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INTRODUCTION 
 
Hepatocellular carcinoma (HCC) is a common malignant 
tumor of the digestive system. HCC cells grow rapidly 
and are characterized by high vascular invasion and 
metastasis inside and outside the liver, resulting in poor 
treatment for HCC patients, with a 5-year survival rate  
of only about 15%, making it the fifth most common 
cancer in the world [1]. Despite aggressive surgical 

resection, radiofrequency ablation, transcatheter arterial 
chemoembolization, and chemotherapy, most patients 
still die from tumor metastasis and recurrence [2, 3]. The 
problems of poor prognosis and high drug resistance have 
been difficult to solve. The current availability of 
immune checkpoint inhibitors (ICIs) therapies for the 
treatment of a variety of malignancies suggests that ICIs 
may open up new avenues for the clinical management of 
HCC [4, 5]. However, no predictive biomarkers for the 

www.aging-us.com AGING 2023, Vol. 15, No. 13 

Research Paper 

Identification and characterization of a novel molecular 
classification based on disulfidptosis-related genes to predict 
prognosis and immunotherapy efficacy in hepatocellular carcinoma 
 
Li Yang1, Weigang Zhang2, Yifeng Yan1 

 
1Department of Forensic Pathology, Wannan Medical College, Wuhu, China 
2Department of Graduate School, Wannan Medical College, Wuhu, China 
 
Correspondence to: Yifeng Yan; email: YifengYan@gmx.com, https://orcid.org/0009-0003-1192-1534 
Keywords: hepatocellular carcinoma, disulfidptosis, tumor microenvironment, immunotherapy, WGCNA 
Received: March 24, 2023 Accepted: June 1, 2023  Published: July 3, 2023 
 
Copyright: © 2023 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 
ABSTRACT 
 
Background: Disulfidptosis has been discovered as a mechanism of cell death mediating by SLC7A11. 
Nonetheless, little is known about the relationship between disulfidptosis-related genes (DRG) and 
hepatocellular carcinoma (HCC). 
Methods: 7 datasets including 1,302 HCC patients and 62,530 cells were downloaded. We adopted consensus 
clustering algorithm to construct the consensus matrix and cluster the samples’ DRG related expression profile 
data. Then, weighted gene co-expression network analysis (WGCNA) was conducted to identify hub gene 
modules associated with the identified clusters and determine the correlation between modules. A DRG.score 
was constructed based on genes through differential analysis and WGCNA of the 2 clusters. 
Results: Univariate and multivariate Cox regression analysis show that SLC7A11 and LRPPRC can be used as an 
independent factor in HCC. Then, two molecular subgroups with significantly different survival were identified 
based on 10 DRG. The cluster.A showed a worse prognosis, higher immune infiltration, and higher immune 
checkpoint expression. Then, by differential analysis and WGCNA of the 2 clusters, we identified 5 hub genes, 
and constructed a DRG.score. Univariate and multivariate Cox regression analysis show that DRG.score can be 
used as an independent factor to predict the prognosis in HCC. Furthermore, high DRG.score group had a worse 
prognosis, and was validated in TCGA-LIHC, LIRI-JP, GSE14520, GSE36376, and GSE76427. Preclinically, patients 
with higher DRG.score demonstrated significant immunotherapy therapeutic advantages and transcatheter 
arterial chemoembolization clinical benefits. 
Conclusions: SLC7A11 and LRPPRC play an essential role in HCC prognosis prediction. The DRG.score might 
become useful biomarkers for novel therapeutic targets. 
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therapeutic efficacy of ICIs have been constructed in 
HCC. Therefore, the search for effective biomarkers of 
ICIs in HCC is particularly critical. 
 
Early diagnosis and subsequent treatment are an urgent 
problem in medicine, and the elucidation of the 
proliferation and invasion and metastasis-related 
proteins and signaling pathways of HCC is one of the 
current hot spots. With the continuous development of 
basic medicine and clinical medical technology, 
researchers have found that the development of HCC is 
closely related to the dysregulation of cell death [6, 7]. 
Abnormal accumulation of intracellular disulfides in 
SLC7A11 high cells under glucose starvation conditions 
induces cell death called disulfidptosis [8]. Despite the 
success of chemotherapy in clinical cancer treatment, 
resistance to chemotherapeutic agents caused by genetic 
mutations remains a challenge. Disulfidptosis is 
gradually being recognized as a new therapeutic 
pathway for the elimination of malignant cells, and it 
plays a key role in suppressing tumorigenesis, 
especially in tumors that are resistant to conventional 
chemotherapy. 
 
