs and tRFs showed a weak 

association with age (R² = 0.22 ± 0.03 and 0.28 ± 0.03). 

Finally, only miRNAs showed a moderate association 

with age (R² = 0.45 ± 0.02). Thus, we conclude that 

miRNAs are the most age-predictive small RNA class, 

consistent with the prominence of miRNAs among age-

associated small RNAs observed above (Figure 3A). 

Since the proteins we used for age predictions had been 

pre-selected for being age-associated (by HRM-MS), 

we then performed a similar feature selection approach 

for small RNAs. We focused on miRNAs, the best-
performing small RNA class, and among these, we used 

a set of 20 miRNAs (hereafter named 

“top20_miRNAs”) that were found by a previous study 

to have a high association with age ([42], see Methods). 

Strikingly, using only these 20 miRNAs substantially 

improved predictions compared to using all small RNAs 

or all miRNAs (R² = 0.54 ± 0.02, R² = 0.42 ± 0.03 and 

R² = 0.45 ± 0.02, respectively; Supplementary Table 4, 

Figure 4B), even though these top20_miRNAs were still 

slightly less age-predictive than our protein markers. 

 

We noticed that all of our age predictions showed their 

best accuracy when using only a small, limited set of 

features. For example, using 21 out of the 31 measured 

proteins, 38 out of the 608 measured small RNAs, or 6 

out of all the 288 measured miRNAs (Supplementary 

Table 4). The addition of more features from the same 

dataset (the same type of molecules) would not further 

improve predictions but rather worsen them, 

presumably by adding noise (Figure 4G). Therefore, we 

tested whether adding data from different molecular 

types could help improve the predictions. To test this 

hypothesis, we combined our proteomics data with the 

most predictive small RNA sets (R2 > 0.4). We 

observed improvements for all combinations, with the 

best performance achieved by the inclusion of all 

miRNAs or the top20_miRNAs (R² = 0.70 ± 0.02 or R² 

= 0.73 ± 0.01, respectively, compared to R² = 0.59 ± 

0.02 for proteins alone; Figure 4C, 4F, 4G). We then 

wondered how these improvements occurred. 

Interestingly, we found that individuals’ delta ages 

(prediction errors) correlated highly (between 0.7 and 

0.95, Figure 4H) among all the different small RNA-

based models with age predictive capacity (R2 > 0.2), 

while they correlated only moderately (between 0.25 

and 0.44) with individuals’ delta ages of the 

proteomics-based model (Supplementary Table 5). In 

other words, for each individual in the cohort, the small 

RNA-based models all have similar age predictions, 

while the predictions made by the protein-based model 

can be quite distinct. 

 

Next, given that our models were trained on only 21 age-

associated proteins, we wanted to exclude the possibility 

that the improved performance of models combining 

proteomics and small RNA data was simply due to this 

limited number of variables. We tested this by using the 

same cross-validation strategy as above, but this time 

using the untargeted (HRM-MS) instead of the targeted 

(MRM-MS) proteomics results to build our models. The 

results showed a higher mean performance of models 

combining proteomic and miRNA data compared to 

either data type alone (Supplementary Figure 6), 

suggesting that proteomic and miRNA data are 

complementary, even when the number of age-associated 

proteins is not limiting. Taken together, our observations 
suggest that models built from proteins or from small 

RNAs capture different aspects of aging, and therefore, 

age predictions benefit from their combination. 
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Figure 4. Performance of age-predictive models built on various data types. Age-predictive L1-norm penalized generalized linear 

models were built using protein and small RNA measurements, either separately or in combinations. Performance was estimated via 10-
fold cross-validation with 100 repeats. Prediction errors were determined from predictions based on left-out data (data that was not used 
to build the model). (A–C) Performance of the built models: the mean (dot) and standard deviation (circle) of two error metrics are shown: 
the coefficient of determination (R2) on the x-axis and the Mean Absolute Error (MAE) on the y-axis. The panels compare (A) all small RNAs 
with all proteins, (B) the different classes of small RNAs, and (C) models combining proteins and small RNAs. (D–F) Scatter plots of 
chronological age vs. predicted age are shown for all individuals in the cohort for (D) the proteomics-based model, (E) the all small RNA-
based model, and (F) the proteomics and top 20_miRNA-based model. Blue and red lines show, respectively, the identity and linear 
regression lines. (G) Plot of the number of predictive molecules kept in the model (with non-zero coefficients) on the x-axis vs. the mean 
(line) and standard deviation (shadow) MAE on the y-axis. MAE values were smoothed via a LOESS regression (R loess function with a span 
argument of 0.6). (H) Heatmap showing the correlation of the error in predictions (delta age) for the proteomics-based model and the small 
RNA-based models with R2 > 0.2. (I) Absolute standardized coefficients of the proteomics and top 20_miRNA-based models. 
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Finally, we checked the standardized coefficients of our 