In this work, our first step was to assess the different 
expression of disulfidptosis-related genes (DRG) in 
HCC and normal tissues. Subsequently, we used 
multiple bioinformatics approaches to comprehensively 
assess the association of DRG expression with HCC 
clinicopathology and prognosis. Then, we 
comprehensively studied the accuracy of the model 
based on DRG for the prognosis, clinical characteristics, 
and ROC of HCC patients in the training and validation 
sets, and analyzed the enrichment pathway of HCC 
patients in the high-low risk group.  
 
MATERIALS AND METHODS 
 
Data acquisition 
 
The mRNA expression data of HCC were further 
retrieved by searching the GEO database with the 
following keywords: “hepatocellular carcinoma”, 
“HCC”, and “liver cancer”. After initial screening, 3 
gene expression omnibus (GEO) profiles with clinical 
information (GSE14520 [9], GSE36376 [10], and 
GSE76427 [11]) were selected and downloaded. The 
profiles base on GPL571, GPL10558, and GPL10558 
platform. 221 samples in GSE14520, 223 samples in 
GSE36376, 115 samples in GSE76427. We also adopted 
ICGC (tumor: 231) and TCGA (tumor: 365; normal: 50) 
public database to download the RNAseq data. A total of 
1,155 HCC samples with clinical information were 
selected. We also downloaded transcatheter arterial 
chemoembolization (TACE) dataset (GSE104580) to 
predict the clinical value of DRG.score, and a single-cell 

RNA dataset (GSE140228) was downloaded to explore 
the expression of 2 hub genes (Table 1) [12]. 
 
Data preprocessing 
 
A FPKM gene expression matrix was acquired from 
TCGA and converted into TPM format [13]. The merged 
expression matrix was then eliminated from batch effects 
and normalized using the R package “sva” [14]. 
 
Analysis of differential DRG in TCGA-LIHC 
 
The DRG expression was extracted from the collated 
RNA sequence data. DEG of DRG were analyzed in 
HCC tissues and normal tissues using the “limma” 
package [15]. 
 
Cox univariate and multivariate analysis for DRG in 
TCGA-LIHC 
 
The “Survival” data package was used to analyze the 
differential genes by Cox single factor analysis, and the 
hazard ratio (HR) and P value were obtained. The 
intersect genes with P < 0.05 in two survival analyses 
were selected by R software. Gender, age, TNM 
staging, AFP and DRG were subjected to univariate and 
multivariate COX regression analyses. The relationship 
between clinicopathological characteristics and DRG 
and survival prognosis of patients with HCC was 
investigated. The sensitivity and specificity of DRG and 
different clinical characteristics in predicting survival 
prognosis of HCC patients were assessed by the area 
under the curve, and the predictive ability of different 
clinicopathological characteristics and DRG was 
compared. 
 
Molecular subtypes base on 10 DRG in meta cohort 
 
We inferred consensus cluster based on the DRG 
expression using the R package ConsensusClusterPlus. 
The optimal cluster number k was chosen depending on 
the elbow and CDF curve [16]. 
 
Immune cell infiltration analysis 
 
ESTIMATE was utilized to reveal TME in tumor  
tissues [17]. MCP counter, ssGSEA, cibersort 
(https://cibersortx.stanford.edu/), EPIC, and TIMER were 
utilized to reveal the immune cell infiltration [18–20]. 
 
Differential gene analysis between the 2 clusters and 
GO and KEGG enrichment analysis 
 
“Limma” R package was performed to detect putative 
differences between 2 clusters (|log2FC|>1; adj. p<0.05) 
[21, 22]. 

https://cibersortx.stanford.edu/
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Table 1. The details of 7 datasets enrolled in this study. 