best-performing age-predictive model derived from 

proteins and top20_miRNAs (Figure 4I, Supplementary 

Table 6). Interestingly, the three miRNAs with the 

lowest coefficients were miR-26b-5p, miR-93-5p and 

miR-26a-5p, all of which have been reported as tumor 

suppressors [46–48]. This result is consistent with the 

enrichment in cancer-promoting genes among targets of 

miRNAs that decrease with age (Figure 3D). The three 

proteins with the highest coefficients were hemopexin, 

fibulin-1, and cystatin C. The heme-binding glycoprotein 

hemopexin plays a key role in protecting LDL [49] and 

neurons [50] from oxidative stress and is enriched in 

amyloid deposits in the brains of Alzheimer’s Disease 

(AD) patients [51]. The calcium-binding glycoprotein 

fibulin-1 has been previously shown to increase with age 

and to be associated with diabetes, impaired kidney 

function, and hemodynamic cardiovascular risk markers 

[52]. The cysteine protease inhibitor cystatin C has been 

described previously as increasing with age and being 

involved in various neurodegenerative diseases, 

including AD [53, 54]. Finally, two complement system 

proteins (FIBB and CO5) contributed positive 

coefficients to the model, consistent with the enrichment 

of this pathway among proteins up-regulated with age in 

our HRM-MS and MRM-MS data (Figure 2D). In 

summary, combining protein and small RNA data 

allowed us to capture a broader and complementary 

spectrum of molecules involved in age-related physio-

logical processes, most notably cancer-protective 

miRNAs and proteins involved in AD and the 

complement system. 

 

DISCUSSION 
 

Accurate age predictions from comprehensive 

molecular data hold great promise for various 

applications in medicine, forensics, anthropology, or 

ecology. Our study measured two types of molecular 

data (proteins and small RNAs) in an easily accessible 

tissue (blood) to first identify age-associated molecules 

and second shed light on their suitability, alone or in 

combination, for age predictions. In the following, we 

will discuss the individual stages of our study and the 

insights that were gained. 

 

In the first stage, our untargeted mass spectrometry 

measurements identified 145 candidate proteins that 

changed in abundance with age (Figure 2, 

Supplementary Figure 1, Supplementary Table 1), many 

of which had not been reported before. Among  

the upregulated proteins, we observed a significant 

enrichment in the innate immunity-related complement 

pathway proteins. One of these newly discovered age-

associated proteins is C5 (Complement component 5). 

Interestingly, C5 deficiencies have been found to be 

associated with rheumatoid arthritis [55, 56], which is a 

common age-associated disease. 31 of the 145 

candidates were eventually measured by targeted 

proteomics on the entire cohort. Hereby, ten 

complement proteins were confirmed as age-increasing, 

further supporting the association of this pathway with 

age. This result is in agreement with previous work 

where the authors found the term “complement 

coagulation cascades” (KEGG id: hsa04610) to be the 

second most enriched pathway among the age-

associated proteins they detected in a large-scale 

proteomics assay [18]. Notably, the increase in 

complement components correlates well with the age-

dependent increase in systemic inflammation that is 

considered a hallmark of aging in humans [3]. 

Furthermore, the complement system is associated  

with respiratory failure in COVID-19 patients [57], 

suggesting that an increased abundance of its 

components may contribute to the increased impact of 

this disease on the elderly. Another observation from 

the targeted proteomics was that three of the six 

proteins downregulated with age were apolipoproteins. 

This was remarkable given that only 2.45% of all the 

612 tested proteins were apolipoproteins. All these 3 

proteins contribute to High-Density Lipoproteins 

(HDLs) [58], whose abundance is known to decrease 

with age [59], which are maintained at higher levels in 

long-lived individuals [59, 60], and whose abundance 

anti-correlates with coronary heart disease risk [61]. 

 

Additionally, we measured small RNAs using the 

Small-seq methodology and identified 315 small RNAs 

that changed in abundance with age in human blood 

plasma (Figure 3, Supplementary Table 3). miRNAs 

were clearly the most prominent age-associated class of 

small RNAs, showing a strong down-regulation with 

age. The age-related decrease in miRNAs is remarkable 

since this small RNA class has recognized roles in 

intercellular communication [62, 63]. The loss of these 

circulating miRNAs may, therefore, contribute to the 

deregulation of gene expression in various tissues with 

age [64]. Studies in multiple species have reported a 

downregulation of Dicer expression with age [65, 66], 

which may contribute to this phenomenon. Furthermore, 

the identified age-associated miRNAs themselves are 

interesting: First, the miRNAs with the highest age-

association were actually pairs of closely related 

miRNAs (i.e., mir-26a-5p and mir-26b-5p as well as 

mir-374a-5p and mir-374b-5p). While the miRNAs of 

each pair likely have similar physiological roles, they 

are transcribed from different chromosomal loci and 

hence experience synchronous regulation, further 

strengthening the notion that their decrease with age is 
no coincidence but the outcome of a concerted 

regulatory event. Second, the predicted targets of the 

miRNAs declining with age were enriched for functions 
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promoting growth, cancer, and senescence. Thus, the 

decrease in these circulating miRNAs could contribute 

to the increased occurrence of cancers in the elderly by 

upregulating oncogenes. Third, the very few miRNAs 

that were upregulated with age had predicted targets 

involved in insulin resistance and longevity regulation 

and thus may be important players regulating age-

related morbidities or even aging directly [67]. 

 

In the second stage of our study, we used our protein 

and small RNA measurements to build age-predictive 

models and compare their accuracy. We were able to 

build a decent age-predictive model from proteins (R² = 

0.59 ± 0.02). Using the small RNAs, we found that 

miRNAs were by far the most predictive class of small 

RNAs, while tRFs and tRNAs had little predictive 

ability, and rRNAs, snoRNAs, and snRNAs had no 

predictive ability (Figure 4B). The relatively high 

predictive ability of miRNAs (up to R² = 0.54 ± 0.02 for 

top20_miRNAs) is consistent with previous reports 

showing that many miRNAs change with age and are 

associated with age-dependent diseases [68–70]. 

However, to the best of our knowledge, no study before 

has compared the suitability of different classes of small 

RNAs for age prediction. Our observations should, 

therefore, help future studies that want to use small 

RNA biomarkers of aging in blood plasma by 

instructing them to focus on miRNAs. 

 

We tried to further improve age predictions by 

combining protein and small RNA data. This worked 

well, with the best results being obtained from a 

combination of our age-associated proteins and the 

top20_miRNAs. Ultimately, our best model used only 

15 of the 31 proteins and 9 of the top20_miRNAs and 

had a performance (R² = 0.73 ± 0.01) that was better 

than models built from individual molecular data types 

alone (R² = 0.59 ± 0.02 for proteins, R² = 0.54 ± 0.02 

for top20_miRNAs). We wondered what could drive 

this increase in predictive performance. An indication 

came from the correlations of delta ages (prediction 

errors) for all the individuals in our cohort, where all 

small RNA-based models were highly correlated but 

showed only little correlation with our protein-based 

model. This argued that proteins and small RNAs may 

capture different aspects of age-related human 

physiology. These results are in line with the study of 

Huan et al. [24], in which the authors found little 

correlation between their miRNA-based clock and their 

mRNA- and DNAm-based clocks and showed that 

models built from miRNAs in combination with either 

mRNA or DNAm data had higher performances. 

 
Next, we examined the standardized coefficients of our 

best-performing age-predictive model to identify the 

best predictors of age in our dataset. We found that the 

two lowest coefficients (miR-26b-5p and miR-93-5p) 

were both miRNAs, while the three highest coefficients 

were all proteins (CYTC, FBLN1, and HEMO). 

Consistently, miR-26b-5p and miR-93-5p were 

significantly more down-regulated with age (FDR <= 

1.2 × 10−7) than the most significantly down-regulated 

protein (APOC1, 8 × 10−4), while CYTC, FBLN1, and 

HEMO were significantly more up-regulated (FDR <= 

5.5 × 10−6) than the most significantly up-regulated 

small RNA (miR-10b-5p, E = 2.4 × 10−5). From a 

technical standpoint, this suggests that by integrating 

different molecular data-types, we were able to expand 

the set of robust features, which improved the capture of 

subtle aging trends. At a biological level, we also 

observed distinct predicted functions for the top two 

negative and the top three positive coefficients. The 

former, both being miRNAs, are recognized tumor 

suppressors, while the latter, all three being proteins, are 

associated with age-related diseases such as 

Alzheimer’s disease (HEMO and CYTC), kidney 

disease, and cardiovascular disease (FBLN). 

 

One limitation of our study is that we had to exclude all 

non-annotated small RNAs from the small RNA data to 

avoid studying degradation products of larger RNAs. 

This filtering step removed the majority of the measured 

small RNAs (88% of the 5,180 measured). It is 

conceivable that some of the removed RNAs were valid 

small RNAs with good age-predictive potential, but 

incomplete annotations in the existing databases 

prevented their inclusion. Future improvements in 

genome annotation may address this issue. Additionally, 

the cohort utilized in our study had a limited size (103 

individuals) and limited representation of the global 

population (all individuals were healthy Northern 

Americans, and males were overrepresented). Finally, 

we lacked a replication cohort. 