Accession number Platform Number of 
cells/patients 

Treatment 
information 

TCGA-LIHC Illumina RNAseq 365 No 
ICGC-LIRI-JP Illumina RNAseq 231 No 
GSE14520 Affymetrix Human Genome U133A Array 221 No 
GSE36376 Illumina HumanHT-12 V4.0 expression beadchip 223 No 
GSE76427 Illumina HumanHT-12 V4.0 expression beadchip 115 No 
GSE104580 Affymetrix Human Genome U133 Plus 2.0 Array 147 TACE Treatment 
GSE140228 Illumina HiSeq 4000 62,530 cells No 

 

WGCNA 
 
The R language “WGCNA” package was used to 
construct a gene co-expression network for the 
normalized gene data and determine the optimal soft 
threshold. A scale-free network is constructed based 
on the optimal soft threshold, and the genes are 
subsequently clustered into the dynamic tree cutting 
algorithm is used to cluster and classify the genes into 
different color functional modules. Gene significance 
(GS) indicates the correlation between genes  
and traits, while module membership (MM) indicates 
the correlation between module feature vectors and 
gene expression profiles. The correlation between 
modules and clinical traits was analyzed by Pearson 
algorithm by combining GS and MM, and the  
module with the highest correlation with clinical traits 
of HCC was selected as the key module in this  
study [23]. 
 
DRG.score model construction 
 
Based on the DEGs and WGCNA of the 2 clusters, we 
established a DRG.score by using principal component 
analysis (PCA) method. The DRG.score of each sample 
was calculated by  
 

DRG.score ( C1 C2 ),i iP P= ∑ +  
 
where “i” represents the gene expression level of hub 
gene expression.  
 
GSEA 
 
GSEA judges the enrichment of gene sets based on 
gene expression. The difference between the two lies 
in that GSEA judges the enrichment of gene sets 
based on the contribution of genes in gene sets. To 
assess the signaling pathways associated with the 
prognostic model, we used GSEA to assess 
enrichment pathways in the high-risk and low-risk 
groups [24]. 

Immunotherapy efficacy analysis 
 
Use the TIDE web server to predict each sample’s 
response to immunotherapy based on liver cancer 
transcriptomic data. Individual TIDE scores were pooled 
to predict the efficacy of treatment with ICIs in high- and 
low-DRG.score groups, with higher TIDE scores 
indicating that tumor cells are more prone to  
immune escape, implying a lower response rate to ICIs  
treatment [25]. 
 
Statistical analysis 
 
Correlations between variables were explored using 
Spearman or Pearson coefficients. Continuous variables 
that conformed to the normal distribution were 
compared using independent t-tests for comparisons 
between binary groups, while continuous variables with 
skewed distributions were compared with the Mann–
Whitney U test. Survival curves for categorical variable 
prognostic analyses were generated using the Kaplan–
Meier method, while the log-rank test was used to 
estimate statistical significance. The significance level 
was set at P < 0.05, and all statistical tests were two-
sided. All statistical data analyses were performed using 
R software or online analysis tools described in the 
relevant Materials and Methods subsections.  
 
Data availability 
 
All data used in the study can be downloaded from the 
TCGA data repository (https://portal.gdc.cancer.gov/ 
repository), ICGC data (https://icgc.org/) and the GEO 
database (https://www.ncbi.nlm.nih.gov/gds/?term=). 
 
RESULTS 
 
mRNA expression levels and predictive efficiency of 
10 DRG in TCGA-LIHC cohort 
 
To confirm the biological function of 10 DRG in 
HCC, we first calculated the cancer major pathway 

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://icgc.org/
https://www.ncbi.nlm.nih.gov/gds/?term
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score and then the correlation of 10 DRG with the 
cancer major pathway score. We found that 10 DRG 
mainly affects cancer development through the cell 
cycle pathway (Figure 1A). Next, the expression of 
8/10 DRG were highly expressed in HCC except 
NUBPL and NDUFS1 (Figure 1B). Meanwhile, the 
expression of NCKAP1, SLC3A2, GYS1, LRPPRC 
were highly expressed in stage III and stage IV 
(Figure 1C). We also found that 10 DRG were closely 
positive correlation except NDUFA11 (Figure 1D). 
Next, to assess the accuracy of 10 DRG in predicting 
the prognosis of HCC, we plotted the ROC curves. 