 

A strength of our study is the two-stage approach for 

biomarker selection and quantification, where age-

associated proteins were pre-selected by HRM-MS and 

then measured by MRM-MS, while small RNAs 

measured by Small-seq were further filtered for the set 

of significantly age-associated miRNAs from the 

Freedman et al. study [42]. This robust approach gives 

us more confidence in the validity and effects of these 

biomarkers. Furthermore, our study is one of the few 

that measured biomarkers of different molecular types 

in the same cohort and built age-predictive models from 

these measurements. And to the best of our knowledge, 

a combination of proteomics and small RNA 

measurements for building age-predictive models has 

never been used before. Finally, only a few studies have 
measured total small RNAs in plasma with age, and 

none have compared the capacities of different small 

RNA classes for age prediction. 
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Taken together, our study revealed that both proteins 

and small RNAs in the blood contain highly significant 

age-associated molecules. Interestingly, we found that 

most miRNAs showed a strong decrease with age and 

targeted tumor-suppressor molecules, while most 

proteins showed a strong increase with age and were 

enriched in molecules of the adaptive immune system. 

While proteins and small RNA sets can be used 

individually to predict human age, we found that their 

combination improves age predictions. These results 

suggest that miRNAs provide a good complement to 

proteomic data for age predictions and that even small 

sets of highly age-associated miRNAs and proteins 

could yield highly predictive models. This could be 

particularly valuable for the development of cost-

effective age-predictive strategies that aim to measure 

only a minimal number of biomarkers. Further studies 

using larger sample sizes and a replication cohort are 

still needed to confirm the complementary nature of 

miRNA and proteomics measurements for age 

predictions and to define the best miRNAs and proteins 

to use. However, we see our work as an indication that 

combining different molecular data types could be a 

general strategy to improve future aging clocks. 

 

MATERIALS AND METHODS 
 

Study population 

 

103 plasma samples from disease-free and generally 

healthy individuals were acquired from Precision Med 

Inc. The cohort includes 12 females and 91 males. All 

participants provided written informed consent. 

 

Untargeted proteomics profiling 

 

Plasma samples from 19 young male individuals (<31 

years old) and 25 old male individuals (>49 years old) 

were selected for Hyper-reaction monitoring-MS (HRM-

MS) proteomics profiling, which was performed by 

Biognosys AG (Switzerland). All used solvents were 

HPLC-grade from Sigma-Aldrich unless otherwise stated. 
 

Sample preparation and library characterization 

10 µl of each plasma sample was reduced using 

Biognosys’ Reduction Solution for 1 h at 37°C and 

alkylated using Biognosys’ Alkylation Solution for 30 

min at room temperature in the dark. Subsequently, 

digestion of approximately 100 µg of protein per sample 

was carried out using trypsin (Promega) overnight at 

37°C at a protein:protease ratio of 50:1. Peptides were 

desalted using a C18 MicroSpin plate (The Nest Group) 

according to the manufacturer’s instructions and dried 

down using a SpeedVac system. Peptides were 

resuspended in 40 µl LC solvent A (1% acetonitrile, 

0.1% formic acid (FA)) spiked with Biognosys’ HRM 

kit calibration. For HPRP fractionation, equal sample 

volumes were pooled according to sample group (young 

and elderly). The two pools were each diluted 4-fold in 

0.2 M ammonium formate (pH 10) and applied to a C18 

MicroSpin column (The Nest Group). The peptides 

were then eluted with buffers containing 0.05 M 

ammonium formate and increasing acetonitrile 

concentrations (5, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30 

and 70% for “young” samples and 14, 16, 18, 20, 22, 

24, 26, 30 and 70% for “elderly” samples). Note that 

Biognosys’ standard procedure collects six fractions. 

Here, more fractions were generated to obtain a deeper 

library. The eluates were dried down, resolved in 17 µl 

solvent A, and spiked with Biognosys’ HRM kit 

calibration peptides prior to mass spectrometric 

analyses. The final peptide concentrations in all samples 

and fractions were determined using a UV/VIS 

Spectrometer (SpectroSTAR nano, BMG Biotech). 

 

LC-MS/MS shotgun measurements 

2 µg of peptides (with the exception of only 1.5 µg for 

fraction 5% of the “young” pool) were injected into an 

in-house packed C18 column (Dr. Maisch ReproSil Pur, 

1.9 µm particle size, 120 Å pore size; 75 µm inner 

diameter, 50 cm length, New Objective) on a Thermo 

Scientific Easy nLC 1200 nano-liquid chromatography 

system connected to a Thermo Scientific Q Exactive HF 

mass spectrometer equipped with a standard nano-

electrospray source. LC solvents were A: 1% 

acetonitrile in water with 0.1% formic acid; B: 15% 

water in acetonitrile with 0.1% formic acid. The 

nonlinear LC gradient was 1–52% solvent B in 60 

minutes, followed by 52–90% B in 0.1 minutes, and 

90% B for 10 minutes. A modified TOP15 method was 

used [71]. The mass spectrometric data were analyzed 

using MaxQuant 1.5.6.5 software [72], with the false 

discovery rate on peptide and protein levels set to 1%. 

A human UniProt. fasta database (Homo sapiens, 2015-

08-28) was used, allowing for 2 missed cleavages and 

variable modifications (N-term acetylation, methionine 

oxidation, lysine/arginine carbamylation, asparagine/ 

gluta-mine deamidation). 

 

LC-MS/MS HRM measurements 

2 µg of peptides per sample were injected into an in-

house packed C18 column (Dr. Maisch ReproSil Pur, 

1.9 µm particle size, 120 Å pore size; 75 µm inner 

diameter, 50 cm length, New Objective) on a Thermo 

Scientific Easy nLC 1200 nano-liquid chromatography 

system connected to a Thermo Scientific Q Exactive HF 

mass spectrometer. LC solvents were A: 1% acetonitrile 

in water with 0.1% formic acid; B: 15% water in 

acetonitrile with 0.1% formic acid. The nonlinear LC 
gradient was 1–52% solvent B in 60 minutes, followed 

by 52–90% B in 10 seconds, and 90% B for 10 minutes. 

A DIA method with one full-range survey scan and 14 
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DIA windows was used. HRM mass spectrometric  

data were analyzed using Spectronaut 10 software 

(Biognosys). The false discovery rate on peptide levels 

was set to 1%, data were filtered using row-based 

extraction. The assay library (protein inventory) 

generated in this project was used for analysis. The 

HRM measurements analyzed with Spectronaut were 

normalized using local regression normalization [73]. 

 

Preprocessing and statistics 

Protein intensities measurements were log2 

transformed. The significance of differential expression 

between the two age groups was assessed with the 

Mann-Whitney test. In order to account for multiple 

testing, False Discovery Rate adjusted p-values (q-

values) were computed using the q value package 

(version 2.26.0) [74]. 145 out of 612 proteins had q-

values below 0.2 and were considered significant. 

 

Targeted proteomics profiling 

 

LC-MS/MS MRM measurements 

Targeted proteomics measuring 125 human plasma 

proteins was performed using an Agilent 6490 triple 

quadrupole mass spectrometer (Agilent Technologies) and 

a commercially available PeptiQuant™ Plus Proteomics 

Kit (MRM Proteomics Inc.), according to the 

manufacturer’s instructions. This kit was chosen because 

it measures 44 out of the 145 significant proteins from our 

first proteomics screen. Briefly, plasma proteins were 

denatured, reduced, alkylated, and digested with trypsin. 

One proteotypic peptide per protein was used as a 

surrogate marker for determining plasma protein 

concentrations. Each batch was comprised of 50 

experimental samples, 9 quality control samples, and 8 

calibration samples. A constant concentration of a stable 

isotope-labeled standard (SIS) peptide was added to each 

sample, which was used for normalization. The 

calibration curve spanned a 1000-fold concentration range 

with 8 different calibration points. The quality controls 

and standard curve peptides were spiked into a digested 

bovine serum albumin surrogate matrix to avoid the 

problems associated with the presence of the endogenous 

analytes in normal human plasma. The quantification of 

protein concentration from raw MRM data was done 

using the software Skyline (version 3.7) [75]. 

 

Preprocessing and statistics 

Proteins with too low measurements were removed from 

all analyses. Proteins were kept if they had more than 

50% of samples with values higher than the lowest 

calibration threshold measurement in all 3 batches. This 

resulted in 77 proteins being kept, out of which 31 were 
significantly associated with age in our untargeted 

proteomics screen. Measurement values below zero were 

set to zero, and one count was added to each value before 

log2 transformation. All analyses were made on the 31 

proteins selected from untargeted proteomics. Batch 

correction between experimental runs was done using 

parametric empirical Bayes (via the ComBat function 

from the sva package (version 3.42.0) [76]) and 

chronological age as the outcome of interest. Significant 

proteins were determined by linear modeling, using 

protein levels as the dependent variable and 

chronological age as the explanatory variable. Correction 

for multiple testing was done using the Benjamini-

Hochberg False Discovery Rate (BH FDR) adjustment 

method with the R function p.adjust [77]. A total of 21 

out of 31 proteins were significant at an FDR of 0.2. 