The 1-year, 3-year, and 5-year AUC of NCKAP1 was 
0.677, 0.605, 0.574, RPN1 was 0.652, 0.631, 0.610, 
SLC3A2 was 0.656, 0.590, 0.540, SLC7A11 was 
0.707, 0.630, 0.574, GYS1 was 0.652, 0.583, 0.520, 
NDUFS1 was 0.605, 0.565, 0.508, OXSM was 0.659, 
0.637, 0.608, LRPPRC was 0.711, 0.626, 0.565, 
NDUFA11 was 0.465, 0.499, 0.488, NUBPL was 
0.548, 0.499, 0.457. The 10 DRG exhibited a low 
AUC area, suggesting that these gene had a worse 
overall performance (Figure 1E–1N). Therefore, there 
is an urgent need to develop a more effective model to 
predict the survival of HCC. 

 

 
 

Figure 1. mRNA expression levels and predictive efficiency of 10 DRG in TCGA-LIHC cohort. (A) The relationship between 10 DRG 
and tumor signaling pathways. (B) The expression distribution of 10 DRG between tumor and normal. (C) The expression distribution of 10 
DRG between stage III & stage IV than stage I & stage II. (D) Correlation map of 10 DRG. (E–N) ROC analysis showed the predict performance 
10 DRG. 
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SLC7A11 and LRPPRC can be used as an 
independent prognosis factor in HCC in TCGA-
LIHC cohort 
 
To assess whether 10 DRG, age, gender, TNM stage, 
and AFP were independent prognostic factors for 
HCC patients, our forest plot results obtained by 
univariate and multivariate COX regression analysis 
showed that both T stage and SLC7A11 and LRPPRC 
were independent prognostic factors for patients with 
HCC (P<0.05) (Figure 2A). Correlation analysis of 
immune cell subpopulations in ssGSEA showed that 
SLC7A11 expression levels were positively correlated 
with T helper cells, macrophages, Th2 cells, NK 
CD56bright cells, Tcm, Th1 cells and negatively 
correlated with NK cells, B cells, cytotoxic cells, 

eosinophils, DC, pDC, and Th17 cells. LRPPRC 
expression levels were positively correlated with Tcm, 
T helper cells, and Th2 cells and negatively correlated 
with other cells (Figure 2B, 2C). Further 
immunohistochemistry showed that SLC7A11 and 
LRPPRC were higher in cancer tissues than in normal 
tissues (Figure 2D). Next, our single-cell dataset was 
validated for SLC7A11 and LRPPRC expression. 
Based on the GSE140228 dataset, 62,530 cells were 
identified. Further clustering analysis resulted in 
surface these cells can be classified into 12 cell types 
(B, CD4Tconv, CD8T, CD8Tex, DC, ILC, Mast, 
Mono/Macro, NK, Plasma, Tprolif, and Treg) (Figure 
2E). Among them, LRPPRC is widely released in 
various immune cells and SLC7A11 is mainly 
released in DC, ILC cells (Figure 2F, 2G). 

 

 
 

Figure 2. SLC7A11 and LRPPRC can be used as an independent prognosis factor in HCC in TCGA-LIHC cohort. (A) The univariate 
and multivariate Cox regression analysis between 10 DRG and overall survival. (B) The relationship between SLC7A11 and immune infiltration. 
(C) The relationship between LRPPRC and immune infiltration. (D) Immunohistochemistry images of SLC7A11 and LRPPRC expression in 
normal tissues, and HCC tissue. (E) T-distributed stochastic neighbor embedding plot of all the single cells, with each color coded for immune 
cell types. (F, G) The expression distribution of SLC7A11 and LRPPRC in immune cell types. 
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Molecular subtypes based on 10 DRG in the meta 
cohort 
 
First, we merge TCGA-LIHC, LIRI-JP, GSE14520, 
GSE36376, and GSE76427 into a meta cohort. The 
consensus CDF curve and the change in area under CDF 
delta area curve showed that, for consensus matrix k=2, 9 
DRG related expression-based classification had 
relatively stable clustering results (Figure 3A). We 
figured out that the OS time of the DRG.cluster.B had 
better prognosis compared with DRG.cluster.A (Figure 
3B). Two clusters such as DRG.cluster.A and 
DRG.cluster.B were clearly identified (Figure 3C). A 
total of 40 mRNAs with significant differences between 
DRG.cluster.A and DRG.cluster.B HCC subtypes 
(|log2FC|>1; adj. p<0.05) (Figure 3D and Supplementary 
Table 1). By univariate COX regression analysis, 39 out 
of 40 genes were significantly associated with survival 
prognosis (Figure 3E). These genes were mainly enriched 
in metabolism-related signaling pathways (retinol 
metabolism, carbon metabolism, linoleic acid 
metabolism, tyrosine metabolism) (Figure 3F, 3G and 
Supplementary Tables 2, 3). 

TME between the 2 DRG.cluster 
 
Next, we further explored the immunological role of 
DRG.cluster in HCC. The results suggested that the 
infiltration level of most immune cells was significantly 
lower in DRG.cluster.B group (Figure 4A). In this 
analysis, we also evaluated some representative targets, 
and found that immune checkpoint were highly 
expressed in DRG.cluster.A group (Figure 4B and 
Supplementary Table 4). The ESTIMATE results 
showed that the stromal score, immune score and 
ESTIMATE score in DRG.cluster.A group were much 
higher than those in DRG.cluster.B group (Figure 4C–
4F and Supplementary Table 5). 
 
Identification of hub genes between the 2 
DRG.cluster 
 
The sample clustering tree was constructed based on 
dynamic hybrid cuts using scale-free networks and 
topological overlap. Based on the scale-free topology 
criterion, the optimal soft threshold β=4 was determined 
based on the fit index and the average degree of 

 

 
 

Figure 3. Molecular subtypes based on 10 DRG in the meta cohort. (A) Unsupervised consensus clustering based on 10 DRG for 1155 
HCC patients in a meta cohort (GSE14520, GSE36376, GSE76427, LIRI-JP, and TCGA-LIHC). (B) Kaplan-Meier curve showed a significant 
difference between the 2 DRG.clusters. (C) PCA analysis between 2 DRG.clusters. (D) The different genes between the 2 DRG.clusters. (E) The 
univariate Cox regression analysis between 40 DEGs and overall survival. (F) GO enrichment analysis, (G) KEGG enrichment analysis for the 
DEGs and prognosis genes between the 2 DRG.clusters. 
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network connectivity (Supplementary Figure 1). Based 
on the optimal soft threshold, the gene modules were 
divided, the cut height was set to 25%, and a total of 13 
modules were obtained, and the module cluster tree was 
drawn (Figure 5A). The correlation analysis between 
the construct modules and clinical characteristics was 
performed and heat maps were drawn, and the grey 
module correlated most closely with HCC (r=0.31, 
P=4e-18) (Figure 5B). Next, the genes in the grey 
module were extracted, and a total of 1097 genes were 
obtained. A total of 6 overlapping genes were obtained 
by intersecting the genes in the grey module with DEGs 
and prognosis through the Venn diagram. These 6 genes 
were defined as candidate pivotal genes in this study 
(Figure 5C). 
 
DRG.score model was constructed based on 6 hub 
genes 
 
In order to predict the prognosis of HCC patients more 
accurately, we built DRG.score based on 6 hub gene 
(Supplementary Table 6). According to the DRG.score 
distribution, the 2 DRG.cluster group had significant 
differences. The results suggested that the DRG.score in 
DRG.cluster.B group were much lower than those in 
DRG.cluster.A group (Figure 6A), and DRG.cluster.A 
group had much more high DRG.score patients (Figure 
6B). TCGA-based molecular subtypes also showed that 
the DRG.scores were different for different subtypes 
(Figure 6C). The OS time curve showed that lower 
DRG.score subgroup had longer survival time (Figure 
6D). The 1-year, 3-year and 5-year AUC of DRG.score 
was 0.847, 0.739, 0.685 (Figure 6E). The DRG.score 
exhibited a high AUC area, suggesting that DRG.score 

had a good overall performance. Meanwhile, univariate 
and multivariate Cox regression analysis show that 
DRG.score can be used as an independent factor to 
predict the prognosis in HCC (Figure 6F, 6G). Also, a 
lower mutation was discovered in the low DRG.score 
group (86.99% vs 83.26%) (Figure 6H, 6I). The above 
results show that the DRG.score can better predict the 
risk of prognosis. 
 