 

Small RNA expression profiling 

 

Small RNA measurements 

Total RNA was extracted from plasma samples using 

the Qiagen miRNeasy Serum/Plasma Kit. Briefly, 

frozen plasma samples were thawed, vortexed, and 

centrifuged for 10 min at 16,000 g. 50 µl of the 

supernatant were used for RNA extraction following the 

manufacturer’s instructions. Purified RNA was eluted in 

50 µl water and stored at −80°C. 4 µl of purified RNA 

was used in a Small-seq protocol to construct 

sequencing libraries [1]. Small RNA libraries were 

pooled and sequenced using an Illumina HiSeq 3000 

platform for 100-bp single-read. Reads were mapped to 

202,272 Ensembl transcript IDs using the Small-seq 

data analysis pipeline [1] and to 4,121 tRFs using the 

MINTmap pipeline [2] on the human genome version 

hg38. Our study uses the annotations “tRF” and 

“tRNA”. Both refer to fragments of tRNAs detected by 

the Small-seq pipeline. The difference is that “tRNA” 

refers to any RNA fragment that, according to Ensembl, 

maps to a tRNA, while “tRF” refers to only a specific 

subset of tRNA fragments that are not a result of 

random fragmentation but are enzymatically generated 

and have dedicated physiological roles [78]. 

 

Preprocessing and statistics 

Only small RNAs with read counts higher than 1 in 

more than 20% of the samples were kept, resulting in a 

list of 5,180 small RNAs. Counts were rounded, 

normalized, and differential expression analysis was 

performed using the DESeq2 package (version 1.34.0) 

[79]. Briefly, DESeq2 analysis consists of counts 

normalization by size factors, estimation of RNA mean 

and dispersion, fitting a negative binomial Generalized 

Linear Model, assessing significance with the Wald test, 

and correcting for multiple testing by BH FDR 

adjustment. Small RNA levels were used as the 

dependent variable and chronological age as the 
explanatory variable. A local fit was used for estimating 

dispersions. Size factor-normalized small RNA counts 

were obtained using the ‘counts’ function with the 
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argument “normalized = TRUE”. After DESeq2 

analysis, transcript biotypes were defined for all 

identified small RNAs using the biomaRt package 

(version 2.50.0) [80]. Small RNAs with unclear 

transcript biotypes were removed from the analyses 

since they could be degradation products (i.e., of 

protein-coding mRNAs, lncRNAs, etc.,). A total of 608 

small RNAs were kept after this filtering step, of which 

315 were significantly associated with age at an FDR 

threshold of 0.2. 

 

Data analysis 

 

All data analyses were carried out in R (version 4.1.2) 

[77], with the packages tidyverse (version 1.3.1) [81], 

Biobase (version 2.54.0) [82], data.table (version 

1.14.2) [83] and knitr (version 1.36) [84]. 

 

Predictions of miRNA targets 

 

miRNAs can have many predicted targets. To avoid 

dealing with an excessive number of targets, we decided 

to pre-filter the list of age-associated miRNAs by keeping 

only the 7 up-regulated miRNAs with an FDR below 0.2 

and the 110 down-regulated miRNAs with an FDR below 

0.001. miRNA targets were predicted using the multiMiR 

package (version 1.16.0, database version 2.3.0) [44]. 

multiMiR allows users to query 3 experimental and 7 

miRNA target prediction databases. To keep only the 

most confidently predicted targets, we used the following 

filters: Targets were selected only if they were found in 2 

out of the 3 experimental databases. Furthermore, they 

had to be found in 4 out of the 7 prediction databases, and 

to rank in the top 10% of predicted targets for a given 

miRNA. After this filtering, the up-regulated miRNAs 

yielded 22 predicted targets, and the down-regulated 

miRNAs yielded 2159 predicted targets. 

 

Pathway enrichment analysis 

 

KEGG pathway enrichment analysis was performed 

using gprofiler2 (version 0.2.1) and p-values were 

corrected using the gSCS correction method [85]. A 

custom background for the computation of significance 

was used using the argument domain_scope = 

“custom”. For unbiased proteomics, the background 

used was the set of all 612 measured proteins. For 

miRNA targets, the background used was the set of all 

26,193 human mRNA targets present in the multiMiR 

database, which was fetched using the ‘list_multimir’ 

command. 

 

Creation of age predictive models 

 

To conduct feature selection of small RNAs in an 

unbiased way, we chose those found to be differentially 

expressed with age by another study [42]. After 

matching the transcript IDs in common with our study, 

we selected the top 20 most significantly age-associated 

RNAs, all of which were miRNAs, and named this 

group “top20_miRNAs”. 

 

For modeling, we used LASSO regression via the 

glmnet package (version 4.1-3) [86, 87]. Local 

regression normalized data were used for the 

untargeted proteomics, batch corrected data were used 

for the targeted proteomics, and DESeq2-normalized 

counts were used for the small RNAs (see the 

corresponding Preprocessing and statistics sections for 

details). All datasets were in raw scale (not log-

transformed). The loss function used was Mean 

Absolute Error. For estimation of model performance 

and tuning of the lambda hyperparameter (which is the 

strength of regularization), we performed a 10-fold 

cross-validation scheme with 100 repeats. Using many 

repeats allowed us to obtain more stable estimates 

despite a modest sample size. A final model was fitted 

by using the lambda with the lowest mean cross-

validation error across all 100 repeats. Lastly, we 

obtained standardized model coefficients by 

multiplying the raw coefficients provided by the model 

with their corresponding variable standard deviation, 

as described previously [88]. 

 

Data availability statement 

 

The mass spectrometry-based proteomic data are openly 

available through the Proteomics Identification 

Database [89] under project PXD028281 for the HRM-

MS data and PXD028295 for the MRM-MS data. The 

Small-seq data are openly available at NCBI's Gene 

Expression Omnibus [90] under accession number 

GSE182598. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Scatter plots of the most age-associated proteins from untargeted proteomics. Scatter plots of age 

vs. protein abundance for 22 out of the 24 most significantly age-associated proteins from the HRM-MS. Scatter plots for the two proteins 
not shown here can be found in Figure 2E. Black line and shadow: linear regression and 95% confidence interval, respectively. 
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Supplementary Figure 2. Comparison of the proteomics from this study with previous work. (A) Correlation between log2 

counts of the two MS experiments across proteins and samples. Blue line and shadow: linear regression and 95% confidence interval, 
respectively. (B) Comparisons of age-dependent protein abundance changes in our study and in [18]. The correlations of the beta 
coefficients reported in [18] are plotted on the y-axis and the beta coefficients from our MRM-MS are plotted on the x-axis. Red line and 
shadow: linear regression and 95% confidence interval, respectively. 
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Supplementary Figure 3. Scatter plots of the most age-associated proteins from targeted proteomics. Scatter plots of age vs. 
protein abundance for 22 out of the 24 most significantly age-associated proteins from the MRM-MS. Scatter plots for the two proteins not 
shown here can be found in Figure 2E. Black line and shadow: Linear regression and 95% confidence interval, respectively. 
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Supplementary Figure 4. Scatter plots of the most age-associated small RNAs. Scatter plots of age vs. protein abundance for 20 
out of the 24 most significantly age-associated small RNAs. Scatter plots for the four small RNAs not shown here can be found in Figure 3B. 
Black line and shadow: Linear regression and 95% confidence interval, respectively. 
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Supplementary Figure 5. Comparison of the age-associated miRNAs from this study with previous work. Overlap between 

miRNAs found to be the most significantly age-associated in our study (FDR < 0.001, 96 miRNAs) and the study of Freedman et al. (FDR < 
0.05, 112 miRNAs), out of 242 miRNAs measured in both studies. 

 

 

 

 
 

Supplementary Figure 6. Performance of age-predictive models built from untargeted proteomic and miRNA data. 
Performance of the models built from untargeted proteomic (HRM-MS) and miRNA data. The mean (dot) and standard deviation (circle) of 
two error metrics are shown: the coefficient of determination (R2) on the x-axis and the Mean Absolute Error (MAE) on the y-axis. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3 and 6. 

 

Supplementary Table 1. Results of the HRM-MS. 

 

Supplementary Table 2. Results of the MRM-MS. 