TME between the DRG.score groups 
 
Next, the results figured out that the positive correlation 
between these immune cells and DRG.score (Figure 
7A). The infiltration level of immune cells was 
significantly lower in low DRG.score group 
(Supplementary Figure 2). We also found the positive 
correlations between these immune checkpoints and 
DRG.score were intricate (Figure7B). In order to 
examine the underlying biological processes in the high 
and low DRG.score groups, we performed a GSEA 
analysis. The results showed that tumor-related 
pathways (cell cycle, ECM receptor interaction) were 
enriched in the high DRG.score group (Figure 4C, 4D). 
These results suggested that high DRG.score may have 
a significant impact in tumor development. 
 
DRG.score is a robust prognosis factor in HCC 
 
To further validate the robustness of DRG.score, the 
prognostic implication of DRG.score was examined in 
multiple independent datasets. In both patient sets, 
patients in the high DRG.score group had a worse OS 
than in the low DRG.score group in TCGA-LIHC, 
LIRI-JP, GSE14520, GSE36376, and GSE76427 

 

 
 

Figure 4. TME between the 2 DRG.cluster. (A) The relationship between the 2 DRG.clusters and TME. (B) The correlation of immune 
checkpoint condition in 2 DRG.clusters. (C–F) The ESTIMATE score, stromal score, immune score, and tumor immunity levels in 2 
DRG.clusters. 
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(Figure 8A–8E). Meanwhile, patients in the high 
DRG.score group had a worse progression free survival 
than in the low DRG.score group in TCGA-LIHC 
(Figure 8F). 
 
Evaluation of the immunotherapy response between 
the DRG.score groups 
 
The results showed that low DRG.score group had a 
higher TIDE score compared with high DRG.score 

group (Figure 9A). Higher TIDE scores indicate a 
greater likelihood of immune evasion, suggesting that 
patients may not benefit from immune checkpoint 
inhibitor therapy. Meanwhile, responder group had a 
higher DRG.score than non-responder group (Figure 
9B), and high DRG.score group had a higher responder 
patients compared with low DRG.score group (Figure 
9C). Moreover, a higher DRG.score was found in the 
TACE response group than in the TACE non-response 
group, and high DRG.score group had a higher TACE 

 

 
 

Figure 5. Identification of hub genes between the 2 DRG.cluster. (A) Co-expression network module clustering dendrogram, different 
colors represent different clusters. (B) Heat map of correlations between gene modules and clinical features of HCC, with red representing 
positive correlations and blue the opposite. (C) Venn diagram showing common genes between WGCNA and DEGs and prognosis. 
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Figure 6. DRG.score model was constructed based on 6 hub genes. (A) Differences in DRG.score among 2 DRG.clusters. (B) The 
number of high and low DRG.score patients in 2 DEG.clusters groups. (C) Differences in DRG.score between immune subtypes. (D) Kaplan-
Meier curves for high and low DRG.score groups. (E) The predictive value of DRG.score. (F, G) The univariate and multivariate Cox regression 
analysis between DRG.score and overall survival. (H, I) The waterfall plot depicted the differences in frequently mutated genes of 
hepatocellular carcinoma among high and low DRG.score groups. 
 

 
 

Figure 7. TME between the high and low DRG.score groups. (A) The correlation between DRG.score and different immune cells.  
(B) The correlation between DRG.score and different immune checkpoint. (C) GSEA GO identified high and low DRG.score groups related 
signaling pathways in HCC. (D) GSEA KEGG identified high and low DRG.score groups related signaling pathways in HCC. 
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Figure 8. External validation of DRG.score. (A–E) The Kaplan-Meier curves analysis between high and low DRG.score groups and overall 
survival in GSE14520, GSE36376, GSE76427, LIRI-JP, and TCGA-LIHC. (F) The Kaplan-Meier curves analysis between high and low DRG.score 
groups and progression free survival in G TCGA-LIHC. 
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responder patients compared with low DRG.score group 
(Figure 9D, 9E). These results suggested that patients 
with higher DRG.score demonstrated significant 
immunotherapy therapeutic advantages and TACE 
clinical benefits. 
 
DISCUSSION 
 
HCC remains an important public health safety issue 
worldwide, and the problem of tumor heterogeneity 
greatly constrains precision oncology treatment. One of 
the characteristics of tumor cells is resistance to normal 
death, which is the basis of the origin and development 
of cancer, so the inability of cells to self-kill is thought 
to be related to the growth and metastasis of cancer 
[26]. Disulfidptosis is similar to other normal cell death 
modes, ferroptosis helps gemcitabine inhibit resistance 
to pancreatic cancer, and pyroptosis affects all stages of 
tumor carcinogenesis [27]. Therefore, we believe that 
DRG are valuable in determining the occurrence and 
prognosis of HCC.  
 
We focused on 10 DRG, constructed expression 
differential genes and prognostic differential genes 
related to disulfidptosis based on HCC expression and 

survival data in TCGA database. The SLC7A11 gene is 
located on human chromosome 4 and contains 14 
exons. This gene is responsible for the uptake of 
extracellular cystine into the cell and the exchange of 
glutamate out of the cell in a 1:1 ratio, promoting the 
synthesis of the intracellular biological antioxidant 
glutathione (GSH) and protecting cell survival, and 
plays a key role in maintaining the balance of intra- and 
extracellular GSH [28, 29]. It has been demonstrated 
that in most tumors, the SLC7A11 coding code protein, 
through its specific biological properties, alters the 
microenvironment of tumor growth and thus promote 
tumor growth [30, 31]. Guo et al. found that the 
SLC7A11 gene increased the expression level of 
reactive oxygen species (ROS) in HCC cells and 
affected the growth of tumor cells. It was found that 
upregulation of SLC7A11 gene expression could 
activate AP-1 transcription factor, which could affect 
tumor uptake and metabolism of calcium ions and 
accelerate its cell cycle to promote tumor growth and 
proliferation. Additionally, the study found that 
SLC7A11 gene is usually elevated in HCC tissues, and 
is associated with a worse prognosis of hepatocellular 
carcinoma patients, and artificial damage to SLC7A11 
inhibit the growth and appreciation of hepatocellular 

 

 
 

Figure 9. DRG.score in the role of anti-PD-1/L1 immunotherapy. (A) Differences in TIDE among high and low DRG.score groups. (B) 
Differences in DRG.score among non-response and response groups. (C) The proportion of non-response and response patients in low or high 
DRG.score groups. (D) Differences in DRG.score among TACE non-response and TACE response groups. (E) The proportion of TACE non-
response and TACE response patients in low or high DRG.score groups. 
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carcinoma cells, and SLC7A11 dysfunction has also 
been shown to increase the intracellular reactive oxygen 
species level, which in turn leads to autophagic cell 
death in hepatocellular carcinoma cells [32, 33]. 
LRPPRC protein is a multifunctional protein that 
regulates energy metabolism, participates in the 
maturation of nuclear-encoded mRNAs, and regulates 
signal transduction pathways. It was found that 
overexpression of LRPPRC gene was detected in 
various human malignancies, and overexpression of 
LRPPRC gene was strongly associated with poor 
prognosis of tumor patients [34, 35]. LRPPRC gene 
silencing significantly inhibited the growth and invasion 
of tumor cells, induced apoptosis, and reduced their 
drug resistance. The anti-apoptotic effect of LRPPRC 
was enhanced by a significant decrease in cytochrome C 
oxidase activity in hepatocellular carcinoma cells with 
reduced expression of LRPPRC. LRPPRC enters the 
mitochondrial oxidative metabolism by delaying 
apoptosis of hepatocellular carcinoma cells [36]. 
However, subsequent ROC curve analysis confirmed 
that SLC7A11 and LRPPRC did not show good 
predictive power, and this limits their predictive power 
as markers. 
 
In order to obtain more effective markers to predict 
the prognosis of HCC, we first divided HCC into two 
molecular subtypes, among which the cluster.B had 
better prognosis and cluster.A had the worst 
prognosis. For immune subtype classification, we 
figured out that there was a significant difference in 
immune-related evaluation and clinical pathological 
signatures. These results demonstrated that 
distinguishing between DRG-based clusters provides 
a novel classification avenue for HCC. Next, 39 DEGs 
with prognosis was detected between the 2 clusters. 
Further, we used the WGCNA method to identify the 
most important genes in both groups and obtained a 
total of 1097 genes. Combining the genes obtained by 
these two methods, we identified the 6 hub genes, and 
DRG.score model was constructed based on 6 hub 
genes.  
 