# Uniprot_id Protein_name Gene_name Protein_description Beta FDR minusLog10_FDR 

1 P02748 CO9 C9 Complement component C9 0.01620584 5.9925E-08 7.22239447 

2 P23142 FBLN1 FBLN1 Fibulin-1 0.01141984 3.8453E-07 6.41506685 

3 P01034 CYTC CST3 Cystatin-C 0.01093426 1.0384E-06 5.98363021 

4 P01031 CO5 C5 Complement C5 0.00976814 3.9602E-06 5.4022833 

5 P02790 HEMO HPX Hemopexin 0.00740283 5.5291E-06 5.2573473 

6 P05156 CFAI CFI Complement factor I 0.01027467 1.1228E-05 4.94969539 

7 P02671 FIBA FGA Fibrinogen alpha chain 0.01127861 2.2016E-05 4.65726498 

8 P02750 A2GL LRG1 Leucine-rich alpha-2-glycoprotein 0.01081106 3.4839E-05 4.45793726 

9 P09871 C1S C1S Complement C1s subcomponent 0.00589129 0.00069008 3.16109998 

10 P02654 APOC1 APOC1 Apolipoprotein C-I −0.01537613 0.00079773 3.09814587 

11 P02679 FIBG FGG Fibrinogen gamma chain 0.00772761 0.00079773 3.09814587 

12 P02675 FIBB FGB Fibrinogen beta chain 0.00740994 0.00129809 2.88669453 

13 P02652 APOA2 APOA2 Apolipoprotein A-II −0.00633054 0.00427695 2.36886632 

14 P01008 ANT3 SERPINC1 Antithrombin-III −0.00498125 0.00527033 2.27816214 

15 P08697 A2AP SERPINF2 Alpha-2-antiplasmin −0.00404854 0.02922722 1.53421248 

16 P14151 LYAM1 SELL L-selectin −0.00406082 0.03029594 1.51861562 

17 P10909 CLUS CLU Clusterin 0.00304876 0.07427541 1.12915495 

18 P80108 PHLD GPLD1 
Phosphatidylinositol-glycan-

specific phospholipase D 
0.00453143 0.07427541 1.12915495 

19 O14791 APOL1 APOL1 Apolipoprotein L1 −0.00341748 0.14470684 0.83951093 

20 P08603 CFAH CFH Complement factor H 0.00443368 0.15273262 0.81606818 

21 P01024 CO3 C3 Complement C3 0.0028188 0.16203001 0.79040455 

22 P43652 AFAM AFM Afamin 0.00325797 0.24156889 0.616959 

23 P43251 BTD BTD Biotinidase −0.00244123 0.26084979 0.58360951 

24 P00747 PLMN PLG Plasminogen −0.00168636 0.40122892 0.39660777 

25 P27169 PON1 PON1 Serum paraoxonase/arylesterase 1 −0.00220693 0.46017138 0.3370804 

26 P02765 FETUA AHSG Alpha-2-HS-glycoprotein −0.00153741 0.52045478 0.283617 

27 Q6EMK4 VASN VASN Vasorin 0.00089481 0.70632444 0.15099577 

28 P00734 THRB F2 Prothrombin −0.00040461 0.89749857 0.04696624 

29 P06396 GELS GSN Gelsolin −0.00023148 0.94002158 0.02686218 

30 P00742 FA10 F10 Coagulation factor X 0.00022134 0.94002158 0.02686218 

31 P00751 CFAB CFB Complement factor B −2.7028E-05 0.98989909 0.00440907 

Detailed results of age-association for each protein measured in the MRM-MS analysis. 

 

 

Supplementary Table 3. Results of the Small-seq. 
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Supplementary Table 4. Datasets and their performances. 

Dataset 
Number of 

features 

Number of  

non-zero coefficients 
Lambda Rsquared RsquaredSD MAE MAESD RMSE RMSESD 

Proteins + 

top20_miRNAs 
51 24 0.441 0.73 0.01 7.40 0.18 9.11 0.22 

Proteins + miRNAs 319 44 0.542 0.70 0.02 7.38 0.28 9.50 0.32 

Proteins + all small 

RNAs 
639 48 0.667 0.67 0.04 7.76 0.37 10.05 0.53 

Proteins 31 21 0.358 0.59 0.02 9.00 0.25 11.20 0.28 

Top20_miRNAs 20 13 0.237 0.54 0.02 9.44 0.19 11.92 0.30 

miRNAs 288 6 2.841 0.45 0.02 10.93 0.13 13.12 0.15 

All small RNAs 608 38 1.241 0.42 0.03 10.32 0.29 13.26 0.33 

tRNAs 229 20 1.526 0.28 0.03 12.20 0.24 14.84 0.28 

tRFs 32 11 1.009 0.22 0.03 12.32 0.25 15.43 0.35 

snRNAs 20 0 6.504 0.09 0.03 14.57 0.06 17.63 0.07 

snoRNAs 16 3 0.667 0.007 0.008 14.433 0.263 18.125 0.533 

rRNAs 23 2 0.667 0.006 0.005 14.362 0.139 17.546 0.155 

Performance for age-predictions as estimated from the cross-validation analyses. The mean and standard deviation for R², 
MAE and RMSE (Root Mean Square Error) are indicated. The column ‘number of non-zero coefficients’ indicates how many 
features were retained in the respective model. 

 

 

Supplementary Table 5. Correlation between models’ prediction errors. 

 Proteins All small RNAs tRFs tRNAs miRNAs Top20_miRNAs 

proteins 1 0.373919054 0.435471522 0.440753051 0.409886692 0.250330152 

all small RNAs 0.373919054 1 0.840188201 0.828969882 0.953634873 0.846409428 

tRFs 0.435471522 0.840188201 1 0.869324569 0.892236098 0.712732738 

tRNAs 0.440753051 0.828969882 0.869324569 1 0.867817341 0.695747075 

miRNAs 0.409886692 0.953634873 0.892236098 0.867817341 1 0.838047513 

top20_miRNAs 0.250330152 0.846409428 0.712732738 0.695747075 0.838047513 1 

Correlation of delta ages (prediction errors) of models built from proteomics or small RNA measurements. 

 

Supplementary Table 6. Coefficients of the age-predictive models. 

 