The TME is a complex heterogeneous environment 
composed of multiple cells. Infiltrating immune cells 
are an important component of the TME and are closely 
related to the efficacy of tumor immunotherapy and 
patient prognosis [37]. Tregs and macrophage M2 have 
been reported to be an important component of the 
TME with dual functions of immunosuppression, 
promoting tumor development [38]. In the present 
study, immunosuppressive cells such as Tregs, Th2 and 
macrophage M2 were more abundant in the high 
DRG.score group with poorer prognosis, while 
activated NK was significantly enriched in the low 
DRG.score group. The results suggest that the model is 

to some extent related to the immune landscape of the 
liver cancer microenvironment. 
 
Traditional approaches include surgery, radiotherapy, 
chemotherapy, and targeted therapy. Although, the 
development of HCC-targeted therapy and other 
precision therapies have great breakthroughs have been 
achieved in recent years, the 5-year survival rate of 
patients has only increased from 7% to 15%. Lately, 
ICIs have been adopted in tumor therapy, transforming 
the tumor treatment’ paradigm. Tumor cells often 
escape cytotoxic T lymphocyte destruction by the 
upregulation of immune checkpoint ligands, such as 
PD-L1, which can inhibit lymphocyte activation by 
binding to the complementary receptor (PD-1) on 
cytotoxic T lymphocytes. In addition to CTLA4, PD-1, 
and LAG3, other immunosuppression-related genes, 
like IGFBP2 and LGALS1 are highly expressed in 
patients with glioma. Blocking the immune 
suppression-related genes’ expression can reshape the 
immunosuppressive TME. The immunosuppressive 
nature of the TME is a major cause of immunotherapy 
failure and chemoresistance in tumor patients. The 
varying response of each patient to immunotherapy and 
their heterogeneity make immunotherapy of tumors 
extremely difficult [39, 40]. In this study, DRG.score 
was significantly associated with ICIs therapeutic target 
genes, and significantly increased with increasing score. 
These findings suggest that this DRG.score model has 
the potential to predict the efficacy of ICIs. It has been 
shown that IFNγ released from CD8+ T cells 
downregulates the expression of two subunits (SLC3A2 
and SLC7A11) of the glutamate-cystine reverse 
transporter system xc, which inhibits tumor cell cystine 
uptake and thus promotes lipid peroxidation in tumor 
cells [41]. These results suggest that the combination of 
induction of disulfidptosis in tumor cells and ICIs will 
hopefully provide a new perspective for tumor therapy. 
 
Our study had several limitations. Critically, our study 
lacks experimental data and clinical validation, we need 
to verify our findings from patients or in vitro 
experimental in the subsequent studies to clarify the 
underlying mechanism of 6 signature genes in HCC. 
Secondly, we found DRG.score was also positively 
correlated with multiple immune features; however, we 
don’t know whether DRG.score dependent on the 
immune features in the association analysis with 
survival and immunotherapy efficacy.  
 
In summary, this is a first study to analysis 
disulfidptosis-related genes in hepatocellular carcinoma, 
and we identified that SLC7A11 and LRPPRC could be 
used as independent prognostic factors for HCC. 
Meanwhile, the DRG-based classification and 
DRG.score model can facilitate the prediction and the 
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selection of HCC individual and personalized 
immunotherapeutic. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 

 
 

Supplementary Figure 1. Correspondence between the fit index and the soft threshold value, when the soft threshold value 
is 4, the fit index is >0.9 for the first time. 
 

 
 

Supplementary Figure 2. The relationship between the high and low DRG.score groups and TME.  
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1–6. 
 
Supplementary Table 1. The different genes between the 2 clusters. 

 
Supplementary Table 2. GO analysis between the 2 clusters. 

 
Supplementary Table 3. KEGG analysis between the 2 clusters. 

 
Supplementary Table 4. The expression of immune checkpoint between 2 clusters. 

 
Supplementary Table 5. The TME scores between 2 clusters. 

 
Supplementary Table 6. The DRG.score for each HCC patients. 


